
Artifice: Data in Disguise
Austen Barker, Yash Gupta, Sabrina Au, Eugene Chou, Ethan L. Miller, Darrell D. E. Long

University of California, Santa Cruz
{atbarker, ygupta, scau, euchou, elm, darrell}@ucsc.edu

Abstract—With the widespread adoption of disk encryption
technologies, it has become common for adversaries to employ
coercive tactics to force users to surrender encryption keys
and similar credentials. For some users this creates a need
for hidden volumes that provide plausible deniability or the
ability to deny the existence of sensitive information. Plausible
deniability directly impacts groups such as democracy advocates
relaying information in repressive regimes, journalists covering
human rights stories in a war zone, or NGO workers hiding food
shipment schedules from violent militias. All of these users would
benefit from a plausibly deniable data storage system. Previous
deniable storage solutions only offer pieces of an implementable
solution. We introduce Artifice, the first tunable, operationally
secure, self repairing, and fully deniable storage system.

With Artifice, hidden data blocks are split with Shamir Secret
Sharing to produce a set of obfuscated carrier blocks that are
indistinguishable from other pseudo-random blocks on the disk.
The blocks are then stored in unallocated space and possess
a self-repairing capability and rely on combinatorial security.
Unlike preceding systems, Artifice addresses problems regarding
flash storage devices and multiple snapshot attacks through
comparatively simple block allocation schemes and operational
security. To hide the user’s ability to run a deniable system and
prevent information leakage, Artifice stores its driver software
separately from the hidden data.

I. INTRODUCTION

As everyday use of encryption for personal data storage
becomes more common, adversaries are forced to turn to
alternative means to compromise the confidentiality of data.
In some situations, the possession of an encrypted file or
disk can expose a user to coercive cryptanalysis tactics, or
worse [1]. In such situations, such as crossing the border of
a country with a repressive regime, it becomes necessary for
the user to establish plausible deniability – the ability to deny
the existence of sensitive information.

The heightened risk inherent to carrying encrypted infor-
mation pushes individuals to extreme methods of exfiltrating
data from dangerous or restricted environments. For example,
in 2011 a Syrian engineer smuggled a micro SD card hidden
inside of a self-inflicted wound in order to expose information
about atrocities in Hama [2]. It is also increasingly common
for nations and law enforcement to legally obligate disclosure
of encryption keys when requested by authorities [3]. These
alarming trends highlight the need for dependable deniable
storage technologies to better safeguard at-risk individuals.

Since carrying encrypted files or dedicated hardware can
be inherently suspicious, a deniable storage system must
be encapsulated by an open public file system to maintain
plausible deniability. It is highly suspicious if there are visible

drivers or firmware, unconventional partitioning schemes, ex-
cess unusable space in a file system, or unexplained changes
to the disk’s free space. To avoid suspicion, the hidden volume
must operate in such a way that the encapsulating file system
and operating system are entirely unaware of the hidden file
system’s existence, even when faced with a detailed forensic
examination.

Over the course of two decades, a variety of systems have
been designed in an attempt to address this problem. In the
process of navigating the compromises inherent to plausibly
deniable storage, each of these systems has demonstrated
distinctive “tells” that enable an adversary knowledgeable of
their design to quickly discover them. Some systems, such
as StegFS [4], do not disguise data accesses with deniable
operations, enabling an adversary to compare two images of
the disk and find the hidden volume with a multiple snapshot
attack [5]. On-the-fly-encryption systems that include hidden
volumes like TrueCrypt [6] fail to adequately address infor-
mation leakage to a public volume through user programs [7].
While they hide data and disguise accesses to a hidden volume,
oblivious RAM (ORAM) based systems such as HIVE [8]
or Datalair [9] incur significant performance penalties for
both hidden and public volumes – presenting a “fingerprint”
detectable through basic benchmarking techniques. Lastly, no
existing approach successfully addresses deniability for the
existence of the software or driver necessary for accessing a
deniable storage system.

These demonstrated weaknesses require a deniable storage
system to meet a series of requirements: effectively hide
existence of the data, prevent information leakage to the
public elements of a system, protect against overwrite by user
behavior, disguise changes to the physical storage media, and
hide or disguise the means used to access the hidden volume.

In this paper, we take a step toward the goal of applying
deniable storage systems to safeguard users by addressing
the above requirements with Artifice, a block device that
provides functional plausible deniablility for both hidden data
and the Artifice driver itself. To access a hidden volume, the
user boots into a separate, Artifice-aware operating system
through a Linux live USB drive which provides effective
isolation from the host OS. Unlike earlier systems, this does
not leave behind suspicious drivers on the user’s machine and
mitigates the impact of malware and information leakage to
the public volume. A user’s writes to the Artifice volume are
split through an information dispersal algorithm (IDA) such as
Shamir Secret Sharing [10] to generate pseudo-random carrier
blocks. The carrier blocks are then stored in the unallocated

1

space of the public file system, which is also assumed to be
full of pseudo-random blocks due to whole drive encryption,
a secure deletion utility, or similar means.

As the public file system cannot be aware of Artifice’s
existence, Artifice must protect itself from damage due to over-
writes by public operations. IDAs provide Artifice overwrite
tolerance through the inclusion of redundant carrier blocks
and enable a self-repair process whenever the user boots the
Artifice-aware OS. The overwrites still occur, but don’t cause
irreparable harm.

Artifice’s metadata locations are algorithmically generated
from a passphrase that must be supplied to find and use the
hidden volume. Without the correct passphrase, an Artifice
instance is indistinguishable from the rest of the free space
on a disk. Unlike previous approaches, Artifice addresses the
unique challenges posed by modern flash devices through
the careful management of TRIM operations. Many systems
aim to address the problem of multiple snapshot attacks in
which an adversary deduces the existence of a hidden volume
through comparison of multiple images of the disk taken
at different times. Artifice tackles this issue through writing
hidden blocks under the guise of a suitable deniable operation,
such as defragmentation and routine file deletion, or through
operational security measures.

In summary, Artifice provides a plausibly deniable storage
system that effectively hides data in the free space of an
existing file system while ensuring the integrity of the hidden
data, defends against information leakage and malware, and
hides the user’s ability to run a deniable storage system.
All while performing well enough for everyday tasks without
affecting the behavior of the public system.

II. THE PROBLEM OF PLAUSIBLY DENIABLE STORAGE

The most likely scenario for the use of a deniable storage
system entails the adversary gaining unfettered access to a
device for a short period of time. An example of which would
be inspection of a device at a border crossing. Unlike previous
work, we assume the existence of a significantly stronger
adversary, more in line with the capabilities of a intelligence
or law enforcement agency, that would likely be encountered
by users of a plausibly deniable system.

