
Zone-Based Shortest Positioning Time First Scheduling for MEMS-Based
Storage Devices†

Bo Hong, Scott A. Brandt, Darrell D. E. Long, Ethan L. Miller,
Karen A. Glocer and Zachary N. J. Peterson‡

Storage Systems Research Center
Jack Baskin School of Engineering

University of California, Santa Cruz�
hongbo, sbrandt, darrell, elm, kag � @cs.ucsc.edu, zachary@jhu.edu

Abstract

Access latency to secondary storage devices is frequently
a limiting factor in computer system performance. New
storage technologies promise to provide greater storage
densities at lower latencies than is currently obtainable with
hard disk drives. MEMS-based storage devices use orthog-
onal magnetic or physical recording techniques and thou-
sands of simultaneously active MEMS-based read-write tips
to provide high-density low-latency non-volatile storage.
These devices promise seek times 10–20 times faster than
hard drives, storage densities 10 times greater, and power
consumption an order of magnitude lower. Previous re-
search has examined data layout and request ordering algo-
rithms that are analogs of those developed for hard drives.
We present an analytical model of MEMS device perfor-
mance that motivates a computationally simple MEMS-
based request scheduling algorithm called ZSPTF, which
has average response times comparable to Shortest Posi-
tioning Time First (SPTF) but with response time variability
comparable to Circular Scan (C-SCAN).

1. Introduction
The huge disparity between memory access times and

disk access times has been the subject of extensive re-
search. CPU speed has been increasing rapidly but disk
access latency has lagged behind—disk transfer rates have
been increasing at 40% per year, while seek times and ro-
tational latency have been increasing at less than 10% per
year [5]. This disparity has created a performance bottle-
neck in computer systems. Many techniques based on lim-
iting the seek and rotational latency of a disk drive have

†This research is supported by the National Science Foundation under
grant number CCR-073509 and the Institute for Scientific Computation
Research at Lawrence Livermore National Laboratory under grant number
SC-20010378.

‡Zachary Peterson is now at John Hopkins University.

been developed to improve disk, and therefore system, per-
formance [7, 11, 12, 17, 20].

A new class of secondary storage devices based on
microelectromechanical systems (MEMS) [1, 10, 19] cur-
rently being developed promises seek times 10–20 times
faster than hard drives, storage densities 10 times greater,
and power consumption an order of magnitude lower.
MEMS devices provide non-volatile storage using either
physical [19] or magnetic [1] recording techniques to
achieve extremely high-density storage. In order to achieve
these high densities, MEMS-based storage designs use a
non-rotating storage device with storage media on one sur-
face and a large array of read/write heads on another sur-
face directly above the storage media. By moving the sur-
faces relative to each other using MEMS actuators, each
read/write head can access a region of the surface. MEMS-
based storage devices are expected to have many other
significant advantages over hard disks, including better
I/O performance, higher throughput, smaller physical size,
lower heat dissipation requirements, and integrated process-
ing and storage [15]. For all of these reasons, MEMS-based
storage devices are an appealing next-generation storage
technology. However, the characteristics of these devices
are very different from those of hard drives, and file sys-
tem algorithms designed for hard drives are not likely to be
optimal for MEMS-based storage devices.

Previous work by Griffin et al. [4] showed that standard
disk request scheduling algorithms such as First-Come-
First-Served (FCFS), Circular Look (C-LOOK), Shortest
Seek Time First (SSTF), and Shortest Positioning Time
First (SPTF) can be applied to MEMS-based storage de-
vices. They found that, as with disks, SPTF generally pro-
vides the lowest response time but exhibits the greatest vari-
ation in response times, while FCFS has the least variation
in response times but the highest average response time.
Their results were obtained by a relatively direct applica-
tion of the disk-based concepts of sector, track, and cylin-
der in which a cylinder consists of all of the sectors ac-

Ethan Miller
Text Box
This paper will appear at the 11th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS '03), Orlando, FL, October 2003.

cessible without seeking in the higher-latency dimension.
However, the fairly significant differences between MEMS-
based storage and disks suggests that these disk-based al-
gorithms are unlikely to be optimal for MEMS-based stor-
age devices. In particular, cylinders in disks are areas of
equal seek time, while the physically analogous regions of
a MEMS device are not; the relative costs of seeks in the
two dimensions are close enough that it is sometimes less
costly to seek a short distance in the higher-latency dimen-
sion than to seek a long distance in the lower-latency di-
mension. The goal of this work is therefore to discover the
logical analog of a disk cylinder in MEMS-based storage
devices and use that knowledge to develop better MEMS-
specific request scheduling algorithms.

To develop a better understanding of the access time
characteristics of MEMS-based storage devices we created
a device simulator that generates seek times between any
two points on the device. This allowed us to observe the
seek time equivalence regions or simply equivalence re-
gions, areas of nearly equal seek time from any fixed point,
analogous to cylinders in a hard drive. Our results show
that unlike hard drives, the equivalence regions in MEMS
devices are not a single sector wide but are in fact rectangu-
lar with a ratio of about 1:10, indicating that it is sometimes
faster to move a short distance latitudinally than to move
a long distance longitudinally. This is in direct contrast to
hard drives, where most algorithms implicitly assume that
it is faster to access any sector in the current track than to
access any sector in any other track. These results suggest a
new approach to request scheduling algorithms is warranted
for such devices.

Based on our knowledge of the equivalence regions
we have developed ZSPTF, a new MEMS-specific request
scheduling algorithm. ZSPTF partitions the MEMS device
into a two-dimensional array of zones based on equivalence
regions. ZSPTF services requests by traversing the zones in
order, servicing requests within each zone in Shortest Po-
sitioning Time First (SPTF) order before moving on to the
next zone.

