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Abstract
We describe our experience graphically visualizing data

access behavior, with a specific emphasis on visualizing the
predictability of such accesses and the consistency of these
observations at the block level. Such workloads are more
frequently encountered after filtering through intervening
cache levels and in this paper we demonstrate how such
filtered workloads pose a problem for traditional caching
schemes. We demonstrate how prior results are consis-
tent across both file and disk access workloads. We also
demonstrate how an aggregating cache based on predictive
grouping can overcome such filtering effects. Our visual-
ization tool provides an illustration of how file workloads
remain predictable in the presence of intervening caches,
explaining how the aggregating cache can remain effective
under what would normally be considered adverse condi-
tions. We further demonstrate how the same predictability
remains true with physical block workloads.

1 Introduction
Storage systems and I/O behavior are a major perfor-

mance bottleneck, and despite extensive study, I/O work-
loads are typically difficult to synthetically reproduce with
any degree of accuracy [6]. To overcome the performance
bottlenecks of storage systems, predictive techniques have
been applied, attempting to infer future data accesses from
prior requests. The viability of such approaches depends
on the inherent predictability of the access pattern. In this
paper we describe a mechanism for analyzing and visu-
alizing the predictability of workloads, with an emphasis
on the effects of intervening caches. When an observed
workload is the result of cache misses then we are pre-
sented with a modified workload that has been filtered
through a prior, intervening, cache. This is an increasingly
common scenario, particularly with web proxies, browser
caches, and more complex storage systems. Prior work has

†Supported in part by the National Science Foundation award CCR-
9972212, and by the USENIX Association.

‡Supported in part by the National Science Foundation award ACI-
9908881, NASA award NCC2-1260, and LLNL Agreement No. B347879
under DOE Contract No. W-7405-ENG-48.

demonstrated that such scenarios can quickly render tra-
ditional caching algorithms useless [1]. In that work we
further demonstrated that a promising caching mechanism
based on predictive grouping, the aggregating cache [2,3],
was able to maintain good performance in spite of such
cache filtering. Utilizing our system for visualizing I/O
predictability [12–14], we are now able to illustrate how
predictive caching policies can succeed in spite of interven-
ing cache filtering, thanks to the absence of any decrease in
predictability. Futhermore, we demonstrate that these ob-
servations are equally valid for physical disk blocks as for
file requests.

2 Cache Filtering
Caching algorithms are most often tested as a single

layer between a source of requests and a target. It is most
common for a cache to be used as an intermediate store,
one that is faster than a larger, slower, main store. We refer
to this as the classical single-stage model (see Figure 1(a)),
where the cache is tested against a workload directly. And
yet, with the growing complexity and scale of distributed
data storage, it is increasingly unlikely that an observed
workload will remain unchanged from its original source.
More often we will observe workloads that are the result
of misses from caches that lie between our local cache and
the original source of the data requests. We refer to such in-
tervening caches as filter caches that modify the workload
(see Figure 1(b) for a simple two-stage model).

The filter cache is logically closer to the request source
(data client) than our local cache. Our main concern is the
effectiveness of such a cache (second stage cache) in light
of the filtering effects of the filter (first stage cache). This
scenario, two comparable caches with a limited cost for
inter-cache access, can be found in many distributed com-
puting environments. Examples include mobile file hoards
when on a LAN, where the access requests to a server
cache have already been pre-filtered through an increas-
ingly large intervening cache – the mobile computer’s local
storage. Another example includes distributed storage sys-
tems having large client-side caches, and high-speed net-
work interfaces to a high performance storage server. In
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Figure 1: Single and two stage caching models.

such a system, client accesses to local storage are com-
parable to remote data retrievals, and so we are question-
ing the usefulness of server-side caching. In a system like
Sprite [16], with a high performance network, we would
therefore be considering the effects of a client cache on a
server cache’s hit rate.