A. Adversary Model

We assume the adversary can confiscate the user’s device
and perform any static forensic analysis that they deem
warranted. This adversary is capable of taking multiple static
snapshots of the device at different points in time and com-
paring those snapshots in an attempt to discover the existence
of hidden data. The adversary can also install malware on the
user’s operating system, so long is it is not firmware based
like a bootkit. Similarly the adversary can monitor the user’s
interactions with external network infrastructure for suspicious
behavior. That said, they cannot continuously monitor the
user’s actions at all times. Should the adversary discover a
suspect aspect of the user’s device such as an undisclosed
partition, hidden information, or suspicious software, they

may force the user to reveal a password, encryption key, or
other sensitive information possibly through the threat of legal
penalties [3] or the use of a rubber-hose attack [1]. Lastly we
must assume that the adversary has knowledge of deniable
storage systems and their capabilities. As such, the security
of a system should not rely on the secrecy of its design or
“security through obscurity” [11].

While we assume that our adversary is relatively powerful
we must also keep in mind that even a sophisticated intelli-
gence agency will possess considerable but ultimately finite
resources to carry out an attack. As a result, they will not
escalate to more involved methods, such as forensic analysis,
snapshot attacks, or coercive tactics, unless they believe it is
probable that a user is running a deniable system.

Several of the previous deniable storage systems support the
feature of multiple levels that correspond with the sensitivity of
the data [4], [12], [13]. The intention being that under coercion
the user could reveal one, less sensitive, level of the system
while keeping others secret. We assume this stratagem does
not hold if the adversary has knowledge of a deniable storage
system’s capabilities as the presence of one level will raise
suspicion about the presence of additional levels.

B. Design Requirements

Considering this adversary, we can derive the following
series of design requirements for a deniable storage system.

1) Render hidden information indistinguishable from
free space: As most deniable storage devices rely on
hiding information within the free space of some other
volume, it is essential to make such information indis-
tinguishable from the rest of the free space.

2) Prevent information leakage: Since deniable storage
systems coexist with the public operating system, chal-
lenges arise concerning information leakage through
programs that access the hidden volume. In the case of
TrueCrypt, Czeskis et al. demonstrated that the system
was plagued by information leakage through both the
features of the Windows operating system and applica-
tions such as Microsoft Word [7]. It has also been made
apparent by Troncoso et al. that should an adversary
install malware on a device to continuously leak disk
traffic information, then it is possible to reveal the
existence and location of hidden files [5].

3) Mitigate the effects of overwrites by the public file
system: In normal operations the user will be primarily
interacting with the public volume. When accessing the
public system there should be (i) no trace of the hidden
volume’s existence, such as metadata structures or ac-
cess credentials, visible to an observer and (ii) normal
write behavior. This requirement, intended to prevent
information leakage to an adversary also prevents the
public system from knowing where the hidden data is
stored and therefore avoid accidentally overwriting it. A
deniable storage system hiding within unallocated space
must therefore provide some reasonable protection from
overwrite.

2

TABLE I
PLAUSIBLY DENIABLE SYSTEMS

System Overwrite Protection Indistinguishability Information Leakage Resistance Deniable Changes Deniable Software

Veracrypt [14] X X - - -
StegFS (McDonald) [4] Probabilistic X - - -

StegFS (Pang) [12] X - - - -
Hive [8] X X - ORAM -

Datalair [9] X X - ORAM -
DEFY [13] X X - - -

Mobiflage [15] X X - - -
Mobipluto [16] X X - - -

Ever Changing Disk [17] Probabilistic X - User behavior -
PD-DM [18] X X - ORAM -

Artifice Probabilistic X X User Behavior X

4) Disguise changes to the free space of the file sys-
tem: Foremost among the concerns for deniable storage
systems is the multiple snapshot attack in which the
adversary is able to capture images of the disk and infer
the existence of a hidden volume through analysis of the
changes. Most approaches attempt to disguise accesses
to the hidden volume with either many random accesses
to the disk [8], [9], [12], [18] or with hiding hidden data
accesses within other random information [17].

5) Hide the user’s ability to run a deniable storage sys-
tem: Since deniable storage systems inherently possess
significant drawbacks it is unlikely for the average user
to keep a copy on their devices and thus possession
of such software would be considered suspicious. The
presence of a driver implies that the user’s device
contains a hidden volume. Detecting the driver software
is perhaps the least computationally intensive manner for
the detection of a deniable system as it only involves in-
spection of the storage software stack, device firmware,
behavioral characteristics or partitioning scheme. In the
case of some systems there is a significant performance
impact for both the hidden and public volumes such that
it would be simple to infer the existence of a deniable
system [8], [9], [18]. While it is possible to hide such
software through the use of a rootkit or other malware,
we cannot rely on this technique as it is “security
through obscurity.”

There is no previous system that satisfies all of these
requirements. In particular, none hide a user’s capability of
running a plausibly deniable system or address malicious
software installed by an adversary.

Efforts to satisfying these requirements inevitably result
in multiple design compromises. For instance, to protect
against hidden data overwrite or to disguise access patterns,
performance is inevitably affected by IO amplification from
reading, writing, or analyzing more blocks per operation.

III. DESIGN

To address the previously discussed design requirements we
designed Artifice, a plausibly deniable virtual block device
built on the Linux device mapper kernel interface. Artifice
obfuscates data and provides protection from accidental over-
write using an IDA such as Shamir Secret Sharing [10] to
generate a set of pseudo-random shares or carrier blocks from
a user’s data blocks. These carrier blocks provide combinato-
rial security where an adversary must select the correct blocks
out of the free space to reconstruct a data block. Adding
redundant carrier blocks enables Artifice to repair itself when
it is inevitably damaged by the public file system. This IDA
based approach and flexible block allocation allows the user to
configure Artifice for use with a variety of public file systems
and mitigate the effectiveness of a multiple snapshot attack.

Unlike previous approaches that require driver software to
be installed on the user’s device, a user accesses Artifice by
booting a separate live Linux installation on a USB drive
containing the Artifice driver. Isolating the driver from the
public operating system prevents information leakage and
protects the Artifice volume from most malware. Separating
the hidden data from the driver software prevents the adversary
from implying the existence of the data from the existence of
the Artifice software. It is also important to note that the user
does not need to possess a copy of the bootable USB drive
at all times and it would be advantageous for them to not
be carrying it on their person when under the scrutiny of an
adversary.

A. Obfuscation and Redundancy

Artifice addresses the problems of obfuscation and hidden
data overwrite with a single step through the use of an IDA.
Artifice is designed to utilize either Shamir Secret Sharing [10]
or non-systematic Reed-Solomon erasure codes [19] to gen-
erate carrier blocks. Both of which provide an (n, k) scheme
where at least k carrier blocks out of a set of n are needed to
reconstruct the original data.

Carrier block overwrite will occur through operations per-
formed by the public system. Artifice treats overwrites by the

3

Fig. 1. System overview of Artifice. The Artifice kernel module resides in a
separate operating system contained on removable media. The public system
includes the public file system that Artifice hides in and the public OS. Free
space in the public file system should be filled with pseudo-random blocks.

public file system as erasures or lost shares. Reconstructing the
original data block through an IDA provides Artifice with the
redundancy needed to tolerate accidental overwrites and the
ability for the system to repair itself through reconstructing
and remapping lost carrier blocks.