This simple algorithm is shown to have average seek
times lower than almost all previously published MEMS
scheduling algorithms including First Come First Served
(FCFS), Circular Scan (C-SCAN), Shortest Seek Time
First (SSTF), and Aged Shortest Positioning Time First
(ASPTF). ZSPTF was only outperformed by SPTF in ex-
periments that measure response times. However, ZSPTF’s
seek time variability is similar to C-SCAN’s and signifi-
cantly lower than SPTF’s. Additionally, ZSPTF does not
suffer from the starvation and computational complexity
problems that plague SPTF — ZSPTF is easy to implement,
provides comparable performance, and ensures fairness.

2. Background
It is important to note that because MEMS-based stor-

age devices are still in their infancy, many of the details

Y

X

Area accessible to
one probe tip

Tip track

Servo
info

Tip
sector

Bits

Area accessible to
one probe tip (tip region)

Cylinder

Figure 1. Data layout on a MEMS device.

are still uncertain. There are several proposed architec-
tures [3, 10, 15, 19], and we have based the physical param-
eters of our experimental model on the specification from
Carnegie Mellon University (CMU) [3, 15]. While the ex-
act performance numbers depend upon the details of that
specification, the techniques themselves do not. The ZSPTF
algorithm should perform well regardless of the exact char-
acteristics of the eventual devices produced.

A MEMS-based storage device is comprised of two main
components: groups of probe tips called tip arrays that are
used to access data on a movable media sled. In a modern
disk drive, data is accessed by means of an arm that seeks in
one dimension above a rotating platter. In a MEMS device,
the entire media sled is positioned in the x and y directions
by electrostatic forces while the heads remain stationary.1

Another major difference between a MEMS-based storage
device and a disk is that on a MEMS device, multiple tips
can be active at the same time. Data can be then be striped
across multiple tips, allowing a considerable amount of par-
allelism. However, power and heat considerations limit the
number of probe tips that can be active simultaneously; it is
estimated that 200 to 2000 probes will actually be active at
once.

Figure 1 illustrates the low level data layout of a MEMS-
based storage device. The media sled is logically broken
into tip regions, defined by the area that is accessible by a
single head, approximately 2000 by 2000 bits in size. Each
tip in the MEMS device can only read the data in its own

1Some MEMS storage device designs, like the IBM Millipede, fix the
sled and move the heads. The effect is the same—the heads move relative
to the media.

tip region; this limits the maximum sled movement to the
dimensions of a single tip region. The smallest unit of data
in a MEMS-based storage device is called a tip sector. Each
tip sector, identified by the tuple � x � y � tip � , has its own servo
information for positioning and its own error correction in-
formation. The set of bits accessible to a single tip with the
same x coordinate is called a tip track, and the set of all bits
(under all tips) with the same x coordinate is referred to as
a cylinder. Also, the set of tip sectors that can be accessed
by simultaneously active tips is known as a logical sector.
For faster access, disk sectors can be striped across logical
sectors.

3. Related Work

Researchers have been optimizing storage device seek
algorithms for secondary storage devices for decades. Disk
seek algorithms have been studied since the 1960s; Teo-
rey and Pinkerton [18] discussed the state of the art in
disk scheduling in 1972. Seltzer et al. [16] discussed disk
scheduling, noting that Circular LOOK (C-LOOK) per-
formed well under high load, and that SSTF was sufficient
for low load. More generally, researchers have found that
almost any disk seek algorithm will suffice under low load;
it is only under moderately high load that seek algorithms
are stressed sufficiently to exhibit much performance dif-
ference. Worthington et al. [20] conducted a more thorough
study of disk drive positioning algorithms, including Short-
est Positioning Time First (SPTF) which, for disk drives,
includes both disk arm positioning and rotational latency.

Though it is possible to study seek algorithms by ex-
amining them in a live system, it is more feasible to ex-
plore them using an accurate simulation of a storage device.
Ruemmler and Wilkes [14] developed an accurate disk drive
model, which has since been used to study disk seek algo-
rithms. DiskSim is another storage simulator that has been
used to model system behavior [2], and has been adapted to
include MEMS devices.

Recently, there has been interest in modeling the behav-
ior of MEMS storage devices. Griffin, Schlosser, Ganger,
and Nagle have published extensively on the modeling of
MEMS-based storage devices and the optimization of re-
quest scheduling for such devices [3, 4, 15]. They showed
that for a limited class of MEMS devices, one-dimensional
placement and scheduling can be applied efficiently. In that
work, data was placed on the MEMS-based device in longi-
tudinally sequential tracks, similar to tracks on a disk drive.
However, this method is preferable only if a long longitu-
dinal seek takes less time than a smaller latitudinal seek.
They found that for MEMS devices SPTF had the lowest
average access time, but the variability of SPTF was very
high, as would be expected for a greedy algorithm continu-
ally searching for the least expensive “next step.” They also
explored the use of standard disk-type algorithms such as
SSTF and C-LOOK, with minor modifications, on MEMS

devices. Their results show that such algorithms can be suc-
cessfully adapted to MEMS storage.

Madhyastha and Yang [8] have also studied MEMS mod-
eling, with an emphasis on creating more accurate models
of MEMS devices. They developed a more realistic access
time model that does not assume only an ideal acceleration
and takes into account damping and restoring spring forces.
Their work informed one analytical seek time analysis.

IBM has developed a prototype device, called Milli-
pede [19] that, unlike the CMU model, has a media sled
that also moves in the z direction. This enables data to be
written using tiny physical marks on the media, as opposed
to magnetic recording used in the CMU model. Additional
hardware research is also being done at Hewlett Packard
and Sandia National Laboratory.