When we consider a filter that employs LRU replace-
ment, and which is comparable in size to the cache, we find
that traditional caching schemes like LRU and LRU are
quickly rendered useless, with miss rates rapidly approach-
ing 100%. Intuitively this is because such schemes depend
solely on locality of access to succeed, a property that is in-
creasingly invalidated as a workload is filtered through an
LRU caches of increasing sizes. We’ve found this behavior
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Figure 2: General aggregating cache model.

to be consistent across a variety of trace-based workloads,
recorded from real-world storage system behavior. Recent
research has explicitly considered this problem [5, 20], at-
tempting to guarantee exclusion between different caches,
but at the cost of the complexity and communication over-
heads of cooperation. A successful alternative we have dis-
covered [1] is to use a predictive cache such as the aggre-
gating cache [2, 3], which can successfully exploit work-
load predictability, which in turn we will show to be un-
harmed by intervening cache stages.

The Aggregating Cache – The most prominent feature
of the aggregating cache is the retrieval of groups of re-
lated files from the remote storage server. Although orig-
inally intended to reduce the impact of high latency data
retrieval requests, the aggregating cache was found to in-
crease cache hit rates in addition to its intended use of re-
ducing the aggregate number of demand fetches [2]. Fig-
ure 2 presents a conceptual view of this scheme. File ac-
cess requests go through the local file system interface and,
if not satisfied locally, are forwarded through a local cache
manager to the file store managed at a remote server. The
major difference from prior art in distributed caches is the
mechanism of maintaining server-side relationship infor-
mation, and its use to retrieve multiple related files per re-
quest. This allows the client and server to transparently
utilize available bandwidth to fetch groups of files based
on observed access patterns.

The server component maintains per-file relationship in-
formation, keeping track of a strictly limited group of re-
lated files. When a client is forced to perform a high-
latency remote request, the server and client components
of the aggregating cache can cooperate to opportunistically
retrieve a group of related files. We build such groups
by tracking a fixed number of successors for all files ac-
cessed. A successor is simply a file accessed immediately
following the current file, and this information can easily
be maintained as file metadata. Because it exploits inter-



file relationships, such a cache remains resilient to the ef-
fects of workload filtering, as we have found such filtered
workloads to often exhibit more predictable access patterns
than the original access sequence.

3 Visualizing Predictability
To visualize the effects of intervening caches we utilized

a purpose-built application, VIP, and used it to generate
cache-frequency plots. These plots provide a graphical rep-
resentation of successor predictability across all objects in
workload, while simultaneously indicating their frequency
of access. The measure of predictability we use is a con-
ditional self-information metric we refer to as successor
entropy.

3.1 Successor Entropy
For access predictability we use conditional probability

as our metric. P � si � B � is simply the probability of occur-
rence of symbol si given the knowledge that we are in state
B. The state B is simply taken as the knowledge of the
current file or block being accessed.

H � �
m

∑
i � 1

P � si �B �	� log � P � si �B �
� (1)

In this work, we examine sets of file and disk access
traces. Each trace consists of a sequence of files or blocks
that were accessed. For each object f , all recorded suc-
cessors of f are candidates for a prediction. If file f is
used as the condition in Equation 1, then we have H � f �
as a measure of the amount of disorder among its imme-
diate successors. The higher this value, the less promising
the possibility of an accurate successor prediction. Simply
plotting the values of H � f � for each object encountered in
a trace would provide a histogram that gives a good idea of
the variation in conditional entropy over the file space.

3.2 Cache Frequency Plots
Our visualization system, VIP [12–14], can be used to

display the behavior a storage system given arbitrary pa-
rameter changes. In this paper we will use its abililty to
generate cache frequency plots. Successor entropy is cal-
culated for each object in the workload. These values are
then used to build a histogram for each workload. Cache
frequency plots are representations of how the successor
entropy histogram varies as the workload is changed by
filtering through varying intermediate cache sizes. In addi-
tion to plotting this data as a 3-D surface, VIP can simul-
taneously represent a fourth dimension through the use of
color. In our cache frequency plots, the frequency of access
for each object (file or disk block) is mapped to a color on
a perceptual color range. Interactive interrogation of these
plots is also possible using VIP.

VIP allows the user to interactively select specific data
points for which it will display detailed textual informa-
tion. The interactive feature of VIP include:

1. Point identity: Data points in our system are associ-
ated with real files, and by interactive picking of data
points we are able to identify the specific name asso-
ciated with object corresponding to a data point.

