
Swift: Using Distributed Disk Striping to Provide High I/O Data
Rates

Luis-Felipe Cabrera
Computer Science Department
IBM Almaden Research Center

Darrell D. E. Long*

Computer & Information Sciences
University of California, Santa Cruz

Computing Systems, vol. 4, no. 4 (1991) pp. 405–436.

Abstract

We present an I/O architecture, called Swift, that addresses the problem of data rate mismatches between the
requirements of an application, storage devices, and the interconnection medium. The goal of Swift is to support
high data rates in general purpose distributed systems.

Swift uses a high-speed interconnection medium to provide high data rate transfers by using multiple slower
storage devices in parallel. It scales well when using multiple storage devices and interconnections, and can
use any appropriate storage technology, including high-performance devices such as disk arrays. To address the
problem of partial failures, Swift stores data redundantly.

Using the UNIX operating system, we have constructed a simplified prototype of the Swift architecture. The
prototype provides data rates that are significantly faster than access to the local SCSI disk, limited by the capacity
of a single Ethernet segment, or in the case of multiple Ethernet segments by the ability of the client to drive them.

We have constructed a simulation model to demonstrate how the Swift architecture can exploit advances in
processor, communication and storage technology. We consider the effects of processor speed, interconnection
capacity, and multiple storage agents on the utilization of the components and the data rate of the system. We
show that the data rates scale well in the number of storage devices, and that by replacing the most highly stressed
components by more powerful ones the data rates of the entire system increase significantly.

Keywords: high-performance storage systems, distributed file systems, distributed disk striping, high-speed net-
works, high-speed I/O, client-server model, video server, multimedia, data resiliency.

1 Introduction

The goal of our I/O architecture is to support high data rates in a general purpose distributed system. This archi-
tecture, called Swift, addresses the problem of data rate mismatches between the requirements of an application,
the maximum data rate of the storage devices, and of the interconnection medium. Swift accomplishes this goal by
using a high-speed interconnection medium to provide high data rate transfers by using multiple slower storage
devices in parallel. Swift has the flexibility to use any appropriate storage technology, including high-performance
devices such as disk arrays. It can adapt to technological advances to provide for ever increasing I/O demands.

The current generation of distributed computing systems do not support I/O-intensive applications well. In
particular, they are incapable of integrating high-quality video with other data in a general purpose environment.
For example, multimedia applications require this level of service and include scientific visualization, image pro-
cessing, and recording and play-back of color video. The data rates required by some of these applications range
from 1.2 megabytes/second for DVI compressed video and 1.4 megabits/second for CD-quality audio [16], and up
to 90 megabytes/second for uncompressed full-frame color video.

*Supported in part by the National Science Foundation under Grant NSF CCR-9111220, by the Institute for Scientific Computing Research
at Lawrence Livermore National Laboratory and by faculty research funds from the University of California, Santa Cruz.

1



Advances in VLSI, data compression, processors, communication networks, and storage capacity mean that
systems capable of integrating continuous multimedia will soon emerge. In particular, the emerging ANSI fiber
channel standard will provide data rates in excess of 1 gigabit/second over a switched network. In contrast to these
advances, neither the positioning time (seek-time and rotational latency) nor the transfer rate of magnetic disks
have kept pace.

The architecture we present solves the problem of storing and retrieving very large data objects from slow
secondary storage at very high data rates. Its goal is to support high I/O data rates in a general purpose distributed
storage system. It stripes data over several disks [24], much like RAID [20], driving the disks in parallel to provide
high data rates. Swift, unlike RAID, was designed as a distributed storage system. It provides the advantages of
easy expansion and load sharing, and also provides better resource utilization since it will use only those resources
that are necessary to satisfy a given request. In addition, Swift has the flexibility to use any appropriate storage
technology, including a disk array, or other high-performance storage devices such as an array of tapes.

We have conducted two studies to validate the Swift architecture. The first was a proof-of-concept prototype
of a simplified version of Swift implemented on an Ethernet using the UNIX1 operating system. This prototype
provides a UNIX-like file system interface, that includes open, close, read, write and seek. It uses distributed disk
striping over multiple servers to achieve high data rates. In the case of synchronous writes, the prototype on a
single Ethernet segment with three servers achieves data rates that are more than double that provided by access
to the local SCSI disk. In the cases of reads and asynchronous writes, the data rates achieved by the prototype scale
approximately linearly in the number of storage agents up to the saturation of the Ethernet segment.

The second study is a discrete-event simulation of a simplified local-area instance of the Swift architecture. It
was constructed to evaluate the effects of technological advances on the scalability of the architecture. The simu-
lation model shows how Swift can exploit a high-speed (gigabit/second) local-area network and faster processors
than those currently available. The simulation is also used to locate the components that will limit I/O perfor-
mance. Our simulation includes processor utilization, taking into account not only the data transmission but also
the cost of computing parity blocks for the data.

The remainder of this paper is organized as follows: the Swift architecture is described in §2 and our Ethernet-
based local-area prototype in §3. Measurements of the prototype are presented in §4. Our simulation model is
then presented in §5. In §6 we consider related work and present our conclusions in §7.

2 Description of the Swift Architecture

Swift builds on the basic notion of striping data over multiple storage agents and driving them in parallel. The prin-
ciple behind our architecture is simple: use a high-speed interconnection medium to aggregate arbitrarily many
(slow) storage devices into a faster logical storage service, making all applications unaware of this aggregation.
Several concurrent I/O architectures, such as Imprimis ArrayMaster [14], DataVault [26], CFS [21, 22], RADD [25]
and RAID [20, 18], are based on this observation. Mainframes [13, 7] and super computers [15] have also exploited
this approach.

Swift is a client/server distributed architecture made up of independently replaceable components. The ad-
vantage of this modular approach is that any component that limits the performance can either be replaced by
a faster component when it becomes available or can be replicated and used in parallel. We first describe the
architecture in general terms and then present a more detailed description of each of its components.