Unlike previous systems, Artifice relies on combinatorial
security as well as encryption [4], [8], [9], [13], [18]. Without
knowledge of which carrier blocks correspond to what data
blocks and with carrier blocks indistinguishable from other
free space on the disk, an adversary must attempt to reconstruct
every combination of possible carrier blocks.

If we assume that the adversary cannot determine which
unallocated blocks contain hidden data then the time needed
for a brute force attempt to reconstruct the Artifice volume
is on the order of O

((
N
k

))
where N is the total number of

unallocated blocks on the disk. In this case the threshold k can
be considered constant, or limited to a small range of realistic
values, so the computational complexity can be simplified to
O(Nk). While polynomial time does not necessarily provide a
strong security guarantee on its own, the number of blocks N
can be quite large. In the case of a 1 TB disk with 512 GB of
free space there are 227 4 KB unallocated blocks. If we assume
each data block is divided into a set of 12 carrier blocks with
a reconstruction threshold of 8 then there are (227)8 or 2216

possible combinations for reconstructing each data block.
Even if an adversary is able to determine which blocks

contain hidden data, a brute force attack is still infeasible.
Using the same secret sharing parameters as the previous
example and assuming our Artifice volume has footprint of
8 GB or 221 4 KB carrier blocks, then there are still (221)8 or
2168 possible block combinations for the adversary to attempt.
Each data block can be reconstructed through

(
12
8

)
= 495

different combinations. With this and the approximate size of
the volume then we can approximate that out of the 2168 block
combinations, on the order of 227 combinations will yield a
valid data block.

There is of course a trade off between resilience, security,
and performance but using an IDA allows for a measure of
tunability. The larger the threshold k required to rebuild the

data, the more secure the system as the number of possible
block combinations has increased. Conversely, a smaller k in
proportion to n provides more data resiliency in the face of
overwrites as we have more redundant blocks that Artifice
can afford to lose. One can also increase the number of carrier
blocks to provide more resiliency at the cost of space efficiency
and performance due to increased write amplification and extra
CPU intensive operations. Whereas decreasing the number of
carrier blocks can improve performance.

In its default configuration Artifice uses Shamir Secret
Sharing [10] as an IDA to split data blocks into sets of pseudo-
random carrier blocks. Artifice secret splits a single data block
into a set of n carrier blocks of which k ≤ n are required
to reconstruct the original data block. So long as k < n
then the scheme can tolerate at least n − k carrier block
overwrites per set. In addition to obfuscation and redundancy,
Shamir’s scheme also provides a guarantee of information
theoretic security. This prevents the adversary from gleaning
information about the data block without picking a full set k
of the correct carrier blocks out of the public file system’s
unallocated space.

Artifice can also use an erasure code as an information dis-
persal and obfuscation algorithm that provides improved space
efficiency. In such an approach Artifice combines pseudo-
random appearing entropy blocks and a pool of data blocks
with Reed-Solomon codes to produce a set of carrier blocks.

For example if we have d ≤ k data blocks and e = k − d
entropy blocks, after encoding we are left with m = n −
k carrier blocks and the e entropy blocks. The data blocks
are then discarded and the carrier blocks are stored in the
unallocated space of the file system. The entropy blocks are
then stored in a known, external location. If m < e+ d, then
we require entropy blocks in order to reconstruct the original
data. Whereas if m ≥ e + d then we do not require entropy
blocks to reconstruct. For example, if we have d = 2 data
blocks and e = 3 entropy blocks resulting in k = 5, and
assuming that n = 9, we arrive at a set of m = 4 carrier
blocks after encoding. Since the two plaintext data blocks are
discarded and not written to disk, we are left with seven blocks
that can be used to reconstruct the original data. Out of this set
of n− d blocks, only k are needed to reconstruct the original
data. The numbers m, d, and e can each be adjusted by the
user to provide more resiliency, performance, or security as
desired.

Artifice has multiple ways to acquire high entropy data
from deniable sources such as a user’s DRM (Digital Rights
Management) protected media files. The presence of which
on a publicly visible file system is not suspicious. So long as
m < d + e, without the entropy blocks, the original data is
unrecoverable.

With an erasure coding based scheme it is possible to
map multiple data blocks to a single pool of carrier blocks
and provide improved space efficiency over secret sharing.
Although we must weigh the advantage of improved space
efficiency against the additional complexity and inconvenience
of requiring additional entropy data.

4

Fig. 2. The process of locating Artifice superblocks through chain hashing a
user’s passphrase.

Fig. 3. The design of the Artifice Map.

B. Artifice Map

Artifice reads data by identifying the carrier blocks and
entropy blocks associated with the logical block address
through a metadata structure called the Artifice Map (shown
in Fig. 3). The Artifice Map is a multi-level tree that stores
mappings from logical data blocks to physical carrier block
locations. The map is made repairable in the face of overwrites
by our IDA scheme and is stored alongside the carrier blocks
in unallocated space.

A hash of a user specified passphrase is used to determine
the location for a user configurable number of redundant
superblocks which provide general information about the
metadata structures and the locations of the Artifice Map
carrier blocks (Fig. 2). The superblock is replicated to protect
against overwrite and each replica is encrypted with a different
unique key derived from the passphrase. The location of each
replica is defined by a hash of the previous replica’s location.
Artifice should be configured to generate more replicas than
shares of a data block to provide a better probability of
survival.

Each entry in the map contains a set of carrier block
pointers, checksums of each carrier block and a hash of the
original data block that is used to verify the reconstruction

succeeded. In the case of an encoding scheme that requires
an external entropy source, identifying information about that
entropy source is also included. These entries are arranged
into map blocks.

To support information dispersal for the map blocks, a
multi-level approach is required. Additional levels of map
blocks are used to track the shares of the next lowest level
of map blocks. This technique reduces the size of the top
level of map blocks. The location of the top level of map
blocks are referenced by a set of pointer blocks. Both this
top level of map blocks and pointer blocks are replicated and
encrypted in a similar manner to the superblocks. Information
about the pointer blocks is stored in the superblocks. When
Artifice is running, map and pointer blocks are reconstructed
and a working set is cached in memory. As the map is modified
by new writes it is periodically flushed to the disk.

C. Block Operations and Self-Repair

Disk operations in Artifice occur on block IO requests
similarly to other device mappers such as dm-crypt [20].
Although instead of encrypting data blocks, the blocks are
split into carrier blocks on writes and reconstructed on reads.

To determine what space on the disk is unallocated, Artifice
identifies the type of the public file system and parses its
metadata to return a list of unallocated block addresses. When
Artifice is initialized, the user provides their passphrase which
is used to determine the locations of superblock replicas. The
superblocks then provide enough information to reconstruct
and load the Artifice Map into memory.