2. Identity equivalence: Plotting ordered histograms of
successor entropy allows us to view a consistent sur-
face, but this also means that fixed points on the x axis
do not correspond to one fixed file. When a point is
selected in VIP, all other points on the surface cor-
responding to the same object are indicated with red
markers (see Figure 7(b) below). This allows the user
to confirm if particular files’ predictability varies with
changes in the variable parameter (the y axis, which
in this paper is used to represent filtering cache size).

3. Value equivalence: While it is useful to indicate
points referring to the same object, VIP also allows us
to indicate all data points that share a common range
of values (see Figure 7(a) below). In our examples
these values represent the frequency of access to the
corresponding objects, and are indicated by color.

These interactive features were very useful in explaining
workload behavior. Using value equivalence we were able
to demonstrate that a large proportion of the most fre-
quently accessed objects are in fact the most predictable.

4 Experimental Results
In this section we present our experimental results. We

start by describing the different traces that we have used
for our experiments. We then go on to describe the adverse
effects of cache filtering on second-stage caches, and how
the aggregating cache is resilient to these effects. We con-
clude this section with a presentation of cache frequency
plots that demonstrate how disk and file workloads remain
predictable in spite of filtering effects, explaining how the
aggregating cache remains effective while traditional non-
predictive caching schemes fail.
4.1 Workloads

We tested our system with two different sets of file ac-
cess traces, and one set of physical disk traces. The first set
of file accesses were drawn from file system traces gath-
ered using Carnegie Mellon University’s DFSTrace sys-
tem [15]. These traces provided information at the system-
call level, and represent the original stream of access re-
quests. These requests were filtered to represent initial ac-
cesses to different files, i.e., accesses are based on file open
requests. This provides coarse granularity for the analysis,
focusing on patterns of file requests, more representative



of file hoarding scenarios. For a finer level of analysis, we
used a second set of file traces provided by Roselli at the
University of California, Berkeley [17]. These traces pro-
vided details of individual requests for file data. To elim-
inate any interleaving issues, these UCB traces were pro-
cessed to represent the workloads of individual worksta-
tions, and simulations were run against both instructional
and research machines. Our third set of traces are physical
block-level accesses drawn from Hewlett Packard’s SRT
traces [18]. The traces were processed to represent indi-
vidual requests for disk blocks, and durations of a day to
several weeks were analyzed.

4.2 Cache Filtering Effects
The most interesting results occur when the filter cache

capacity grows comparable to the local cache size, with the
usefulness of a traditional cache disappearing as the filter
capacity exceeds the cache size. For our first set of results
we will fix an arbitrary cache size, and observe the effect
of increasing the intermediate filter capacity on cache per-
formance. For the following graphs we chose to fix filter
capacity at 100 objects.

Figure 3 shows the effects of varying the capacity of
the filter on the hit rate of our cache. We compare three
cache management schemes: LRU replacement, LFU re-
placement, and a basic aggregating cache (that tracks and
retrieves groups of up to five related files). It is no sur-
prise that LRU outperforms LFU replacement, but the most
important observation from the figure is how rapidly the
performance of the cache degrades. As the filter size ap-
proaches the fixed cache size, we see a dramatic drop in
the hit rate for our cache. This is consistent both for
the dedicated workstation workstation, and the more heav-
ily loaded system server. Regardless of the nature of
the request source (multi-user or dedicated system) this
degradation appears very rapidly, and both LRU and LFU
caching quickly become useless. In contrast, the aggregat-
ing cache maintains consistent performance, and shows a
much milder degradation in hit rate. All independent local-
ity of reference is quickly masked by the intervening cache,
rendering straightforward LRU caching useless while the
aggregating cache manages to maintain a higher hit rate in
spite of this. This is thanks to the ability of this scheme to
capture inter-file relationships. Although the intervening
cache masked all observable locality for LRU and LFU,
these schemes assume an independence of access. Fortu-
nately, the interdependence among file access events is not
completely masked by filtering, allowing the aggregating
cache to sustain a hit rate even when requests are filtered
through a filter larger than the cache.