4. Modeling Seek Time
An accurate and tractable model of seek time is im-

portant for understanding the seek time characteristics of
MEMS-based storage devices. We used the positioning
model and physical parameters provided by CMU [3, 4]
as the basis for our analysis. The CMU positioning model
takes into account the external force (constant but bidirec-
tional, � F), the spring force, and the initial and final access
velocities, which are opposite for odd and even-indexed bit
columns. Griffin et al. [3] used an iterative approach to
solve the model, which is difficult to apply in practice. In
this section, we propose an analytic solution to the CMU
model. A complete discussion is available in a technical
report [6].

Because the actuation mechanisms and control loops for
x and y positioning are independent in MEMS–based stor-
age devices, positioning in the x and y dimensions can pro-
ceed in parallel. Therefore,

tseek � max � tx � ty � � (1)
where tseek is the seek time and tx and ty are the seek times
in the x and y dimensions.

A seek in the x and y dimensions consists of a base
seek plus a settling time in the x dimension and necessary
turnaround times in the y dimension. tx thus consists of a
base seek plus a settling time, tsettle, a function of the reso-
nant frequency of the system, and ty consists of a base seek
plus necessary turnaround times, tturnaround , a function of
the actuator and spring forces. Both tsettle and tturnaround
can be easily calculated from the physical parameters of
MEMS-based storage devices.

A base seek consists of two phases: acceleration and de-
celeration. The actuators accelerate the sled toward the des-
tination in the acceleration phase and reverse polarity and
decelerate the sled to its final destination and velocity in the
deceleration phase. In addition to the actuator force, the sled
springs constantly pull the sled toward its center-most posi-
tion. Because the kinetic energy of the sled is unchanged
at the beginning and the end of a base seek, we know when
and where to reverse the polarity of the actuators:

xm � x0 	 x1

2 	 k
4F

� x2
1
 x2

0 � � (2)

where xm is the position at which actuators reverse polarity,
from positive to negative, k is the spring constant, and F is
the actuator force.

The phases of acceleration and deceleration in a base
seek are described in Equations 3 and 4:

ẍ � a
 kx
m

� (3)

ẍ �
 a
 kx
m

� (4)

where m is the sled mass, a is the acceleration by the ac-
tuators, and x is the sled displacement. Considering the
marginal conditions of Equation 3 and 4, the seek times
elapsed during seeking in the x and y dimensions, tx and
ty, are given in Equations 5 and 6:

tx �
�

m
k

arccos � xm
 ma
k

x0
 ma
k

� (5)

	
�

m
k

arccos � xm 	 ma
k

x1 	 ma
k

� 	 tsettle �
ty �

�
m
k

arcsin � ym
 ma
k� � y0
 ma

k � 2 	 � v0 m
k � 2

� (6)

�

m
k

arcsin � y0
 ma
k� � y0
 ma

k � 2 	 � v0 m
k � 2

�

	
�

m
k

arcsin � y1 	 ma
k�

� y1 	 ma
k � 2 	 � v1 m

k � 2
�

�

m
k

arcsin � ym 	 ma
k� � y1 	 ma

k � 2 	 � v1 m
k � 2

�
	 tturnaround �

The physical constants in Equations 5 and 6 are given or can
be easily derived from design parameters of MEMS-based
storage devices. Using Equations 1, 2, 5, and 6, we can very
accurately estimate the seek time between any two positions
in the sled.

5. Seek Time Analysis
To gain a more complete understanding of the seek time

characteristics of MEMS-based storage devices, we con-
ducted experiments using Equations 5 and 6 and the physi-
cal parameters provided by CMU, shown in Table 1. From
a given sector, we calculated the physical distance and seek
time to all other sectors on the device. We examined two
representative locations on the sled: the center and the top-
right corner. Because the access velocities on even-indexed
and odd-indexed bit columns are positive and negative, re-
spectively, we examined two tip sectors on even-indexed
and odd-indexed bit columns for each location. The sec-
tors we examined are � 0 � 0 � and � 25 � 0 � , which are in the

Table 1. Default MEMS-based storage device
parameters.

device capacity 3.2 GB
number of tips 6400
maximum concurrent tips 1280
sled mobility in x and y 100 µm
sled acceleration in x and y 803.6 m/s2

sled access speed 28 mm/s
sled resonant frequency 739.0 Hz
spring factor 75%
media bit cell size 40 � 40 nm
bits per tip region (M � N) 2500 � 2500

center, and � 1250 � 1250 � and � 1225 � 1250 � , which are in the
top-right corner.

Figure 2(a) shows the seek times to every position on
the sled from tip sector � 0 � 0 � . The seek times are shown in
0.1 ms increments, and larger seek times are indicated by
darker colors. Seek times are independent of the y dimen-
sion movements when the x dimension movements are large
because of the extra settling time in the x dimension. The
jagged boundaries of the similarly colored regions indicate
that seek times to neighboring tip sectors can differ due to
the unequal numbers of turnarounds required to access the
data. These interesting effects are discussed further below.

Because of different access velocities on tip sectors � 0 � 0 �
and � 25 � 0 � , the equivalence regions for these sectors are dif-
ferent although the starting locations of the seeks are close.
Nevertheless, the shapes and sizes of equivalence regions of
for these sectors are almost identical.

The shapes of the equivalence regions are rectangular,
but with jagged top and bottom edges. This is due to the
different numbers of turnarounds required to access even-
and odd-indexed bit columns. Figures 2(b) show the equiv-
alence regions from the center to even-indexed bit columns,
demonstrating clearly that the non-uniformity in the previ-
ous graphs was due to this effect. The equivalence regions
of tip sector � 1250 � 1250 � and tip sector � 1225 � 1250 � that
are distant from the center are approximately the same size
and shape as those of the sectors near the center.