This list of block addresses and the reconstructed Artifice
Map are used to construct an allocation bitvector, at which
point Artifice can carry out self-repair and normal block device
operations. As it is only a block device, the user would then
format the Artifice device with a file system of their choice,
such as ext4, and mount it as they would any other disk.
Additional data integrity protections can be provided by this
user specified file system.

Artifice differs from most device mappers in its self-repair
processes. Self repair occurs whenever Artifice is mounted
or when prompted by the user and starts with a scan of the
Artifice Map and the list of unallocated blocks from the public
file system. Whether a carrier block has been overwritten
is determined through the carrier block checksum stored in
the map entry. If a carrier block has been overwritten it is
considered an erasure in our encoding scheme. The missing
carrier blocks are reconstructed and remapped to new locations
on the disk. Should additional problems arise, the checksum
of the original data block is stored in the map to verify that
the data block was rebuilt successfully.

The self-repair process is best executed whenever Artifice
is initialized and can run in the background while other disk
accesses are in progress. Any additional error correction, crash
recovery, or integrity checks are left to the file system that
Artifice is formatted with.

Lastly, Artifice provides a trivial method for self-
destruction. As the deletion of carrier blocks is normal, one

5

can simply discard the passphrase. Without the passphrase
information retrieval is combinatorically infeasible and normal
public operations will overwrite the hidden data over time.
For additional security Artifice can also delete the superblock
replicas to erase any chance of finding the hidden volume.

D. Public File System Considerations

In order to effectively combat hidden data overwrite and
the multiple snapshot attack, Artifice must be able to tailor its
behavior to the file system that it is hiding in. In the case of
data overwrite Artifice should react to the block allocation and
write behaviors of the public file system. This takes the form
of identifying “busy” locations in the public file system, such
as journaling regions, and avoiding them, allowing Artifice
to place data in free blocks that are the least likely to be
overwritten in the near future. In the case of log structured
file systems [21], it is best to place only one carrier block
of out a set in each segment. So that the impact of garbage
collecting any individual segment is minimized. Lastly, a user
must avoid activities such as large data writes and SSD TRIM
operations. These pose a significant risk to the carrier blocks
regardless of efforts to protect them as both can overwrite or
remap a large number of blocks.

Additionally there is the problem of a deniable reason for
large amounts of pseudo-random information in the free space
of a file system. The naive method is to fill the free space of
a disk with pseudo-random bits prior to initializing a hidden
volume [6]. The drawback of this approach is that filling the
unallocated portions of the disk with unexplained pseudo-
random information could be considered suspicious. Therefore
it would be advisable for a user to run the public system with a
secure deletion utility or a similar producer of pseudo-random
information to provide a deniable reason for pseudo-random
free space.

Should Artifice be used alongside an encrypted file system
it must also be able to understand the algorithms used and the
key. Similarly, to enable nested Artifice volumes we must be
able to treat Artifice itself in the same manner as a public file
system. To access a given Artifice instance we must have the
passphrase(s) for all levels above it.

E. Operational Security of the Artifice Driver

Even though Artifice provides deniability for the its driver
by storing it on a seperate device, there are security concerns
that arise. In an ideal scenario the user would ensure that
they do not possess a copy of Artifice on a live disk when
the adversary is most likely to inspect their device. This
assumes the user has discarded their original live disk and
made arrangments to obtain a copy once the present danger
has passed to access or repair the volume. To carry out
this more secure procedure the user in possession of the
hidden volume may need to coordinate with multiple other
individuals. When this is not practical the user could fall back
on classic steganographic techniques such as hiding data in
the lower order bits of images to hide the software on the live
disk. This approach would require less overhead as the driver

is significantly smaller than the hidden volume. Additional
options to avoid exposing the driver include downloading it
through secure means like TOR [22] or an HTTPS secured
website and carrying it on an easily concealed MicroSD
memory card. Should the user carry the live disk on their
person without additional measures to hide the software and
it falls into the hands of the adversary we must be concerned
about the adversary escalating efforts to monitor the user’s
actions and we must assume the adversary knows that the
user is possibly in possession of a hidden volume.

IV. DESIGN ISSUES FOR SOLID STATE DRIVES

Solid State Drives (SSD) create a set of different issues
for Artifice versus traditional hard drives. The logical block
store that the Flash Translation Layer (FTL) presents to the
operating system allows the SSD to relocate physical pages
so that garbage collection can reclaim pages invalidated by
more recent writes independently of the operating system.
It is necessary for the SSD to create free flash blocks (en-
compassing a moderate, but fixed number of pages) that can
be erased and made available to future writes. Erased blocks
are usually not available via the logical interface as they are
not mapped into the logical address space. The FTL may
mark Artifice blocks as written which creates an opening for
detecting Artifice through forensic analysis. Alternatively, the
FTL may unknowingly erase hidden data as part of opaque and
non-standardized garbage collection operations if it is unaware
of Artifice’s presence.

This layer of abstraction presents a hurdle for deniable
storage systems. Most that seek to address these challenges
either work on raw flash devices [13], or are intended to op-
erate as drive firmware [17]. Since custom firmware would be
suspicious and raw flash devices are still relatively uncommon,
Artifice must attempt to address these challenges through other
means.

A. TRIM

Most modern file systems support the TRIM function, which
notifies an SSD which blocks are no longer in use by the host,
and thus need not be copied to new locations during garbage
collection. Ideally for the public file system, the hidden data
would be TRIMmed, therefore marked as unallocated by the
SSD, and would treat garbage collection operations as another
form of accidental overwrite. However only one kind of TRIM
(Non-deterministic TRIM) allows a possibility of accesses to
the original data after a block has been subject to TRIM. When
reading from TRIMmed blocks the SSD could either return the
original data or some other information if the block has been
subjected to garbage collection.

The other two types of TRIM are far more damaging for
a deniable storage system, Deterministic Read After TRIM
(DRAT) and Deterministic Read Zero after TRIM (RZAT).
Both will return some consistent pre-defined value for any
logical block address that has been TRIMmed. In this case
it would be necessary for a deniable storage system to leave
all of its blocks listed as allocated on the SSD and therefore

6

vulnerable to forensic analysis. Additionally deterministic trim
will cause most, if not all, free space on the device to appear
uniform. Eliminating the ability for a deniable storage system
to hide within pseudo-random free space.

The challenge posed by TRIM is somewhat mitigated by the
fact that most operating systems utilize periodic TRIM, where
the operating system will periodically send a TRIM command
for all blocks deleted after the previous TRIM operation [23],
[24]. This is viewed as preferable to continuous TRIM where a
TRIM command is sent to the disk each time a file is deleted.
The common use of periodic TRIM allows for a small region
of accessible untrimmed free space to exist on an SSD between
TRIM invocations. The size and lifespan of this region is not
sufficient to fully solve the problem that TRIM presents.