It should be noted that the aggregating cache is being
supplied with exactly the same information as the LRU
and LFU schemes, i.e., there is no cooperation between the
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Figure 3: CMU trace cache hit rates for varying filter sizes.

cache stages. Although the design of the aggregating cache
allows forwarding of relationship information, gathered at
the data client (request source), to the storage server, we
do not use this feature in these experiments. If this scheme
were used we would expect higher hit rates (above 90%
for these workloads), equivalent to an aggregating cache
free of the filtering effects of an intervening cache. These
results represent the performance of an aggregating cache
when confronted with the same problematic access behav-
ior as presented to the LRU and LFU schemes.

A trend observable in Figure 3 is the rate of decline for
the LRU/LFU caches vs. the aggregating cache. Other ex-
periments have shown us that the workstation workload
tends to be more predictable than server. The worksta-
tion trace, with fewer users and subsequently fewer inde-
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Figure 4: UCB trace cache hit rates for varying filter sizes.

pendent sources of requests, degrades more rapidly due to
filtering, and yet the aggregating cache is better able to
maintain hit rate. While with server we see a more grad-
ual degradation in LRU and LFU, while the aggregating
cache is slightly less adept at tolerating the filtering. This
supports the reasoning that the aggregating cache’s perfor-
mance is due to its ability to capture higher-level dependen-
cies between file access events. More independent accesses
result in reduced filtering impact and reduced improvement
through use of the aggregating cache.

The CMU traces are most useful for their extensiveness,
as they cover well over a year of recorded workloads, but
may be too old for to be fully representative of current
workloads. Also, they often lack recordings of more de-
tailed access events, e.g. specific read and write system

calls. For these reasons we repeated our experiments on
the UCB traces [17]. Specifically we present results of a
typical research workstation and an instructional system.
Figure 4 illustrate the same results as Figure 3 but using
the UCB traces.

Both figures demonstrate the same trends we observed
for the CMU traces, with a notably higher performance for
the aggregating cache, especially for the more predictable
research workload. In fact, the aggregating cache could be
considered to have been only slightly affected by the grow-
ing size of the filter, while the LRU and LFU are even more
seriously affected. Our hypotheses appear to hold more
strongly for the more recently recorded workloads. To un-
derstand the reasons for this behavior we look at the results
of our visualization system in the following subsection.

4.3 Visualizing Cache Filtering
For caching effects, we used VIP to visualize the effects

of increasing cache sizes on the workload. This was done
by filtering the workloads through a simulated cache of ca-
pacity ranging from 0 to 300 onjects, and then plotting the
conditional file entropy histograms for each cache capac-
ity, using color to indicate the frequency of access for the
corresponding file. A capacity of 0 is equivalent to the orig-
inal access sequence, while a cache of size 300 represents a
large enough cache capacity to render simple independent
probability-based predictions useless.

In Figure 5 we present the results of these experiments
for file access sequences of approximately a month. The
first observation from Figure 5 is how predictable the file
accesses remain in spite of increasing the capacity of inter-
vening caches. This is contrary to commonly held views
of file access behavior, where caches are expected to sim-
ply result in a greater degree of unpredictability. Noting
the distribution of frequently accessed files – they occur at
ranges of very high predictability – we can begin to see
how a a succession-based predictive caching scheme was
able to maintain good performance in spite of the interven-
ing caches. The following observations hold for the file
access traces in Figure 5: First, many high-frequency files
have the most predictable successor behavior; Secondly,
when no or little cache filtering occurs (at smaller capaci-
ties) there are a larger proportionof frequently accessed yet
unpredictable files. The latter point clarifies why a predic-
tive cache remains effective in spite of intervening caches.
Intervening caches act as a consistent filter that masks most
localised accesses. What is observed is in fact the transi-
tions among working sets, inherently less likely to be af-
fected by transient events and more likely to represent true
access behavior.