The equivalence regions in the above analysis exhibit an
x:y size ratio that is on average about 1:10. This means that
it is cheaper to move one unit of distance in the x direction
than to move more than ten units in the y direction. These
results suggest that data layout and scheduling algorithms
that take advantage of this ratio are likely to outperform
those that are based on a disk-based model of tip cylinders,
which assumes an implicit ratio of 1:∞.

6. The Zone-based Shortest Positioning Time
First Algorithm

Although SPTF has very good average response times
over a wide range of request rates, it suffers from a high co-

-50 -40 -30 -20 -10 0 10 20 30 40 50 (µm)

-5
0

 -

4
0

 -

3
0

-2

0

-1

0

 0

1
0

2
0

3
0

 4

0

 5

0
 (
µ
m
)

0.0 ms

0.1 ms

0.3 ms

0.2 ms

0.4 ms

0.5 ms

0.6 ms

0.7 ms

(a) Equivalence regions to all bit columns

-50 -40 -30 -20 -10 0 10 20 30 40 50 (µm)

-5
0

 -

4
0

 -

3
0

-2

0

-1

0

 0

1
0

2
0

3
0

 4

0

 5

0
 (
µ
m
)

0.0 ms

0.1 ms

0.3 ms

0.2 ms

0.4 ms

0.5 ms

0.6 ms

0.7 ms

(b) Equivalence regions to even-indexed bit columns

Figure 2. Seek time equivalence regions from tip sector � 0 � 0 � .
efficient of variation in response times and can cause starva-
tion at high request rates [4]. It can also be computationally
intensive for large numbers of requests. Based on our seek
time analysis we have developed zone-based Shortest Posi-
tioning Time First (ZSPTF), an algorithm that, like SPTF,
groups nearby requests together to reduce average response
time, but also dramatically reduces the coefficient of varia-
tion for response times.

ZSPTF divides the MEMS storage media into a set of
zones based on seek time equivalence regions. Zones are
serviced in a C-SCAN order and multiple requests within a
zone are serviced in SPTF order. Once all of the pending re-
quests in the current zone have been serviced, the algorithm
moves on to the next zone with pending requests; zones in
which there are no requests waiting for service are skipped
(i.e., the device doesn’t actually seek to zones in which there
are no requests pending).

Although ZSPTF provides a high degree of fairness in a
way similar to C-SCAN by servicing zones in a fixed order,
its variability tends to be like SPTF when a steady stream of
requests keeps arriving to a single zone, resulting in poten-
tial starvation. To address the problem of potential starva-
tion, we have also developed a variation of ZSPTF, Zone-
based arrival-Time-constrained Shortest Positioning Time
First (ZTSPTF). ZTSPTF improves the fairness of ZSPTF
in a way similar to FCFS by only servicing requests that
arrive before ZTSPTF begins scheduling requests in a zone.

The number of zones into which the device is divided
will affect the performance of the ZSPTF and ZTSPTF
algorithms. Fewer zones leads to longer average queue
lengths for each zone, allowing SPTF to perform better
within each zone but causing higher variability of seek
times. Larger numbers of zones leads to lower variability,
i.e. greater fairness and starvation resistance, but higher av-
erage seek times. The performance of ZSPTF and ZTSPTF
with several zone sizes will be examined in Section 7.

Figure 3 shows an example of partitioning the MEMS

0 3

1 2

4 7

5 6

8 11

9 101 2

0 3

1 2

0 3

9 10

8 11

9 10

8 11

5 6

4 7

5 65 6

4 74 7

Figure 3. An example of partitioning the
MEMS storage area and the traversed order.
The sled is divided into 12 zones.

storage media into 12 zones and the order in which zones
are traversed. Note that each cell in Figure 3 contains two
zones because we divide even-indexed and odd-indexed bit
columns into different zones.

Like SPTF, ZSPTF keeps the average service time low
by grouping nearby requests together, thereby reducing av-
erage seek distance. Unlike SPTF, however, ZSPTF guaran-
tees fairness in a way similar to C-SCAN by servicing zones
in a fixed order. This servicing order prevents a large num-
ber of new requests in lower-numbered zones from indefi-
nitely delaying the servicing of requests in higher-numbered
zones. ZTSPTF can even provide better fairness by impos-
ing a FCFS-like order on scheduling.

ZSPTF and ZTSPTF are computationally simpler than
SPTF and its variants. SPTF must recompute the position-
ing time of each request in its queue after servicing each re-
quest, and the time needed to do so is proportional to queue
length. With longer queue lengths, this repeated recomputa-
tion may not be practical. In ZSPTF and ZTSPTF, the aver-
age queue length of each zone will on average be much less
than that of SPTF. Because the zones are small and based on
seek time equivalence regions, this recalculation may not be
necessary after each request.

Another advantage of ZSPTF is its customizability. The
order in which the algorithm traverses the zones is not fixed;
rather, the order can be stored in an array, allowing easy
conversion from a “physical” zone number to a logical zone
number in constant time. In the following experiments, we
used a fixed order analogous to the one shown in Figure 3.

7. Experimental Analysis
Because MEMS storage devices are not readily avail-

able, we used DiskSim [2] to simulate requests and device
service. This simulator has been used in previous studies of
MEMS seek algorithms [3, 4, 15], making it a good choice
to allow direct comparison with prior work in the area.