Fortunately, it is common to disable the TRIM command if
using a drive encryption system as it could leak the locations
of the unallocated blocks and reveal the possible size of stored
data [6], [15], [25]. In the case of a deniable storage system
disabling TRIM is an ideal choice as we need not worry
about hiding data in blocks that would be altered by TRIM.
Effectively causing the SSD to behave like a mechanical disk
from the perspective of Artifice and the public file system.

B. Host Controlled SSDs and Zoned Namespaces

Parallel to the development of FTL based SSDs, there has
been work on FTL-less flash devices such as open channel
SSDs. A related recent development has been the move
towards the adoption of Zoned Namespaces [26]. This new
approach breaks an SSD up into a series of sequentially written
and host controlled “zones” that are written sequentially simi-
lar to a log structured file system. Zoned block device support
is already included in the Linux kernel through software such
as dm-zoned and F2FS [27], [28]. Zones behave similarly
to segments in a log structured file system or erase blocks
on a flash device. Artifice could extend its block allocation
functionality to support hiding data in deleted blocks of zones
that have not yet been garbage collected by the file system or
dm-zoned if those zones already contained pseudo-random or
encrypted information. As virtual block device in Linux can
layer atop one another it is also possible to tune Artifice to
leverage specific behaviors of dm-zoned to more effectively
hide information in a zoned storage device.

While zoned namespaces and other host controlled flash
devices present ideal options for bypassing the challenges
posed by FTL controlled disks, they have not yet achieved
wide adoption and some standards like Zone Namespaces have
not yet been integrated into commonly available hardware.

V. MULTIPLE SNAPSHOT AND DISGUISING ACCESSES

A multiple snapshot attack is a significant problem that
most recent deniable storage systems attempt to defend against
[8], [9], [13], [17], [18]. Efforts to provide a provable guar-
antee against a multiple snapshot attack inevitably weaken
the system against other far simpler attacks as they require
constantly running software to disguise accesses. These ap-
proaches primarily compromise disguising the user’s ability

to run a deniable storage system, which we assume is less re-
source intensive for an adversary to determine. Most previous
multiple snapshot resistant systems rely on making accesses to
public and hidden volumes indistinguishable from one another
through a number of random decoy accesses. If this approach
is taken in with Artifice, the adversary would be able to see
write patterns that may be abnormal for a given public file
system and therefore hard to plausibly deny. Artifice instead
prioritizes hiding the user’s capability of running a deniable
system while still providing some methods for defending
against a multiple snapshot attack which rely on providing
deniable reasons for the changes in a disk’s free space.

The first solution is proper operational security. Avoiding
the scenario of a multiple snapshot attack is the most foolproof
way to defeat it. When an adversary gains access to the device,
without the user supervising, the user must assume that either
a snapshot has been taken or malware installed. The easiest
and most reliable response is to replace either the whole device
or the disk, or to deniably scramble the contents of the disk
rendering the previous snapshot meaningless. With any data
already contained in the public and hidden volumes copied
to the new device, there is then nothing for the adversary
to meaningfully compare to the initial snapshot. In the case
of a mechanical disk a defragmentation operation between
two snapshots would render the first meaningless and provide
a deniable reason for the changes. Only then would hidden
data be written to the hidden volume. Although relying on
operational security is ideal, it will not always be practical for
a user to take such relatively drastic measures.

Another approach is to write data to a portion of the
disk where the contents change frequently. This reduces the
problem to selecting suitable blocks for storing hidden data at
the cost of incurring more overwrites. Artifice will be limited
to writing new data only to blocks that have been freed by
the public file system after the most recent opportunity for
the adversary to take a snapshot. To accomplish this Artifice
stores in its metadata an allocation bit vector describing which
blocks are in use. When Artifice is next initialized the current
state of the disk would be compared to the previous state.
Since these “hot” regions on the disk change frequently there
would be a deniable reason for changes in the free space. There
are some limitations to this approach. First is that using a
secure delete program or key revocation technique is essential.
Otherwise pseudo-random blocks that cannot be decrypted by
a user’s key would be inherently suspicious. Second is that
hiding data in frequently changed sections of the disk increases
the probability of overwrite. Artifice would then need to store
larger sets of carrier blocks to provide a reasonable probability
of survival. Lastly for this approach to be feasible the user
must be sure to delete a sufficient amount of data prior to
provide free blocks prior to writing to an Artifice volume.
Due to the stricter requirements placed on the user’s behavior,
such measures should not be carried out unless there is a high
possibility of an adversary carrying out a multiple snapshot
attack.

7

VI. SURVIVABILITY

Conventional systems are predominantly designed for use
with highly reliable devices. Traditional magnetic drives have
an uncorrectable error rate on the order of 10−13 to 10−15

[29]. If a block can be read at all it is extremely unlikely to
be incorrect. Blocks that are marginal can be remapped by
the drive, or by the file system. Failed blocks are typically
protected through error correcting codes or replication.

In contrast, a deniable storage system would have constant
destruction of data blocks as a normal behavior. Normal public
system operations will overwrite some Artifice carrier blocks.
Without a constantly running mechanism to prevent the public
file system from overwriting carrier blocks, the survival of the
hidden information is probabilistic. Although this may appear
as a problematic situation, it is relatively simple to reliably
ensure the survival of a small hidden volume hiding in a large
area of unallocated space.

Recall from Section 3 that we require k carrier blocks out of
a set of n to reconstruct our original data when using secret
sharing. By calculating the probability that we will lose no
more than n− k blocks, we can determine the probability of
survival for an Artifice volume. We assume n−k is the number
of redundant shares, s is the logical size of the Artifice volume,
SizeShamir(s, n, k) is the number of blocks at risk of being
overwritten, p is the probability that a given carrier block is
overwritten, and t is the is time in days. We can perform a
similar calculation to determine the survival probability for the
entirety of an Artifice instance where SizeShamir() is instead
the effective size of the entire instance when accounting for
write amplification.

Pr
Surv.

(k, n) = (

n−k∑
i=0

pi
(
n

i

)
(1− p)n−i)SizeShamir(s,n,k)·t

In the case of our Reed-Solomon scheme we must also
account for the entropy blocks, e, and the possibility of
multiple data blocks, d, mapping to a single set of carrier
blocks m. In this case we can lose up to m − d blocks out
of e+m stored. It is important to note that unlike the secret
sharing approach, the reconstruction threshold is dependent on
the number of carrier blocks. The number of vulnerable blocks
is given as SizeRS(s,m, e, d).

Pr
Surv.

(e, d,m) = (

m−d∑
i=0

pi
(
e+m

i

)
(1−p)e+m−i)SizeRS(s,m,e,d)·t

With these two functions we can evaluate the probability
of survival for a given number of carrier blocks. We assume
that the drive in use has 512 GB of unallocated space and an
Artifice instance of 5 GB. In the case of our Reed-Solomon
scheme we assume that our code word contains one entropy
block and either one or two data blocks. It is assumed that
the user writes 5 GB of data between each time Artifice is
initialized to start a repair cycle that rebuilds any overwritten
blocks.