These observations are also true when considering disk
block access patterns. Figure 6(a) shows a day-long trace
of disk access behavior, while Figure 6(b) shows the same



(a) workstation

(b) server

Figure 5: Cache-frequency plots of month long CMU file
access traces. All points are colored by file access fre-
quency.

view for disk accesses over an entire week. As with file ac-
cess patterns we can see that most popular files are widely
distributed across the range of predictable files. Specifi-
cally, aside from the original workloads (with cache size
0), there is limited correlation between predictability and
access frequency (we see lighter points across the range
of files and predictability values). This is especially im-
portant as it clearly demonstrates that many of the most
popular disk blocks are also very predictable in their as-
sociated access behavior. This observation can be further

(a) day

(b) week

Figure 6: Cache-frequency plots of SRT disk access traces.
All points are colored by block access frequency.

supported when the interactive features of VIP are em-
ployed. Figure 6(b) shows the selection of all blocks with
a relatively high associated access frequency. The selec-
tion is made using a highlight-bar across the frequency leg-
end. All points that correspond to blocks with a popular-
ity falling in that range are indicated in red (darker single
points in the hardcopy figure). Figure 7(a) shows similar
selection for the file access workloads. The selection is for



(a) Selecting a frequency range.

(b) Selecting a single data point.

Figure 7: Interactive features. Selecting a single point pro-
vides associated file/object information, while selecting a
frequency range will highlight all point on the surface that
fall in that range.

less frequently accessed files, and therefore covers many
more points (again distributed across the range of files).
This is consistent with the expected degree of skew in file
access frequencies.

A further insight gained from the interactive features
of VIP was a direct result of identifying the specific files
contributing to data points in the file access traces. A fea-
ture of these cache-frequency plot was the relatively large
flat regions, particularly in the workstation workload (Fig-
ure 5(a)). Although it was clear these were probably a

large number of files sharing a common predictability, it
was not clear why this would be the case. Selecting points
in one such region showed them to be files supporting
code development; libraries, code source files, and head-
ers. This explains the existence of large groups of files
exhibiting near-identical behavior, which in turn implies
neas-identical predictability. All such files belonged to one
or more development projects, where accesses would be
driven by a common makefile, resulting in highly deter-
ministic and common access behavior. The selection of
one such file (and visual confirmation that all other data
points from that file fall in the same range) is presented in
Figure 7(b).

5 Related Work
Our work on the aggregating cache has drawn from

work in distributed file systems, and predictive prefetching,
but our consideration of cache filtering effects is novel in
this area. Griffioen and Appleton presented a file prefetch-
ing scheme based on graph-based relationships [7]. The
first proposed application of data compression techniques
to file access prediction was presented by Vitter and Kr-
ishnan [19]. Later work by Kroeger and Long [9] com-
pared the predictive performance of different algorithms,
including Griffioen and Appleton’s scheme, and more ef-
fective schemes based on context modeling and data com-
pression [8, 10]. Yet another technique, using program-
based file prediction based on pattern matching, was also
presented by Lei and Duchamp [11]. All these studies fo-
cused on the prediction of file accesses using models that
could observe requests at the source, client-side models.

Although prior work has considered the effects of mul-
tiple cache levels [5, 20, 21], we believe our work to be
the first to provide a means to directly illustrate the ef-
fects of caching on the predictability of disk or file access
patterns. Our results explain why a predictive cache can
remain effective without communicating with prior cache
levels, but prior work has attempted to guarantee cache
exclusion without a communication overhead and without
predictive policies [4]. This work by Ari et al. depended
on the use of adaptive caching policies to dynamically opti-
mize the behavior of multiple non-communicating caches.

6 Conclusion
Caches are useful for reducing requests to slower

data storage devices, but without cooperation intervening
caches have traditionally been considered detrimental to
the operation of caches at later stages. We have demon-
strated that this assumption is clearly true for traditional
caching schemes that only exploit locality, but predictive
caches remain effective. Using VIP to generate cache-
frequency plots, and its interactive features, we were able
to draw two valuable insights into the nature of file and



disk workloads: frequency is not correlated with unpre-
dictability, and caching does not degrade the predictability
of the access patterns. The first point contradicts the as-
sumption that frequently accessed objects are less likely to
have easily predictable successors. The second explains
why predictive caches can work without the cooperation of
intervening caches – intervening caches may mask local-
ity, but do not render the access patterns less predictable.
On the contrary, they would appear to filter out transients,
leaving only the more predictable working-set transitions.
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