Many studies of access time optimization use traces of
real file system requests to produce more realistic results.
We used two traces, labeled server and user, that were col-
lected from an HP-UX time-sharing system and an HP-UX
workstation in 1999. These systems were also traced and
studied in 1992 [13]. The server trace is a one-hour subset
of the HP Cello news disk (Seagate Barracuda 9, 9.1 GB)
trace with 118,760 requests. The user trace is a one-hour
subset of the HP Hplajw user disk (Seagate Barracuda 4,
4.3 GB) trace with 75,304 requests. We believe that one-
hour heavy workloads are long enough to exercise request
scheduling algorithms and reveal their performance differ-
ence. The average request arrival rate is 33.0 requests per
second for the server trace and 20.9 requests per second
for the user trace. The logical sequentiality (the percentage
of requests that are at adjacent disk addresses or addresses
spaced by the file system interleave factor) of the server and
user traces is 0.5% and 82.9%, respectively. In general, the
user trace is much more sequential than the server trace,
and 75.3% of the requests in the user trace have inter-arrival
times less than 5 ms.

In order to explore a range of workload intensities, we
scale the traced inter-arrival times to produce a range of
average inter-arrival times. Hence, a scaling factor of one
corresponds to replaying the trace at its original speed; a
scaling factor of two corresponds to halving the traced inter-
arrival times and replaying the trace twice as fast, and so on.

Because the capacities of the traced disks are larger than
the default capacity of a MEMS media sled (3.2 GB), we
used multiple media sleds in a MEMS-based storage device
to bridge the gap in capacity. The numbers of media sleds
used for the server and user traces are three and two, respec-
tively. The low-range disk logical block numbers (LBN) are
mapped to low-numbered media sleds. The sleds move si-
multaneously and their relative positions are unchanged.

The layout of blocks on the storage device is an impor-
tant issue. Allocation algorithms that take storage device
characteristics into account tend to outperform those that
do not. For example, the Berkeley Fast File System [9]
groups related data and metadata into cylinder groups in
an effort to reduce seek time. Disk-based allocations are
unlikely to be optimal for MEMS-based devices, but in

these experiments no attempt has been made to optimize
the layout for MEMS-based devices. Specifically, we used
the disk-analogous MEMS data layout proposed by Griffin
et al. [3, 4]. This layout favors sequential workloads, as we
can see in Section 8.

To generate the results we modified a version of DiskSim
to include our seek algorithms, ZSPTF and ZTSPTF, and
ran the new algorithms a well as the existing algorithms on
the same request streams. All of the simulations in Section 8
used the default parameters reported in Griffin et al. [4], as
shown in Table 1.

7.1. Comparison of In-Zone Algorithms

The essence of zone-based algorithms is to partition the
MEMS storage media into a set of seek-time-constrained
regions based on seek equivalence regions and service the
regions in a fixed order. One question that arises is what
scheduling algorithm to use within each zone. To determine
this we implemented several in-zone scheduling algorithms
and found that SPTF gives the best overall performance.
For simplicity, we only discuss the results of ZSPTF, ZT-
SPTF, and Zone-based First Come First Served (ZFCFS).
The zone size we used here is 120 � 1200 bits2.

In addition to the average response time, another impor-
tant factor for request scheduling algorithms is the squared
coefficient of variation of response times (σ2 � µ2), where σ
is the standard deviation of response times and µ is the av-
erage response time. This metric measures the consistency
of the response time for requests [18, 20]. A low coefficient
of variation means that the service times for the requests
are likely to be near the average, while a high coefficient
of variation is an indication that some requests may get fast
service at the expense of others that can suffer starvation.
In other words, it is a measure of fairness and starvation
resistance.

Figure 4 shows the average response times and squared
coefficients of variation of response times of FCFS, ZFCFS,
ZSPTF, and ZTSPTF with different trace scaling factors for
the user trace. Although the regions in zone-based algo-
rithms are seek-time-constrained, a good in-zone schedul-
ing algorithm is still critical to avoid unnecessary settling
and turnaround times. Both FCFS and ZFCFS have good
performance only under light workloads. ZSPTF outper-
forms ZTSPTF by 31–122% under the moderate to heavy
user workloads. The overall starvation resistance of ZSPTF
and ZTSPTF are quite similar; ZSPTF has up to 15%
higher squared coefficient of variation than ZTSPTF only
under moderate workloads. ZSPTF and ZTSPTF have very
similar average response times and squared coefficients of
variation for all range of request arrival rates of the non-
sequential server workloads. In summary, ZSPTF has the
best performance with reasonable variability among these
algorithms under different workloads.

Trace Scaling Factor
0 5 10 15 20 25

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(m
s)

0

20

40

60

80

100
FCFS
ZFCFS
ZTSPTF
ZSPTF

(a) Average response times

Trace Scaling Factor
0 5 10 15 20 25

S
qu

ar
ed

 C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

0

1

2

3

4
FCFS
ZFCFS
ZTSPTF
ZSPTF

(b) Response time variation

Figure 4. Performance comparison of different in-zone scheduling algorithms on the user trace.

7.2. Potential Zone Sizes
As discussed in Section 5, there is a rectangular rela-

tionship between equivalence regions and starting sectors
if we study equivalence regions for even-indexed and odd-
indexed bit columns separately. The sizes of equivalence
regions of tip sectors near the center are a little different
from those of tip sectors distant from the center, which sug-
gests different zone sizes for different sectors. However, for
simplicity, we used uniformly sized zones. As mentioned
above, we found the best ratio of width and height of a zone
to be around 1:10.