Since Swift is a distributed architecture with many independent components, partial failures are an important
concern. If no precautions are taken, then the failure of a single component, in particular a storage agent, could
hinder the operation of the entire system. For example, any object which has data in a failed storage agent would
become unavailable, and any object that has data being written into the failed storage agent could be damaged.
The accepted solution for this problem is to use redundant data, including multiple copy [9] and computed copy
(erasure-correcting codes) [20]. While either choice is compatible with our architecture, we plan to use computed
copy redundancy (in the form of parity) in a future version of the prototype. This simple approach will provide

1UNIX is a trademark of AT&T Bell Laboratories

2



Distribution
Agent

... Storage
Agents

Storage
Mediator

Client

Interconnection Medium

Figure 1: Components of the Swift Architecture

resiliency in the presence of a single failure (per parity group) at a low cost in terms of storage but at the expense
of some additional computation.

Swift assumes that objects are created and used by clients and that they are managed by the several compo-
nents of Swift. In particular, objects are stored by storage agents. An implementation of Swift operates as follows:
when a client issues a request to store or retrieve an object, a storage mediator reserves resources from all the
necessary storage agents and the communication subsystem in a session-oriented manner. The storage mediator
then presents a distribution agent with a transfer plan. Swift assumes that sufficient storage and data transmission
capacity has been reserved and thus will be available, and that negotiations between the client (that can behave
as a data producer or a data consumer) and the storage mediator will allow the preallocation of these resources.
Resource preallocation implies that storage mediators will reject any request with requirements it is unable to sat-
isfy. The request can be delayed and reissued later when more resources are available. To then transmit the object
to or from the client, the distribution agent stores or retrieves the data at the storage agents following the transfer
plan with no further intervention by the storage mediator. The components of the Swift architecture are depicted
in figure 1.

In Swift, the storage mediator selects the striping unit (the amount of data allocated to each storage agent per
stripe) according to the data rate requirements of the client. If the required transfer rate is low, then the striping
unit can be large and the data can be spread over only a few storage agents. If the required data rate is high, then
the striping unit must be chosen small enough to spread the data over sufficient storage agents to exploit all the
parallelism needed to satisfy the request. By allowing variable striping units the Swift architecture achieves better
resource utilization by using only the resources that it needs to satisfy a request.

In the following subsections the distribution agent, storage mediator, and storage agent are presented in more
detail.

2.1 Distribution Agent

The distribution agent acts on behalf of its clients, the data producer and the data consumer, in the storage and
retrieval of all data. Although not strictly required, we expect that in practice both the data producer and the data
consumer will be co-resident with the distribution agent serving them.

The distribution agent interacts with the storage mediator to obtain directory service, access rights to objects,
encryption keys, and transfer plans. In addition, all computed transformations of the data, such as encryption and
erasure correcting codes, are done by the distribution agents. Authentication is accomplished through a secure
exchange of keys with the storage mediator to obtain a trusted communication channel.

The primary task of the distribution agent is to implement striping of the data over several storage agents.
When retrieving an object from storage the distribution agent assembles the object from the incoming data streams

3



according to the transfer plan. When storing an object, the distribution agent distributes the object among the
several storage agents. In both cases the distribution agent performs all necessary redundancy computations to
provide fault tolerance. As we shall see in §5.2, these computations can put a significant burden on the processor.
Fortunately, this will be mitigated by the availability of increasingly powerful processors.

2.2 Storage Mediator

The storage mediator is central to establishing and administering the storage and communication resources of
the system. First, it determines the size of the transfer unit for the request on hand. When storing an object, the
transfer unit is the size of the data block that is used for computing parity blocks and for transmission over the
interconnection medium. Second, the storage mediator negotiates with the storage agents to reserve sufficient
space and communication capacity. Third, the storage mediator determines how to best meet the resiliency re-
quirements and returns this as part of the transfer plan.

The transfer plan contains all the information necessary to store or retrieve an object administered by the
system. In particular, it contains the transfer unit for the request, a list of storage agents to hold the data, a list of
storage agents to act as checks on the data, and the internal handles to be used when transferring data to and from
these storage agents.

The storage mediator is the sole repository for encryption keys. Encryption is the mechanism that will be used
to provide authentication, access control, and security of the data. The storage mediator will use a secure key
exchange protocol to authenticate the distribution agents.

In order to achieve high performance, a pessimistic storage allocation strategy is used. Since all resources
are preallocated, requests that would exceed current storage or communication capacity will be denied. These
requests can be reissued at a later time when more resources are available.

The storage mediator will use a call-back mechanism to provide cache coherency. When a distribution agent
requests access to an object that still may exist in the cache of some other client, the storage mediator will cause
that cache to be flushed as part of the resource allocation protocol. Resource preallocation allows Swift to effec-
tively support sequential write sharing, as alternative access to the same data will always find the data in only one
cache, making invalidation simple.

The storage mediator must be available and the metadata it maintains be fault tolerant. For example, each
directory entry contains the name of the object, its protection status, a list of data segments and storage agents
that hold the object. The loss of directory information implies the inaccessability of all objects referenced by that
directory. The integrity of the storage mediator’s data can be insured in several ways. Our preferred method is to
let Swift administer the metadata and specify a high degree of redundancy. Another approach would be to use
standard data base techniques such as a write-ahead log [12, 6].

2.3 Storage Agents

The storage agents administer all aspects of secondary storage media, including data layout optimization and off-
line data alignment. Each storage agent may administer many storage devices. These storage devices can be disks
or other high speed devices including arrays of disks or tapes.

Since the Swift architecture is intended for objects much larger than any cache, we believe that caches will be
used most often for staging data into transfer units than for storing complete objects. For small objects, we expect
that caches will be as beneficial as in other systems [17].

Swift achieves reliability through the appropriate use of redundancy. For example, object descriptors store re-
dundant information that allows the reconstruction of all objects by scavenging the data in the storage agents,
should a catastrophic failure, or a software error, render the storage mediator inoperative. By using the error de-
tecting capabilities of the disks, a single parity disk is sufficient to tolerate a single failure [10, 20]. In this way, if a
disk fails it can be reconstructed using the information on the other disks. Higher level erasure-correcting codes
can be used if more than one failure is to be tolerated [11].

4



3 Ethernet-based Prototype of Swift

Sparcstation SLC servers with local SCSI disks

Sparcstation SLC servers with local SCSI disks

Departmental Ethernet

Laboratory Ethernet

Sparcstation 2
Client

Figure 2: An Ethernet-based implementation of the Swift architecture.