Fig. 4 shows the survival probability of our example in-
stance over the course of 365 repair cycles for both the
metadata and the entire Artifice instance with a variety of
different encoding techniques and numbers of carrier blocks.
From these calculations we can see that there is a number
of carrier blocks for each configuration where the probability
of survival asymptotically approaches one which depends on
the reconstruction threshold k. We can also observe that using
a Reed-Solomon erasure code can provide better reliability
due to improved error correction capabilities and a smaller
footprint on the disk at the cost of additional operational
overhead due to the required entropy blocks. On the other hand
Shamir Secret Sharing would usually requires one additional
carrier block to provide a similar level of reliability.

We can also model survivability with respect to the size
of the Artifice volume, the size of the unallocated space, and
the amount written to the public file system between repair
operations. For these figures we assume that each data block
corresponds to a set of eight carrier blocks. As shown in Fig. 5,
the smaller the Artifice volume the higher the probability of
survival with overall marginal decreases in reliability even in
the case of Shamir Secret Sharing with a threshold of three
blocks which lags behind the other configurations. Overall
we can observe a linear relationship between the size of the
Artifice volume and reliability. In the case of the amount
written to the public volume between repair operations (Fig. 6)
we can observe an exponential decrease in reliability after
approximately 4 GB. Finally, when regarding the amount of
free space available to Artifice (Fig. 7) we can see that
256 GB of unallocated space provides a promising probability
of survival for our Artifice instance.

The last metric we must consider when evaluating the
survivability of an Artifice instance is the write amplification
and metadata overhead of our information dispersal scheme.
In the case of Shamir Secret Sharing the metadata overhead
is minimal as we must only track the offset of each block and
checksums to detect whether a block has been overwritten.
Although we see significant write amplification as the size
of our plaintext data is multiplied by the number of shares.
In our Reed-Solomon scheme the write amplification is im-
proved such that the size is only amplified by a factor of
of carrier blocks
of data blocks .

Additional gains to survivability could be obtained through
Artifice identifying frequently overwritten sections of the disk
over multiple sessions. These regions can then be avoided by
Artifice’s block allocation function. Although there is a trade
off with our defense against multiple snapshot attacks as a
deniable reason for changes to an infrequently used portion of
the disk may be difficult to provide.

This shows that Artifice can sustain severe damage, as
long as the user i) maintains a certain percentage of the
encapsulating file system free for Artifice to occupy, and ii)
regularly mounts Artifice to carry out self-repair. It should be
noted that these figures do not specifically take into account
the probability of overwrite from additional sources such
as garbage collection on an SSD utilizing non-deterministic

8

Fig. 4. Probability of survival for Artifice metadata in a variety of configurations using both Reed-Solomon (RS) and Shamir Secret Sharing (SSS). Probabilities
are calculated assuming 512 GB of free space, 5 GB written between repair cycles, 5 GB Artifice volume, and over the course of 365 repair cycles.

Fig. 5. Probability of survival with varying Artifice volume sizes ranging
from 256 MB to 4 GB. 5 GB of writes between repair operations and 512 GB
of unallocated space.

TRIM operations. Although Artifice cannot escape the proba-
bilistic block overwrite behaviors that arise as a result of our
stronger adversary model, it is possible with the right config-
uration with respect to the user’s circumstances to effectively
nullify the issue.

VII. EVALUATION

To demonstrate and test its viability we have implemented
Artifice as a loadable kernel module intended to be run from
a Linux live flash drive. Artifice uses the device-mapper
framework to present the user with a virtual block device.
Artifice maps block IO operations from logical data blocks to
secret split carrier blocks that are written into the free space of

Fig. 6. Probability of survival with varying sizes of writes between Artifice
invocations from 256 MB to 8 GB. 512 GB of unallocated space and a 5 GB
Artifice volume.

an existing file system. As with most device-mapper targets,
Artifice can be layered with other device mappers such as
dm-crypt and dm-zoned to modify its behavior. The current
implementation of Artifice is easily extensible to support
multiple public file system types and currently supports ext4
and FAT32 with planned support for NTFS and APFS.

For obfuscation and redundancy Artifice includes a variant
of the libgfshare [30] Shamir Secret Sharing library ported for
use in the Linux kernel. The current implementation operates
on 4 KB logical blocks as it is a common block size for
file systems such as ext4 and it is the default Linux page
size. Block checksums use a ported version of the CityHash
library [31] and the passphrase is hashed with SHA256.

9

Fig. 7. Probability of survival with varying sizes of unallocated spaces from
64 GB to 1 TB. 5 GB of writes between repair operations and a 5 GB Artifice
volume.

A. Performance Considerations

In general, the performance of a deniable storage system is
a low priority. Artifice is not a high performance system; its
ultimate goal is protecting the user and only requires sufficient
throughput to process small amounts of information. That
said, performance must be sufficiently fast so that Artifice
does not become a dangerous hindrance to the user as is the
case with some previous systems [8], [9], [18]. We consider
this threshold to be the performance of a small removable
storage device such as a USB flash drive. The largest sources
of overhead are the additional processing that secret shar-
ing or Reed-Solomon will require and write amplification
from writing multiple carrier blocks for each data block.
Performance oriented Shamir Secret Sharing and erasure code
implementations can be achieved through the use of vector
instructions [32] and Fast-Fourier transforms [33] to accelerate
Galois field operations. Despite these methods, reading blocks
from scattered locations will hinder performance.

Fortunately, the use of magnetic hard drives is rapidly
decreasing and with them painfully long seek times. SSDs
impose no significant seek penalty and have high read perfor-
mance. Scattered blocks on an SSD pose less of a performance
hindrance.

Contrarily, writing redundant carrier blocks will inevitably
impose excess writes and CPU overhead. Traditional buffering
techniques can be used to mitigate these delays. Simple meth-
ods applied in traditional storage devices, such as contiguous
allocation, are not applicable as they introduce correlations that
would render Artifice vulnerable to multiple snapshot attacks
and an increased risk of accidental overwrite.

It is also important that a deniable storage system does not
impact the performance of the public system as is the case
with some approaches aimed at tackling the multiple snapshot
attack [8], [9], [18].

Our test machine was equipped with an i7-4790 CPU,
32 GB of RAM, and a 480GB Intel 660p SSD. To better
model an average laptop computer we ran all benchmarks on
a Virtualbox virtual machine with 4 processor cores, 4 GB of
RAM, and a virtual disk formatted with FAT-32 containing
100 GB of free space. This virtual machine was running
Ubuntu 18.04 with kernel v4.15.0. Our Artifice volume was
16 GB and formatted with ext4. For our benchmark we used
bonnie++ version 1.97 without any additional flags run
through the Pilot benchmark framework [34] set to achieve
a confidence interval of 95%.