The size of a zone is determined by a seek time threshold
such that the seek time between any two positions within
a zone should be less than the threshold. The minimum
threshold must be more than the settling time in the x di-
mension, which is 0.215 ms in our simulations. Using
Equations 1, 5, and 6, a threshold of 0.3 ms gives us zones
60 � 600 bits2 in size. A threshold of 0.4 ms gives us zones
120 � 1200 bits2 in size. To make the MEMS media sled
divisible by these zone sizes, we slightly change the sled
mobility in x and y from 100 µm to 96 µm for simplicity (in
practice, such a change is unnecessary because the x : y size
ratio of zones can be slightly different from 1:10). There-
fore, the bits per tip region is 2400 � 2400. As an extreme
case we will also examine zones 240 � 2400 bits2 in size.
For simplicity, we will refer to the ZSPTF and ZTSPTF
algorithms with zone sizes of 60 � 600, 120 � 1200, and
240 � 2400 bits2 as Z(T)SPTF(60, 600), Z(T)SPTF(120,
1200), and Z(T)SPTF(240, 2400).

7.3. Zone Size Results
From the simulations, we find that although ZSPTF(60,

600) has slightly better overall starvation resistance than
ZSPTF(120, 1200), it has 12–21% greater response time
under the heavy non-sequential server workloads and
69–118% greater response time under the moderate to
heavy sequential user workloads. ZSPTF(120, 1200) and
ZSPTF(240, 2400) have similar average response times
and squared coefficients of variation for all range of re-
quest arrival rates of the non-sequential server workloads.

ZSPTF(240, 2400) outperforms ZSPTF(120, 1200) by 18–
42% under the moderate to heavy sequential user work-
loads. However, ZSPTF(240, 2400) suffers higher response
time variation than ZSPTF(120, 1200). Its squared coeffi-
cient of variation is higher than that of ZSPTF(120, 1200)
by 22–142% under the moderate to heavy sequential user
workloads.

Our experiments show that the arrival time constraint of
ZTSPTF and the choice of the zone size have no signifi-
cant impact on the performance and variability of ZSPTF
under non-sequential workloads. However, they do have
great impact on ZSPTF under moderate to heavy sequential
workloads. The arrival time constraint provides a higher
degree of fairness by bounding the number of requests ser-
viced within a zone to the size of the request queue when
that zone was entered, but can degrade performance by fail-
ing to take full advantage of the sequentiality of the re-
quest stream. Larger zone sizes can improve performance
by making the request queue longer and the scheduler more
efficient but may result in higher response time variability.
Based on its good performance across a wide range of re-
quest rates under different workloads, we used ZSPTF(120,
1200) as the basis for comparison against existing request
scheduling algorithms.

8. Comparison of ZSPTF with Existing Algo-
rithms

Many disk request scheduling algorithms have been pro-
posed and studied over the years. These algorithms can be
adapted to MEMS-based storage devices once these devices
are mapped onto a disk-like interface. Our comparisons fo-
cuses on five: FCFS, C-SCAN, SSTF, SPTF, and ASPTF.
FCFS has good performance only under light workloads,
but we include it here as a baseline for comparison. C-
SCAN services requests in ascending logical block num-
ber (LBN) order, starting over with the lowest LBN when
the disk arms reach the edge of the disk. Our MEMS im-
plementation of SSTF uses the number of tracks between
the last accessed LBN and the desired LBN as an estimate

of the seek time. SPTF always services the request with
smallest positioning delay [7, 16] from the current position.
SPTF explicitly considers both seek time and rotational la-
tency for disks. For MEMS, SPTF considers seek time in
both x and y dimensions. Although SPTF generally has the
best performance, it suffers from high response time vari-
ability. To address this problem, ASPTF was proposed by
Jacobson and Wilkes [7]. Besides seek time and rotational
latency, ASPTF also considers the time that the request has
been waiting for service. The resulting positioning delay,
teff, is given in Equation 7:

teff � tpos
 w
1000

� twait � (7)

where w is the aging factor, tpos is the positioning time and
twait is the waiting time.

The aging factor w can be varied from zero (pure SPTF)
to infinity (pure FCFS). Experimentally, we chose w � 5 be-
cause ASPTF(5) exhibited good performance across a range
of request rates. In fact, this factor is close to the aging fac-
tor, 6, proposed for the disk ASPTF algorithm in [7, 20].
The reason is that although MEMS-based storage devices
are much faster, they have ratios of request throughput to
data bandwidth similar to those of disks from the early
1990s [4]. Therefore, we compare the ZSPTF algorithm
to ASPTF(5).

Figure 5(a) and 5(b) show the average response times
of the different scheduling algorithms with different trace
scaling factors for the server and user traces. As expected,
FCFS has good performance only under light workloads.
As the trace scaling factor increases, the performance of
FCFS degrades dramatically. C-SCAN and SSTF also work
well under light workloads but suffer under heavy work-
loads. SPTF always has the lowest average response time
under all trace scaling factors.

ZSPTF has performance similar to that of C-SCAN and
SSTF under light and moderate server workloads and sig-
nificantly outperforms C-SCAN and SSTF, by as much as
a factor of 2.8, under heavy server workloads. ZSPTF, C-
SCAN, and SSTF perform similarly under light user work-
loads. However, ZSPTF exceeds C-SCAN and SSTF by al-
most a factor of 2–27 under moderate and heavy user work-
loads.

SPTF and ASPTF(5) perform slightly better than ZSPTF,
by up to 7%, under light workloads. However, SPTF
and ASPTF(5) perform better than ZSPTF, by 10–40% un-
der moderate workloads. Under heavy server workloads,
ZSPTF significantly outperforms ASPTF(5), by a factor of
1.2–2.6, whose performance degrades because of the ag-
ing effect, and performs almost as well as SPTF. However,
SPTF and ASPTF(5) perform better than ZSPTF by 30–
76% under heavy user workloads. This is because ZSPTF
cannot take advantage of the high sequentiality of the user
workloads as much as SPTF and ASPTF(5). The reason is
that the data layout was done assuming a disk-based model
rather than a MEMS-based model. This inherently pun-

ishes algorithms that employ a MEMS-based model. In
the future, we will generate MEMS-specific layouts that
will further highlight the benefits of MEMS-specific request
scheduling.