A simplified prototype of the Swift architecture has been built as a set of libraries that use the standard filing
and interprocess communication facilities of the UNIX operating system. We have used the UNIX file system
facilities to name and store objects, making the storage mediators unnecessary. There is no need to explicitly build
transfer plans since the library interleaves data uniformly among the set of identical storage agents that are used
to service a request.

Objects administered by the prototype are striped over several servers, each of which has its own local SCSI
disk and act as a storage agent on an Ethernet-based local-area network. Clients are provided with a UNIX-like file
system interface that includes open, close, read, write and seek operations.

The structure of the prototype is depicted in figure 2. The Swift distribution agent is embedded in the libraries
that are invoked by the client. The storage agents are represented by UNIX processes on servers that use the
standard UNIX file system.

When an I/O request is made, the client communicates with each of the storage agents involved in the request
so that they can simultaneously perform the I/O operation on the striped file. Since a file may be striped over any
number of storage agents, the most important performance-limiting factors are the rate at which the client and its
servers can send and receive packets, and the maximum transfer rate of the Ethernet.

The current prototype has allowed us to confirm that a high aggregate data rate can be achieved with the Swift
architecture. The data rates of an earlier prototype using a data transfer protocol built on the TCP [8] network
protocol had proved unacceptable.

In our first prototype a TCP connection was established between the client and each server. These connec-
tions were multiplexed using select. Since TCP delivers data in a stream with no message boundaries, a significant
amount of data copying was necessary. The data rates achieved were never more than 45% of the capacity of the
Ethernet. Initially, select seemed to be the point of congestion. A closer inspection revealed that using TCP was not
appropriate since buffer-management problems prevented the prototype from achieving high data rates.

The current prototype has been built using a light-weight data transfer protocol on top of the UDP [8] datagram
protocol. To avoid as much unnecessary data copying as possible, scatter-gather I/O was used to have the kernel
deposit the message directly into the user buffer.

In the current prototype the client is a Sun 4/75 (SPARCstation 2) with 64 megabytes of memory and 904 megabytes
of local SCSI disk (unused in our experiments). It has a list of the hosts that act as storage agents. All storage agents

5



were placed on Sun 4/20s (SLC) each with 16 megabytes of memory and identical local SCSI disks each with a ca-
pacity of 104 megabytes. Both the client and the storage agents use dedicated UDP ports to transfer data and have
a dedicated server process to handle the user requests.

3.1 The Data Transfer Protocol

The Swift client uses a unique UDP port for each connection that it makes. This was done in an effort to allocate as
much buffer space as possible to the client. The client services an open request by contacting a storage agent at its
advertised UDP port address.

Each Swift storage agent waits for open requests on a well-known UDP [8] port address. When an open request
is received, a new (secondary) thread of control is established along with a private port for further communication
regarding that file with the client. This thread remains active and the communications channel remains open until
a close request is received from the client; the primary thread always continues to await new open requests.

When a secondary thread receives a read or write request it also receives additional information about the
type and size of the request that is being made. Using this additional information the thread can calculate which
packets are expected to be sent or received.

In the case of a read request, the client sends requests for the first several blocks to the client. This work-ahead
allows several blocks to be in various states of transmission to the client and has resulted in significant data-rate
benefits. The client and its servers implement a simple sliding window protocol to assure that packets are not lost
and are assembled in the correct order at the client.

With a write request, the client sends out the data to be written one block at a time, and receiving an explicit
acknowledgment for each. Using explicit acknowledgments was necessary to prevent the client from flooding the
servers with packets while they were performing synchronous writes. In our experiments, the extra acknowledg-
ments did not have a significant impact on the measured data rate, although in a faster network a more sophis-
ticated protocol should be used. On receipt of a close request, the client expires the file handle and the storage
agents release the ports and extinguish the threads dedicated to handling requests on that file.

4 Measurements of the Swift Prototype

To measure the performance of the Swift prototype, one, four, eight, and sixteen megabytes were both read from
and written to Swift objects. In order to calculate confidence intervals, ten samples of each measurement were
taken. Analogous tests were also performed using the local SCSI disk and the NFS file service. For all data rate
measurements in this section, kilobytes is used to denote thousands of bytes per second.

In order to maintain cold caches, the file was mapped into the virtual address space of a flushing process.
All pages of the file were then invalidated, which requires them to be refetched from disk when the file is next
accessed. Finally, the mappings were removed to delete all references to the pages of the file. Other methods, such
as dismounting the disk partition containing the file, were also tried and yielded similar results.

To calibrate the performance of the prototype we first measured the performance of the local SCSI disk on each
Sun 4/20 that would act as a server. The measurements were similar for each host, and the results from one of these
hosts is presented in table 1.

The results of the local SCSI measurements indicate that a Sun 4/20 with a Quantum 104S local disk is capable
of reading data at approximately 425 kilobytes/second. The measured values decrease slightly as the amount of
data to be read increases, with a precipitous drop when the file is 8 megabytes in length. The experiments with
synchronous write measure the rate at which the local SCSI disk can write data to the actual device in 8 kilobyte
blocks. This rate is approximately 70 kilobytes/second, and decreases with the length of the file. The most prob-
able reason for this is the increased complexity in accessing data blocks as the length of the file increases. The
experiments with asynchronous write measure the rate at which writes can be made by the file system to memory
and then written to disk when the file system can do it most efficiently. This is the performance a user perceives
when writing to the local disk. The data is not guaranteed to be written to disk even after the file has been closed.
These measurements reveal that the rate at which the local file system of a Sun 4/20 will asynchronously write data
is approximately 420 kilobytes/second for large files. There is a significant drop in performance from a relatively

6



small file (one megabyte) at over 550 kilobytes/second to a large file (sixteen megabytes) at 416 kilobytes/second.
The reason for this drop in performance is that buffer space is exhausted and so the file system is forced to begin
writing data to disk.

Table 1: Measured performance of local SCSI disk in kilobytes/second.