As seen in Table II our Artifice implementation using a
relatively slow secret sharing library running on a commod-
ity SSD provides performance on par with USB 2.0 flash
drives [35] and thoroughly surpasses the write throughput of
recent competing systems [8], [9], [18] without compromis-
ing the performance of the public volume. As the current
bottleneck is a naive secret sharing implementation, further
improvements can be made by leveraging processor vector
instructions or fast fourier transforms as previously discussed.
Even without those improvements Artifice’s performance is
sufficient for most basic tasks including compressed 1080p
video playback.

VIII. RELATED WORK

Over the past few decades there have been several attempts
at plausibly deniable storage. While these existing systems all
claim to provide plausible deniability, they commonly possess
easily detectable traces or behaviors. Such characteristics can
betray the existence of the file system itself or the user’s
capability of running a plausibly deniable system.

Anderson, et al. [36] were the first to propose a stegano-
graphic file system and described two possible approaches.
First a system of cover files to camouflage hidden data and
the second being hiding data within the unallocated space of
another file system. Although the proposal lacked an imple-
mentation of the two ideas, most deniable storage systems
follow the second approach.

McDonald and Kuhn implemented Anderson et al.’s second
scheme as a Linux file system based on ext2 known as
StegFS [4]. StegFS uses a block allocation table to map
encrypted data to unallocated blocks with the additional ca-
pability of nesting hidden volumes so that the user can reveal
some hidden data in the hope of satiating an adversary. This
system does not adequately address the issue of a multiple
snapshot attack.

Pang, et al. [12] implemented their variant of StegFS that
improved reliability by removing the risk of data loss in the
hidden file system when the open file system writes data.
However this version contains a bitmap which exposes the
existence and maximum size of the hidden volume.

Mnemosyne [37] proposes replacing StegFS’s simple repli-
cation technique with Rabin’s Information Dispersal Algo-
rithm [38] in order to provide greater durability and improve
write amplification across nodes. Due to its design as a peer-

10

TABLE II
ARTIFICE PERFORMANCE

Public Volume Artifice

Throughput CPU Throughput CPU

Read 299.285 MB/s±5.527 21.700%± 0.655 51.876 MB/s ±1.232 9.800%± 0.362

Write 307.458 MB/s±46.682 22.667%± 2.930 34.476 MB/s ±2.291 1.700%± 0.399

to-peer system, however, it does not hold up to our assumed
adversary.

The on-the-fly-encryption (OTFE) system TrueCrypt [6]
also provides the capability of running a hidden file system
within the free space of an ordinary encrypted volume. Its
approach is similar to StegFS in that each nested file system
has a single key, which grants access to the hidden data.
Since such approaches coexist with the public operating sys-
tem, challenges arise concerning information leakage through
programs that access the hidden volume [7]. Additionally they
do not defend against multiple snapshot attacks.

Datalair [9] and HIVE [8] combine a hidden volume with
ORAM [39], [40] techniques to obscure the volume’s exis-
tence and disguise access patterns. Accesses to hidden data
are disguised among random accesses to a public volume.
Theoretically, this prevents an adversary from successfully
carrying out a multiple snapshot attack. In practice, ORAM
and similar techniques incur significant performance penalties
that severely impact the usability of the hidden and public
volumes. In the case of HIVE, throughput for both public
and hidden sequential operations is slowed to approximately
1 MB/s [9]. Random disk write patterns and unexplained slow
performance compared to the raw disk can possibly be viewed
as suspicious.

Recently Chen et al. published PD-DM [18], a device map-
per based approach aimed at addressing the poor performance
of ORAM dependent systems [8], [9]. Although it significantly
improves read performance, write performance still suffers and
it presents the same distinctive performance characteristics that
would betray the existence of a hidden volume.

Mobiflage [15], a deniable storage system for mobile de-
vices, maintains a partition of the disk containing random
data within which hidden data can possibly be stored. It relies
on the ambiguity of whether or not hidden data is present
to provide deniability while ignoring that the presence of a
disk partition containing unexplained random information is
suspicious.

DEFY [13] is a log structured deniable file system designed
for host controlled flash devices and is based on Whis-
perYAFFS [41]. DEFY does not adequately protect against
hidden data overwrite unless hidden volumes are constantly
mounted and is limited to use on a type of raw flash device
called Memory Technology Devices (MTDs).

Zuck et al. proposed the Ever-Changing Disk (ECD) [17], a
firmware design that splits a device into hidden and public vol-
umes where hidden data is written alongside pseudo-random

data in a log structured manner. Although the design makes
significant progress towards solving the problem of hidden
data overwrite and mitigating multiple snapshot attacks, the
lack of deniability for the exposed partitioning scheme and
proposed custom firmware are a vulnerability.

None of the previously described systems hide a user’s
capability of running a plausibly deniable system, prevent
information leakage, or address malicious software installed
by an adversary.

IX. CONCLUSION

Artifice is an operationally secure deniable block device that
addresses the problem of hiding a user’s capability of running
a deniable storage system. The use of combinatorial security,
self-repair functionality, and comparatively simple solutions
to the challenges posed by multiple snapshot attacks and flash
devices results in a system that addresses the challenges posed
by a more realistic and knowledgeable adversary. We have
demonstrated that this system can easily be tuned to survive
hidden data overwrite from public file system operations,
while also resulting in significantly improved performance
and usability when compared to previous designs. A deniable
storage system such as Artifice provides a much needed tool
to ensure the continued free flow of information in suppressed
or surveilled environments.

ACKNOWLEDGMENTS

We would like to thank Thomas Schwarz for assistance with
the survivability calculations. This research was supported in
part by the National Science Foundation grant number IIP-
1266400, award CNS-1814347, and by the industrial partners
of the Center for Research in Storage Systems.

REFERENCES

[1] Wikipedia contributors, “Rubber-hose Cryptanalysis — Wikipedia, The
Free Encyclopedia,” 2020, [Online; accessed 27-January-2020].

[2] J. Mull, “How a Syrian Refugee Risked His Life to Bear Witness to
Atrocities,” Toronto Star Online, March 2012.

[3] Wikipedia contributors, “Key Disclosure Law — Wikipedia, The Free
Encyclopedia,” 2020, [Online; accessed 27-January-2020].

[4] A. D. McDonald and M. G. Kuhn, “StegFS: A steganographic file system
for Linux,” in International Workshop on Information Hiding. Springer,
1999, pp. 463–477.

[5] C. Troncoso, C. Diaz, O. Dunkelman, and B. Preneel, “Traffic analysis
attacks on a continuously-observable steganographic file system,” in
Information Hiding. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 220–236.

[6] Truecrypt Foundation, “Truecrypt,” http://truecrypt.sourceforge.net.