When the workload is light, the queue lengths of SPTF,
ASPTF, and ZSPTF are all small enough that no signif-
icant optimization can take place by reordering requests.
And when the queue lengths are long, all three algorithms
can achieve excellent performance by reordering requests.
However, when the workload is moderate, the queue lengths
of SPTF and ASPTF(5) are long enough to allow for good
optimization through reordering, but the queue length of
each zone in ZSPTF is too small to allow for any signifi-
cant optimization. We propose a solution to this problem in
Section 9.

Figure 5(c) and 5(d) show the squared coefficients of
variation of response times of different scheduling algo-
rithms under different trace scaling factors for the server
and user traces. In general, FCFS has the overall lowest
squared coefficients of variation under moderate and heavy
workloads. However, we are not interested in it because
of its poor average response time. C-SCAN and ZSPTF
have similar squared coefficients of variation for all range
of request arrival rates because ZSPTF traverses the me-
dia area in the order similar to that of C-SCAN. ZSPTF and
ASPTF(5) have very similar squared coefficient of variation
under light workloads. ZSPTF has 8–44% higher squared
coefficient of variation than ASPTF(5) under moderate and
heavy workloads. SSTF and SPTF suffer higher viability
of response times than other scheduling algorithms for all
range of request arrival rates. SPTF has 16–45% and 83–
700% higher squared coefficient of variation than ZSPTF
under moderate and heavy server and user workloads, re-
spectively.

Although ASPTF(5) has the overall best performance in
terms of average response time and squared coefficient of
variation of response times under light and moderate work-
loads and heavy sequential workloads (the user trace), its
high computational cost prevents its use in real systems. To
quantify this, we ran some experiments on a Linux machine
(Pentium III 700 MHz, 512 MB). We found that SPTF and
ASPTF take 7.1 µs for each entry in the queue. Even with
table-driven calculation of arcsin and arccos functions, they
took about 5.1 µs for each entry in the queue. This means
that for a queue length of 200 requests SPTF and ASPTF
take more than 1 ms to determine which request to service
next. This is longer than the maximum seek time of the
MEMS-based storage device using the default parameters.
Therefore, it is impractical to apply SPTF and ASPTF in
real systems. By contrast, the queue length of each zone in
the ZSPTF algorithm is on average 10–100 times smaller
and the computational cost of computing SPTF within each
zone is therefore limited and tolerable.

Based on its good average response time, very low coef-
ficient of variation, and low computational cost, we believe

Trace Scaling Factor
0 5 10 15 20 25 30

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(m
s)

0

20

40

60

80

100

120
FCFS
C−SCAN
SSTF
SPTF
ASPTF(5)
ZSPTF(120,1200)

(a) Average response times on the server trace

Trace Scaling Factor
0 5 10 15 20

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(m
s)

0

20

40

60

80

100

120
FCFS
C−SCAN
SSTF
SPTF
ASPTF(5)
ZSPTF(120,1200)

(b) Average response times on the user trace

Trace Scaling Factor
0 5 10 15 20 25 30

S
qu

ar
ed

 C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

0
2
4
6
8

10
12
14
16
18
20

FCFS
C−SCAN
SSTF
SPTF
ASPTF(5)
ZSPTF(120,1200)

(c) Response time variation on the server trace

Trace Scaling Factor
0 5 10 15 20

S
qu

ar
ed

 C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

0
2
4
6
8

10
12
14
16
18
20

FCFS
C−SCAN
SSTF
SPTF
ASPTF(5)
ZSPTF(120,1200)

(d) Response time variation on the user trace

Figure 5. Performance comparison of different scheduling algorithms.

that ZSPTF is an ideal algorithm for use with MEMS-based
storage devices.

9. Future Work
The ZSPTF algorithm improves MEMS scheduling by

providing near-SPTF performance with much lower re-
sponse time variability at high request rates. However, it
performs less well at moderate request rates because there
are too few requests in each zone to yield much optimiza-
tion. To address this, we are exploring a variable-sized zon-
ing technique called pyramiding. In Section 7, we showed
that with larger zone sizes and appropriate width-height ra-
tios, ZSPTF can achieve better performance. Instead of op-
timizing within fixed-size zones, pyramiding merges nearby
zones with too few requests and schedules all requests from
the merged zones together. Figure 6 illustrates an example
of pyramiding in ZSPTF. In this example, ZSPTF can func-
tion as either a 8 � 1, 16 � 2, or 32 � 4 grid depending on
the request rate. Although instantaneous request rates are
difficult to measure, we can use the length of the request
queue to approximate the request rate and to determine the
granularity of the grid. Our preliminary experiments with
pyramiding are promising: we have found that dynamically
merging up to 16 neighboring zones eliminates half of the

low density
(8x1 grid)

medium density
(16x2 grid)

high density
(32x4 grid)

Figure 6. Fractal breakup of the MEMS device
grid.

performance difference between ZSPTF and ASPTF(5) un-
der moderate workloads.

We are also exploring data layout issues for MEMS de-
vices. File systems have long clustered related data to-
gether; for example, the Berkeley Fast File System [9] lays
out data in cylinder groups. We believe that grouping re-
lated data within zones, similar to a method suggested by
Schlosser et al. [4], and using a zone-based scheduling algo-

rithm will provide considerable performance improvement
over simply using mechanisms based on logical block num-
bers.

10. Conclusions
As new types of storage devices are developed, it is nec-

essary to revisit the issue of scheduling to reduce access la-
tency to data on the devices. We introduced a new schedul-
ing algorithm, ZSPTF, for MEMS-based storage devices,
and showed that ZSPTF exhibits a combination of high per-
formance over a wide range of request rates while maintain-
ing very low variability over the same range. We explored
a design trade-off of zone size for the ZSPTF algorithm and
showed that the zone size of 120 � 1200 bits2 is the best
among the sizes we tested.