Read Synch-write Asynch-write

Request 95% Confidence 95% Confidence 95% Confidence

megabytes x̄ low high x̄ low high x̄ low high

1 452 403 501 80.9 79.8 82.1 559 555 562
4 428 426 430 72.5 72.1 72.8 471 463 480
8 397 393 402 68.1 67.9 68.3 422 416 428

16 424 409 439 67.0 66.6 67.4 416 414 418

The performance of a single Swift server is presented in table 2. The prototype performs nearly as well as
accessing the local SCSI disk, with the prototype being slightly slower due to data transmission and protocol pro-
cessing delays. The prototype sends several requests (in this case two), which allows the server to work-ahead on
the file, processing further accesses to the local disk while the data is being transmitted. This enables the proto-
type to read approximately 350 kilobytes/second using a single Sun 4/20 as a server. When synchronous writes
are considered, the prototype performs almost identically to the local file system, with the prototype being only
slightly slower due transmission delays. When asynchronous writes are considered, the performance of the proto-
type with a single server is comparable with the local file system. The prototype is able to write approximately 400
kilobytes/second for large files. This is only slightly slower than the local file system, and can be attributed to the
transmission delay introduced by the Ethernet.

Table 2: Swift performance with a single server in kilobytes/second.

Read Synch-write Asynch-write

Request 95% Confidence 95% Confidence 95% Confidence

megabytes x̄ low high x̄ low high x̄ low high

1 362 310 414 75.0 74.8 75.3 470 449 491
4 345 344 347 67.4 67.2 67.6 462 457 468
8 327 322 333 65.2 65.1 65.2 429 424 433

16 352 342 362 63.2 63.1 63.4 385 378 391

The performance of the prototype with two servers on a single Ethernet segment is summarized in table 3. In
all cases, the prototype with two servers performs approximately twice as well as the prototype with a single server.
When reads are considered, the prototype performs slightly less than twice as well with two servers as it did with
a single server. The primary reason for this disparity, which as we will see becomes increasingly an issue when
more servers are employed, is the ability of the SPARCstation 2 to receive data over the Ethernet. In the case of syn-
chronous writes, the data rate of the prototype with two servers almost exactly doubles its data rate with a single
server. There is no noticeable degradation since the Ethernet is only lightly loaded by the approximately 130 kilo-
bytes/second being transferred. In the case of asynchronous writes, the prototype with two servers approximately
doubles the data rate of the prototype with a single server.

The results for the experiments with the prototype using three servers on a single Ethernet segment are pre-
sented in table 4. In the case of reads, the data rate is approximately three times that of a single server. The
data rate increase is not strictly linear since the Ethernet is becoming increasingly saturated, and the ability of
the SPARCstation to receive data quickly over the Ethernet is limited. When synchronous writes are considered, the

7



Table 3: Swift performance with two servers on one Ethernet in kilobytes/second.

Read Synch-write Asynch-write

Request 95% Confidence 95% Confidence 95% Confidence

megabytes x̄ low high x̄ low high x̄ low high

1 689 622 756 158 157 159 868 845 892
4 668 664 671 144 143 144 908 897 919
8 664 656 672 135 135 135 908 894 923

16 653 651 655 128 128 129 861 852 870

data rate continues to scale approximately linearly in the number of servers. For asynchronous writes, the increase
in data rate is also muted by the Ethernet. Even so, the performance is better than that of reads since transmitting
data over the Ethernet requires fewer context-switches and less data copying than it does in receiving it, which
puts less load on the SPARCstation 2.

Table 4: Swift performance with three servers on one Ethernet in kilobytes/second.

Read Synch-write Asynch-write

Request 95% Confidence 95% Confidence 95% Confidence

megabytes x̄ low high x̄ low high x̄ low high

1 943 928 959 247 245 248 917 884 950
4 956 943 969 213 213 213 1033 1024 1043
8 960 955 965 207 207 208 1046 1034 1058

16 955 949 960 196 196 196 1055 1045 1064

For the purposes of comparison, measurements were also made of the data rates provided by a high perfor-
mance NFS file server. This server was a Sun 4/490 with 64 megabytes of memory and 5 gigabytes of disk space on
IPI drives. This server is connected to the same SPARCstation 2 client that was used in the prototype experiments
by a second network interface. The network is a shared departmental Ethernet, so measurements were conducted
late at night to minimize interference from other tasks.

The results of these experiments are presented in table 5. In the case of reads, the high performance NFS file
server performs approximately 73% better than the prototype with a single server. This is not surprising since
the Sun 4/490 is designed to act as a file server, and the IPI disks are many times faster than the local SCSI disk
used by the prototype. When synchronous writes are considered, the NFS file server performs approximately 46%
better than the prototype with a single server. But when multiple Swift servers are used, the prototype provides
significantly better performance than the NFS file server. When asynchronous writes are considered, the Swift
server also provides significantly better performance when even a single server is employed. We must be careful
when comparing Swift to NFS, since Swift is a prototype and does not provide all of the features that NFS must
support. For example, NFS must be stateless and provide guarantees even on asynchronous writes that are much
stronger than those provided by Swift.

The measurements of the prototype on a single Ethernet segment demonstrate that the Swift architecture can
achieve high data rates on a local-area network by aggregating data rates from slower data servers. The proto-
type also validates the concept of distributed disk striping in a local-area network. This is demonstrated by the
prototype providing data rates higher than both the local SCSI disk and the NFS file server.

8



Table 5: NFS performance from Sun 4/75 client to Sun 4/490 server.

Read Synch-write Asynch-write

Request 95% Confidence 95% Confidence 95% Confidence

megabytes x̄ low high x̄ low high x̄ low high

1 641 511 771 103 102 104 127 124 130
4 637 560 713 99.2 98.2 100 118 116 120
8 631 570 693 96.9 96.7 97.2 115 114 115

16 612 576 648 92.7 92.2 93.3 107 105 109

4.1 Measurements with a Second Ethernet Segment

To determine the effect of doubling the data rate capacity of the interconnection, we added a second Ethernet
segment to the client and added additional storage agents. In this case the storage agents were Sun 4/20s (SLC)
in faculty offices which have only 8 megabytes of memory, but have the same local SCSI disks as the hosts in the
laboratory. This second Ethernet segment is shared by several groups in the department. Measurements were
performed late at night, and during this period the load on the departmental Ethernet segment was seldom more
than 5% of its capacity.

The interface for the second network segment was placed on the S-bus of the client. As the S-bus interface is
known to achieve lower data rates than the on-board interface, we did not expect to obtain data rates twice as great
as those using only the dedicated laboratory network. We also expected to see the network subsystem of the client
to be highly stressed.