11

[7] A. Czeskis, D. J. S. Hilaire, K. Koscher, S. D. Gribble, T. Kohno,
and B. Schneier, “Defeating Encrypted and Deniable File Systems:
TrueCrypt V5.1a and the Case of the Tattling OS and Applications,” in
Proceedings of the 3rd Conference on Hot Topics in Security (HOTSEC
’08). Berkeley, CA, USA: USENIX Association, 2008, pp. 7:1–7:7.

[8] E.-O. Blass, T. Mayberry, G. Noubir, and K. Onarlioglu, “Toward
Robust Hidden Volumes Using Write-Only Oblivious RAM,” in
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’14). New York, NY, USA: ACM,
2014, pp. 203–214.

[9] A. Chakraborti, C. Chen, and R. Sion, “DataLair: Efficient Block
Storage with Plausible Deniability against Multi-Snapshot Adversaries,”
Computing Research Repository (CoRR), vol. abs/1706.10276, 2017.

[10] A. Shamir, “How to Share a Secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[11] A. Kerckhoff, “La Cryptographie Militaire,” Journal des Sciences Mili-
taires, vol. IX, 1883.

[12] H. Pang, K. Tan, and X. Zhou, “StegFS: A Steganographic File System,”
in Proceedings 19th International Conference on Data Engineering (Cat.
No.03CH37405), March 2003, pp. 657–667.

[13] T. Peters, M. A. Gondree, and Z. N. J. Peterson, “DEFY: A Deniable,
Encrypted File System for Log-Structured Storage,” in 22nd Annual
Network and Distributed System Security Symposium, NDSS. The
Internet Society, 2015.

[14] Mounir Iddrassi, “Veracrypt,” https://www.veracrypt.fr/en/Home.html.
[15] A. Skillen and M. Mannan, “On Implementing Deniable Storage

Encryption for Mobile Devices,” in 20th Annual Network & Distributed
System Security Symposium, February 2013.

[16] B. Chang, Z. Wang, B. Chen, and F. Zhang, “MobiPluto: File System
Friendly Deniable Storage for Mobile Devices,” in Proceedings of the
31st Annual Computer Security Applications Conference, ser. ACSAC
2015. New York, NY, USA: ACM, 2015, pp. 381–390.

[17] A. Zuck, U. Shriki, D. E. Porter, and D. Tsafrir, “Preserving Hidden
Data with an Ever-Changing Disk,” in Proceedings of the 16th
Workshop on Hot Topics in Operating Systems (HotOS ’17). New
York, NY, USA: ACM, 2017, pp. 50–55.

[18] C. Chen, A. Chakraborti, and R. Sion, “PD-DM: An Efficient Locality-
preserving Block Device Mapper with Plausible Deniability,” Proceed-
ings on Privacy Enhancing Technologies, vol. 2019, pp. 153–171, 01
2019.

[19] I. S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite
Fields,” Journal of the Society for Industrial and Applied Mathematics,
vol. 8, no. 2, pp. 300–304, 1960.

[20] Milan Broz, “dm-crypt,” https://gitlab.com/cryptsetup/cryptsetup.
[21] M. Rosenblum and J. K. Ousterhout, “The Design and Implementation

of a Log-Structured File System,” ACM Transactions on Computer
Systems, vol. 10, no. 1, p. 2652, Feb. 1992.

[22] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in Proceedings of the 13th Conference on
USENIX Security Symposium - Volume 13, ser. SSYM04. USA:
USENIX Association, 2004, p. 21.

[23] Aaron Griffin and others, “The Arch Linux Wiki: Solid state drive,”
https://wiki.archlinux.org/index.php/Solid\ state\ drive, [Online; ac-
cessed 11-February-2020].

[24] The Debian Project, “Debian Wiki: SSD Optimization,” https://wiki.
debian.org/SSDOptimization, [Online; accessed 11-February-2020].

[25] M. Broz and V. Matys, “The TrueCrypt On-Disk Format–An Indepen-
dent View,” IEEE Security Privacy, vol. 12, no. 3, pp. 74–77, May 2014.

[26] M. Bjørling, “From Open-Channel SSDs to Zoned Namespaces.”
Boston, MA: USENIX Association, Feb. 2019, VAULT-2019: 1st
USENIX Conference on Linux Storage and Filesystems.

[27] Linux Documentation Maintainers, “The Linux Kernel user’s
and Administrator’s Guide: Device Mapper: dm-zoned,”
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/dm-
zoned.html, [Online; accessed 11-February-2020].

[28] C. Lee, D. Sim, J. Hwang, and S. Cho, “F2FS: A New File System
for Flash Storage,” in 13th USENIX Conference on File and Storage
Technologies (FAST 15). Santa Clara, CA: USENIX Association, Feb.
2015, pp. 273–286.

[29] J. Gray, “Empirical Measurements of Disk Failure Rates and Error
Rates,” Tech. Rep., December 2005.

[30] D. Silverstone, “Library for Shamir Secret Sharing in Galois Field 2**8,”
https://github.com/jcushman/libgfshare, 2006.

[31] Google, “The CityHash family of Hash Functions,”
https://code.google.com/p/cityhash, 2013, [Online; accessed 10-
February-2020].

[32] J. S. Plank, K. M. Greenan, and E. L. Miller, “Screaming fast Galois
Field arithmetic using Intel SIMD instructions,” in FAST-2013: 11th
Usenix Conference on File and Storage Technologies. San Jose, CA:
USENIX Association, February 2013.

[33] D. E. Knuth, The Art of Computer Programming, volume 2 (3rd
ed.): Seminumerical Algorithms. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1997, p. 505.

[34] Y. Li, Y. Gupta, E. L. Miller, and D. D. E. Long, “Pilot: A framework
that understands how to do performance benchmarks the right way,” in
2016 IEEE 24th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS),
2016, pp. 169–178.

[35] Z. Throckmorton, “USB 3.0 Flash Drive Roundup,” Anandtech, 2011.
[36] R. Anderson, R. Needham, and A. Shamir, “The Steganographic File

System,” in International Workshop on Information Hiding, D. Auc-
smith, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp.
73–82.

[37] S. Hand and T. Roscoe, “Mnemosyne: Peer-to-Peer Steganographic
Storage,” in Peer-to-Peer Systems. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, pp. 130–140.

[38] M. O. Rabin, “Efficient Dispersal of Information for Security, Load
Balancing, and Fault Tolerance,” J. ACM, vol. 36, no. 2, pp. 335–348,
Apr. 1989.

[39] O. Goldreich and R. Ostrovsky, “Software Protection and Simulation
on Oblivious RAMs,” J. ACM, vol. 43, no. 3, pp. 431–473, May 1996.

[40] X. Zhou, H. Pang, and K. Tan, “Hiding Data Accesses in Steganographic
File System,” in Proceedings 20th International Conference on Data
Engineering, April 2004, pp. 572–583.

[41] SignalApp, “Github: WhisperYAFFS,” https://github.com/signalapp/
WhisperYAFFS/wiki.

12