Our results show that ZSPTF has better average re-
sponse time than FCFS, C-SCAN, and SSTF and better
than ASPTF on heavy non-sequential workloads. ZSPTF
also has response time variability as much as 50–160%
lower than of that of SPTF. Finally, ZSPTF avoids the
practical implementation problems that plague SPTF and
ASPTF, making ZSPTF an attractive choice for systems use
in MEMS devices.

As MEMS-based storage devices are developed and put
into general use, it will be necessary to modify file systems
to take full advantage of their unique characteristics. The
ZSPTF algorithm provides a combination of high perfor-
mance, low variability, fairness, starvation avoidance, ease
of implementation and customizability for varying device
characteristics, making it an ideal seek algorithm for stor-
age systems built around MEMS-based devices.

Acknowledgments
We are grateful to Greg Ganger for allowing us to use

DiskSim to simulate MEMS behavior. We thank also John
Wilkes of Hewlett-Packard Laboratories and his group for
providing us traces.

References

[1] L. Carley, J. Bain, G. Fedder, D. Greve, D. Guillou,
M. Lu, T. Mukherjee, S. Santhanam, L. Abelmann, and
S. Min. Single-chip computers with microelectromechan-
ical systems-based magnetic memory. Journal of Applied
Physics, 87(9):6680–6685, May 2000.

[2] G. R. Ganger, B. L. Worthington, and Y. N. Patt. The
DiskSim simulation environment version 2.0 reference man-
ual. Technical report, Carnegie Mellon University / Univer-
sity of Michigan, Dec. 1999.

[3] J. L. Griffin, S. W. Schlosser, G. R. Ganger, and D. F. Na-
gle. Modeling and performance of MEMS-based storage
devices. In Proceedings of the 2000 SIGMETRICS Confer-
ence on Measurement and Modeling of Computer Systems,
pages 56–65, June 2000.

[4] J. L. Griffin, S. W. Schlosser, G. R. Ganger, and D. F. Na-
gle. Operating system management of MEMS-based stor-
age devices. In Proceedings of the 4th Symposium on Op-

erating Systems Design and Implementation (OSDI), pages
227–242, Oct. 2000.

[5] J. L. Hennessy and D. A. Patterson. Computer
Architecture—A Quantitative Approach. Morgan Kaufmann
Publishers, 3rd edition, 2003.

[6] B. Hong and S. A. Brandt. An analytical solution to a
MEMS seek time model. Technical Report UCSC-CRL-02-
31, Storage Systems Research Center, University of Califor-
nia, Santa Cruz, Sept. 2002.

[7] D. M. Jacobson and J. Wilkes. Disk scheduling algorithms
based on rotational position. Technical Report HPL-CSP-
91-7rev1, Hewlett-Packard Laboratories, Concurrent Sys-
tems Project, Mar. 1992.

[8] T. Madhyastha and K. P. Yang. Physical modeling of probe-
based storage. In Proceedings of the 18th IEEE Symposium
on Mass Storage Systems and Technologies, pages 207–224,
Apr. 2001.

[9] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A
fast file system for UNIX. ACM Transactions on Computer
Systems, 2(3):181–197, Aug. 1984.

[10] Nanochip Inc. Nanochip: Array nanoprobe
mass storage IC. Nanochip web site, at
http://www.nanochip.com/preshand.pdf, 1999.

[11] J. K. Peacock. The Counterpoint Fast File System. In Pro-
ceedings of the Winter 1988 USENIX Technical Conference,
pages 243–249. USENIX, Jan. 1988.

[12] M. Rosenblum and J. K. Ousterhout. The design and imple-
mentation of a log-structured file system. ACM Transactions
on Computer Systems, 10(1):26–52, Feb. 1992.

[13] C. Ruemmler and J. Wilkes. Unix disk access patterns. In
Proceedings of the Winter 1993 USENIX Technical Confer-
ence, pages 405–420, San Diego, CA, Jan. 1993.

[14] C. Ruemmler and J. Wilkes. An introduction to disk drive
modeling. IEEE Computer, 27(3):17–29, Mar. 1994.

[15] S. W. Schlosser, J. L. Griffin, D. F. Nagle, and G. R. Ganger.
Designing computer systems with MEMS-based storage. In
Proceedings of the 9th International Conference on Archi-
tectural Support for Programming Languages and Operat-
ing Systems (ASPLOS), pages 1–12, Cambridge, MA, Nov.
2000.

[16] M. Seltzer, P. Chen, and J. Ousterhout. Disk scheduling re-
visited. In Proceedings of the Winter 1990 USENIX Techni-
cal Conference, pages 313–323, Jan. 1990.

[17] E. Shriver, E. Gabber, L. Huang, and C. A. Stein. Stor-
age management for web proxies. In Proceedings of the
2001 USENIX Annual Technical Conference, pages 203–
216. USENIX, June 2001.

[18] T. J. Teorey and T. B. Pinkerton. A comparative analysis
of disk scheduling policies. Communications of the ACM,
15(3):177–184, Mar. 1972.

[19] P. Vettiger, M. Despont, U. Drechsler, U. Urig, W. Aberle,
M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, and
G. Binnig. The “Millipede”—More than one thousand tips
for future AFM data storage. IBM Journal of Research and
Development, 44(3):323–340, 2000.

[20] B. Worthington, G. Ganger, and Y. Patt. Scheduling algo-
rithms for modern disk drives. In Proceedings of the 1994
SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pages 241–251, May 1994.