The results for two storage agents on two separate Ethernet segments are presented in table 6. When compared
with the results for two storage agents on a single Ethernet segment, it is apparent that in the case of reads, having
storage agents on two networks is slightly worse than having them on a single network. There are several reasons
for this anomaly. First, since there are two network interfaces more interrupts must be fielded by the client. Second,
the second network is shared by the entire department and so there was a slight load even late at night. Finally,
the hosts on the departmental Ethernet segment have less memory than those in the laboratory. The results for
synchronous writes are comparable with those obtained with a single Ethernet segment and the data rate scales
linearly. The measurements of asynchronous writes are also comparable with those obtained with a single Ethernet
segment. The reason for the difference in scaling is that a write puts less stress on the SPARCstation 2 that a read
does. A write requires fewer context-switches and less data must be copied. A write also does not require an
interrupt to signal its completion.

The results for four storage agents on two separate Ethernet segments is presented in table 7. When reads are
considered, it is apparent that the data rate does not scale linearly since it is comparable with that of three storage
agents on a single Ethernet segment. This is again due to the complexity of using two Ethernet interfaces. In the
case of synchronous writes, the data rate continues to scale linearly, performing twice as well with four storage
agents as it did with two. Asynchronous writes also perform very well, but has ceased to scale linearly since the
client is approaching its capacity to transmit data over the two Ethernet interfaces.

In table 8, the effect of adding another pair of storage agents is considered. The data rate for read improves,
although not in proportion to the number of storage agents. The client is now highly stressed in fielding interrupts
and copying data. In the case of synchronous writes, the data rate continues to scale linearly. This is not unex-
pected since the low base data rates of the local SCSI disks do not stress the network. In the case of asynchronous
writes, there is essentially no change from four storage agents since the client has reached the limits of ability to
transmit data.

The measurements made of the prototype validate the concept of distributed disk striping and demonstrate
that it scales well until a component becomes saturated. When faster components, whether processors or inter-
connection media the Swift architecture can will be able to make immediate use of it and its data rates will scale
accordingly.

9



Table 6: Swift performance with two servers on two Ethernets in kilobytes/second.

Read Synch-write Asynch-write

Request 95% Confidence 95% Confidence 95% Confidence

megabytes x̄ low high x̄ low high x̄ low high

1 498 458 537 158 157 159 975 960 991
4 480 477 482 142 141 143 909 881 937
8 476 475 478 134 134 135 886 868 904

16 476 475 477 130 130 130 852 842 862

Table 7: Swift performance with four servers on two Ethernets in kilobytes/second.

Read Synch-write Asynch-write

Request 95% Confidence 95% Confidence 95% Confidence

megabytes x̄ low high x̄ low high x̄ low high

1 921 908 933 344 341 346 1409 1387 1430
4 927 923 930 288 287 290 1629 1582 1677
8 931 928 935 271 269 272 1634 1582 1686

16 932 925 939 262 261 262 1647 1588 1707

5 Simulation-based Performance Study

We modeled a hypothetical high-speed local-area token-ring implementation of the Swift architecture. Our pri-
mary goal of the simulation was to show how our architecture could exploit network and processor advances. Our
second goal was to demonstrate that distributed disk striping is a viable technique that can provide the data rates
required by I/O-intensive applications. Our third goal was to confirm the scaling properties of Swift.

Since we did not have the necessary network technology available to us, a simulation was the most appropriate
exploration vehicle. The token-ring local-area network was assumed to have a transfer rate of 1 gigabit/second. All
clients were modeled as disk-less hosts with a single network interface connected to the token-ring. The storage
agents were modeled as hosts with a single disk device and a single network interface. To evaluate the possible
effect of processor bottlenecks we simulated two processor types: 100 and 200 million instructions/second pro-
cessors.

Table 8: Swift performance with six servers on two Ethernets in kilobytes/second.

Read Synch-write Asynch-write

Request 95% Confidence 95% Confidence 95% Confidence

megabytes x̄ low high x̄ low high x̄ low high

1 1100 1076 1124 521 508 534 1328 1245 1411
4 1274 1262 1286 443 441 445 1565 1513 1617
8 1204 1126 1281 414 412 417 1572 1543 1601

16 1245 1224 1265 394 393 396 1636 1624 1648

10



5.1 Structure of the Simulator

The simulator implemented a simplified version of the Swift architecture designed to address the goals stated
above. It modeled neither caching, nor preallocation of resources, nor the providing of performance guarantees.
These would have required appropriate traces of file system activity and such traces were unavailable to us. In
addition, the simulator did not model the storage mediator. Since the storage mediator is not in the path of the
data transmitted to and from clients but consulted only at the start of an I/O session, it is not part of the critical
path in data rate evaluation.

The system is modeled by client requests that drive storage agent processes. A generator process creates client
requests using an exponential distribution to govern request interarrival times. The client requests are differenti-
ated according to pure read, pure write, and a conservative read-to-write ratio of 4:1 [3]. There is no modeling of
overlapping execution, instead requests are modeled serially: only after a request is complete is the next issued.

In our simulation of Swift, for a read operation, a small request packet is multicast to the storage agents. The
client then waits for the data to be transmitted by the storage agents. For a write operation the client transmits the
data to each of the storage agents. Once the blocks from a write request have been transmitted, the client awaits
an acknowledgment from the storage agents that the data have been written to disk.

The simulator models parity computations. Computing the data parity is an important factor in processor uti-
lization. The simulator charges 5 instructions to compute the parity of each byte of data. We consider this to be a
processor-expensive way of computing the parity that errs on the conservative side. Less expensive implementa-
tions would require less processor power to achieve the results we have simulated.

The disk devices are modeled as a shared resource. Multiblock requests are allowed to complete before the
resource is relinquished. The time to transfer a block consists of the seek time, the rotational delay and the time to
transfer the data from disk. The seek time and rotational latency are assumed to be independent uniform random
variables, a pessimistic assumption when advanced layout policies are used [23]. Once a block has been read from
disk it is scheduled for transmission over the network.

Our model of the disk access time is conservative in that advanced layout policies are not considered, no at-
tempt was made to order requests to schedule the disk arm, and caches were not modeled. Staging data in the
cache and sequential preallocation of storage would greatly reduce the number of seeks and significantly improve
performance. As it is, our model provides a lower bound on the data rates that could be achieved.

Transmitting a message on the network requires protocol processing, time to acquire the token, and transmis-
sion time. The protocol cost for all packets has been estimated at 1,500 instructions [5] plus one instruction per
byte in the packet. The time to transmit the packet is based on the network transfer rate. These estimated costs
remain adequate as newer hardware technology has yet to decrease the total software overhead of accessing the
network.

5.2 Simulation Results

The simulator gave us the ability to determine what data rates were possible given a configuration of processors,
interconnection medium and storage devices. The modeling parameters varied were the processor speed of the
intervening computing nodes, the number of disk devices representing storage agents and the size of the transfer
unit.

The clear conclusion for obtainable data rate is that when sufficient interconnection capacity is available, the
data rate is almost linearly related to both the number of storage agents and to the size of the transfer unit. Even
though the cost of computing parity is non-negligible, the processor becomes a clear bottleneck only for write
requests directed to large numbers of storage agents. When the 200 million instructions/second processor is used
the utilization at the storage agents increases some 50% at high loads, as the processor in the client is less of a
bottleneck.

For our simulation model, we have chosen disk parameters that are typical for a high-performance disk like
those that are commonly used in the file servers. The disk is assumed to spin at 3600 revolutions/minute, yielding
an average rotational latency of 8.3 milliseconds. Unless specific knowledge of the file system structure is available,
the rotational latency can be accurately modeled by a uniform distribution. The average seek time is also assumed

11



to be uniformly distributed with a mean of 12 milliseconds. This assumption simplifies the seek time distribution,
which in actual disk drives has an acceleration and deceleration phase not modeled by the uniform distribution.

The reason the transfer unit has such a large impact on the data rates achieved by the system is that seek
time and rotational latency are enormous when compared to the speed of the processors and the network transfer
rate. This also shows the value of careful data placement and indicates that resource preallocation may be very
beneficial to performance.

As small transfer units require many seeks in order to transfer the data, large transfer units have a significantly
positive effect on the data rates achieved. For small numbers of disks, seek time dominated to the extent that its
effect on performance was almost as significant as the number of disks.

The per-message network data transfer processing costs are also an important factor in the effect of the transfer
unit. For example, it was assumed that protocol processing required 1500 instructions plus 1 instruction per byte
in the packet. As the size of the packet increases, the protocol cost decreases proportionally to the packet size. The
cost of 1 instruction per byte in the packet is for the most part unavoidable, since it reflects necessary data copying.

0 5 10 15 20 25 30 35

Number of disks

0

10

20

30

40

50

60

70

80

P
e
rc

e
n
t 

B
u
sy

 (
%

)

100% read
80% read
100% write

Figure 3: Fraction of processor used with 16384-byte blocks.

In figure 3 we see that the demands on the processor are significant even in the case of pure reads. The read
costs are due to the cost of protocol processing and the necessary cost of copying of data from the system to the
user address space. By having a hardware network interface that could merge the striped data directly into the user
address space a significant amount of copying could be saved (in our simulation one instruction per byte). In the
case of writes the processor can be seen to be a significant performance limiting factor. This is due to the cost of
computing the parity code (exclusive-or). We have conservatively estimated that is would cost 5 instructions per
byte to compute the parity operation. In the case of a highly optimized implementation, we believe that this could
be brought down to approximately one instruction per byte on the average.

In figure 4 we see that the utilization of the disks decreases as more disks are used. This is due to the saturation
of the processor, especially for writes, and the increased load on the interconnection network. Notice the corre-
spondence to figure 3 processor utilization: the processor utilization for writes is high, while the corresponding
utilization of the disks is low.

The fraction of the network capacity used is presented in figure 5. While the network capacity is not at all close
to saturation it does have a significant load when a large number of disks are used. This high load has an effect on
the data rate of the system (and on the utilization of the disks).

The read-to-write ratio is considered in figure 6. As with processor and disk utilization, the ratio of reads to
writes has a significant effect on the data rate of the system. This is because of the increased load on the processor
to compute the redundancy code when writing data. Since we are only considering large requests, writes are not

12



0 5 10 15 20 25 30 35

Number of disks

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
t 

B
u
sy

 (
%

)

100% read
80% read
100% write

Figure 4: Fraction of disk used with 16384-byte blocks.

penalized by the multiple access costs associated with small writes. To preserve the parity function with small
writes it is necessary to read the parity block even if only one block has been modified, and then to write both that
block and the parity block.

In figure 7 we illustrate the effect of block size on the data rate. As one expects, the larger the block size the
higher the data rate. The data rate will continue to increase until a cylinder boundary is reached forcing a disk
seek per logical request, or until the transfer rate capacity of the device is reached. This illustrates that both the
rotational latency and the seek time are significant sources of delay in the system.

5.2.1 The Effect of Doubling the Processor Speed

We modeled the effect of doubling the processor speed, to evaluate its effect on the processor bottleneck. In figure
8 we see that for the highest number of disks, 32, the percent busy on the processor decreased from 30% to 18% for
a pure read load, and from 60% to 43% for a pure write load.

The simulation also showed that one client can now achieve pure read data rates on the order of 23 megabytes/second
for 32 disks, in contrast to the 20 megabytes/second depicted in figure 6. For pure writes the system can achieve
data rates of 13 megabytes/second for 32 disks, versus the 9 megabytes/second depicted in figure 6. As for the disk
themselves, when 32 of them are being used simultaneously they are now utilized to 68% of their capacity for pure
reads and to 39% of their capacity for pure writes. The corresponding utilization percentages, in figure 4 were 58
and 27, respectively.

The substantial increase of the data rate for pure writes highlights the effect of the cost of computing error-
correcting parity codes in software. With the faster processor the bottleneck seems to have shifted to the serial
nature of the data transmission protocol modeled. This explains why the pure read data rates did not increase
as much as the write data rates did, even though both the network interconnection medium and the disk storage
subsystem had spare capacity.

6 Related Research

The notion of disk striping was formally introduced by Salem and Garcia-Molina [24]. The technique, however,
has been in use for many years in the I/O subsystems of super computers [15] and high-performance mainframe
systems [13]. Disk striping has also been used in some versions of the UNIX operating system as a means of

13



0 5 10 15 20 25 30 35

Number of disks

0

2

4

6

8

10

12

14

16

18

20

22

P
e
rc

e
n
t 

B
u
sy

 (
%

)

100% read
80% read
100% write

Figure 5: Fraction of network capacity used with 16384-byte blocks.

improving swapping performance [24]. To our knowledge, Swift is the first to use disk striping in a distributed
environment, striping files over multiple servers.

Examples of some commercial systems that utilize disk striping include super computers [15], DataVault for the
CM-2 [26], the airline reservation system TPF [13], the IBM AS/400 [7], CFS from Intel [21, 22], and the Imprimis
ArrayMaster [14]. Hewlett-Packard is developing a system called DataMesh that uses an array of storage processors
connected by a high-speed network [27]. For all of these the maximum data rate is limited by the interconnection
medium which is an I/O channel. Higher data rates can be achieved by using multiple I/O channels.

The aggregation of data rates proposed in the Swift architecture generalizes that proposed by the RAID disk
array system [20, 18, 19] in its ability to support data rates beyond that of the single disk array controller. In fact,
Swift can concurrently drive a collection of RAIDs as high speed devices. Due to the distributed nature of Swift,
it has the further advantage over RAID of having no single point of failure, such as the disk array controller or the
power supply.

Swift improves on traditional disk striping systems in two important areas: scaling and reliability. By intercon-
necting several communication networks, Swift is more scalable than centralized systems. When higher perfor-
mance is required additional storage agents can be added to the Swift system increasing its performance propor-
tionally. By selectively hardening each of the system components, Swift can achieve arbitrarily high reliability of
its data, metadata, and communication media. In CFS, for example, there is no mechanism present to make its
metadata tolerant of storage failures. In CFS, if the repository on which the descriptor of a multi-repository object
fails, the entire object becomes unavailable.

A third difference from traditional disk striping systems is that Swift has the advantages of sharing and of decen-
tralized control of a distributed environment. Several independent storage mediators may control a common set
of storage agents. The distributed nature of Swift allows better resource allocation and sharing than a centralized
system. Only those resources that are required to satisfy the request need to be allocated.

Swift incorporates data management techniques long present in centralized computing systems into a dis-
tributed environment. In particular, it can be viewed as a generalization to distributed systems of I/O channel
architectures found in mainframe computers [4].

6.1 Future Work

There are two areas that we intend to address in the future: enhancing our current prototype and simulator, and
extending the architecture.

14



0 5 10 15 20 25 30 35

Number of disks

0

2

4

6

8

10

12

14

16

18

20

22

24

26

M
e
g
a
b
y
te

s 
p
e
r 

se
co

n
d

100% read
80% read
100% write

Figure 6: Data-rate with 16384-byte blocks varying read-to-write ratio.

6.1.1 Enhancements to the Prototype

The current prototype needs to implement data redundancy. The prototype will be enhanced with code that com-
putes the check data, and both the read and write operations will have to be modified accordingly. With this
enhancement in place, we plan to measure the effect that computing the check data has on data rates.

We also plan to incorporate mechanisms to do resource preallocation and to build transfer plans. With these
mechanisms in place, we plan to study different resource allocation policies, with the goal of understanding how
to handle variable loads.

6.1.2 Enhancements to the Architecture

The goal of this research is to develop a high-speed distributed storage system that provides a general purpose file
system with integrated storage and retrieval of large data objects, such as digital audio and video, at guaranteed
data rates. Applications of such a system range from visualization of scientific computations to real-time recording,
editing and play-back of color video.

Support for integrated access to continuous media such as digital audio and video is difficult for current com-
puting systems. They lack the necessary capacity to provide data at a sufficient rate, and do not support the nec-
essary end-to-end performance guarantees. The interest in fields such as scientific visualization require that this
be addressed.

We intend to extend the architecture with techniques for providing data rate guarantees for magnetic disk de-
vices. While the problem of real-time processor scheduling has been extensively studied [28, 29], and the problem
of providing guaranteed communication capacity is also an area of active research [2], the problem of scheduling
real-time disk transfers has received considerably less attention.

A second area of extensions is in the co-scheduling of services. In the past, only analog storage and transmis-
sion techniques have been able to meet the stringent demands of multimedia audio and video applications. To
support integrated continuous multimedia, resources such as the central processor, peripheral processors (audio,
video), and communication network capacity must be allocated and scheduled together to provide the necessary
data-rate guarantees. This meta-scheduling has been studied by Anderson [1].

15



0 5 10 15 20 25 30 35

Number of disks

0

5

10

15

20

25

30

M
e
g
a
b
y
te

s 
p
e
r 

se
co

n
d

4k blocks
8k blocks
16k blocks
32k blocks

Figure 7: Effect of block size on throughput.

7 Conclusions

This paper presents two studies conducted to validate Swift, a scalable distributed I/O architecture that achieves
high data rates by striping data across several storage agents and driving them concurrently. The prototype vali-
dates the concept of distributed disk striping in a local-area network.

A prototype of the Swift architecture was built using UNIX and an Ethernet-based local-area network. It
demonstrated that the prototype of the architecture can achieve high data rates on a local-area network by ag-
gregating data rates from slower data servers. Using three servers on a single Ethernet segment, the prototype
achieved more than double the data rates than were provided by access to the local SCSI disk, and it achieved then
times the NFS data rate for asynchronous writes, double the NFS data rate for synchronous writes, and almost
twice the NFS data rate for reads. The performance of our local-area network prototype was limited by the speed
of the Ethernet-based local-area network.

When a second Ethernet path was added between the client and the storage agents, the data rates measured
demonstrated that the Swift architecture can make immediate use of a faster interconnection medium. The data
rates for writes almost doubled. For reads, the improvements were less pronounced because the client could not
absorb the increased network load.

Our simulations of the architecture show how Swift can exploit more powerful components in the future, and
which components limit I/O performance. The simulations show that data rates under Swift scale proportionally
to the size of the transfer unit and the number of storage agents when sufficient interconnection and processor
capacity are available.

Even though Swift was designed with very large objects in mind, it can also handle small objects, such as those
encountered in normal file systems. The penalties incurred are one round trip time for a short network message,
and the cost of computing the parity code. Swift is also well suited as a swapping device for high performance work
stations if no data redundancy is used.

The distributed nature of Swift leads us to believe that it will be able to exploit all the current hardware trends
well into the future: increases in processor speed and network capacity, decreases in volatile memory cost, and
secondary storage becoming very inexpensive but not correspondingly faster. The Swift architecture also has the
flexibility to use alternative data storage technologies, such as arrays of digital audio tapes.

Lastly, a system like our prototype can be installed easily into an existing operating system without needing to
modify the underlying networking hardware or file specific software. It can then be used to exploit the emerging
high-speed networks using the large installed base of current file servers.

16



0 5 10 15 20 25 30 35

Number of disks

0

5

10

15

20

25

30

35

40

45

50

55

P
e
rc

e
n
t 

B
u
sy

 (
%

)

100% read
80% read
100% write

Figure 8: 200 MIPS: Fraction of processor used with 16384-byte blocks.

Acknowledgments

We are grateful to those that contributed to this research including Aaron Emigh and Dean Long for their work with
the prototype, Laura Haas and Mary Long for their thoughtful comments on the manuscript, and John Wilkes for
stimulating discussions on distributed file systems. Simulation results were obtained with the aid of SIMSCRIPT, a
simulation language developed and supported by CACI Products Company of La Jolla, CA.

References

[1] D. Anderson. Meta-Scheduling for Distributed Continuous Media. Technical Report UCB/CSD 90/599, Uni-
versity of California, Berkeley, Oct. 1990.

[2] D. P. Anderson, R. G. Herrtwich, and C. Schaefer. SRP: A Resource Reservation Protocol for Guaranteed Perfor-
mance Communication in the Internet. Technical Report UCB/CSD 90/596, University of California, Berkeley,
Sept. 1990.

[3] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and J. K. Ousterhout. Measurements of a Distributed
File System. In Proceedings of the 13th ACM Symposium of Operating Systems Principles, pp. 198–212, 1991.

[4] J. Buzen and A. Shum. I/O architecture in MVS/370 and MVS/XA. CMG Transactions, 54:19–26, 1986.

[5] L.-F. Cabrera, E. Hunter, M. J. Karels, and D. Hosher. User-Process Communication Performance in Networks
of Computers. IEEE Transactions on Software Engineering, 14(1):38–53, 1988.

[6] L.-F. Cabrera and J. Wyllie. QuickSilver Distributed File Services: An Architecture for Horizontal Growth. In
Proceedings of the Second IEEE Conference on Computer Workstations, pp. 23–37, Santa Clara, California, Mar.
1988.

[7] B. E. Clark and M. J. Corrigan. Application System/400 performance characteristics. IBM Systems Journal,
28(3):407–423, 1989.

[8] D. Comer. Internetworking with TCP/IP: Principles, Protocols, and Architecture, 1988.

17



[9] S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in Partitioned Networks. Computing Surveys,
17(3):341–370, Sept. 1985.

[10] H. Garcia-Molina and K. Salem. The Impact of Disk Striping on Reliability. IEEE Database Engineering Bul-
letin, 11(1):26–39, Mar. 1988.

[11] G. A. Gibson, L. Hellerstein, R. M. Karp, and D. A. Patterson. Failure Correction Techniques for Large Disk
Arrays. In Proceedings of the Third International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pp. 123–132. ACM, 1989.

[12] J. N. Gray. Notes on database operating systems, pp. 393–481. Springer-Verlag, 1979.

[13] IBM Corporation. TPF-3 Concepts and Structure Manual.

[14] Imprimis Technology. ArrayMaster 9058 Controller, 1989.

[15] O. G. Johnson. Three-dimensional wave equation computations on vector computers. Proceedings of the
IEEE, 72(1):90–95, Jan. 1984.

[16] A. C. Luther. Digital Video in the PC Environment. McGraw-Hill, 1989.

[17] M. Nelson, B. Welch, and J. Ousterhout. Caching in the sprite network file system. ACM Transactions on
Computer Systems, 6(1):134–154, 1988.

[18] S. Ng. Pitfalls in designing disk arrays. In Proceedings of the IEEE COMPCON Conference, Feb. 1989.

[19] S. Ng. Some design issues of disk arrays. In Digest of Papers of the Thirty-Fourth IEEE Computer Society
International Conference: Intellectual Leverage, pp. 137–142. IEEE, 1989.

[20] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for Redundant Arrays of Inexpensive Disks (RAID). In
Proceedings of the 1988 ACM SIGMOD International Conference on Management of Data, pp. 109–116. ACM,
1988.

[21] P. Pierce. A concurrent file system for a highly parallel mass storage system. In Proceedings of the Fourth
Conference on Hypercube Concurrent Computers and Applications, pp. 155–160, 1989.

[22] T. W. Pratt, J. C. French, P. M. Dickens, and S. A. Janet. A Comparison of the Architecture and Performance of
Two Parallel File Systems. In Proceedings of the Fourth Conference on Hypercubes, Monterey, Mar. 1989.

[23] M. Rosenblum and J. K. Ousterhout. The Design and Implementation of a Log-Structured File System. pp.
1–15, Oct. 1991.

[24] K. Salem and H. Garcia-Molina. Disk Striping. In Proceedings of the Second International Conference on Data
Engineering, pp. 336–342. IEEE, 1986.

[25] M. Stonebraker and G. A. Schloss. Distributed RAID—a new multiple copy algorithm. In Proceedings of the
Sixth International Conference on Data Engineering (ICDE ’90), pp. 430–437, Feb. 1990.

[26] Thinking Machines, Incorporated. Connection Machine Model CM-2 Technical Summary, May 1989.

[27] J. Wilkes. DataMesh-Project Definition Document. Technical Report HPL-CSP-90-1, Hewlett-Packard Labo-
ratories, 1990.

[28] W. Zhao. A heuristic approach to scheduling hard real-time tasks with resource requirements in distributed
systems. Ph. D. dissertation, University of Massachussetts, Amherst, 1986.

[29] W. Zhao, K. Ramamritham, and J. Stankovic. Preemptive scheduling under time and resource constraints.
IEEE Transactions on Computers, 36(8):949–960, 1987.

18


