
UNIVERSITY OF CALIFORNIA
SANTA CRUZ

STORAGE MANAGEMENT IN LARGE DISTRIBUTED OBJECT-BASED
STORAGE SYSTEMS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Feng Wang

December 2006

The Dissertation of Feng Wang
is approved:

Professor Scott A. Brandt, Chair

Professor Ethan L. Miller

Professor Darrell D. E. Long

Doctor Richard A. Golding

Professor Carlos Maltzahn

Lisa C. Sloan
Vice Provost and Dean of Graduate Studies

Copyright c© by

Feng Wang

2006

Contents

List of Figures vi

List of Tables viii

Abstract ix

Acknowledgements xi

Dedication xii

1 Introduction 1
1.1 Object-based Storage . 2
1.2 Ceph Storage System . 3
1.3 Workloads . 5

1.3.1 Object Workloads in Ceph System 5
1.4 OBFS . 6

1.4.1 Design . 6
1.4.2 Implementation . 7

1.5 Experiments and Results . 8
1.6 Conclusion . 9

2 Background 12
2.1 Directly-attached Storage . 12
2.2 Server-based Storage . 14
2.3 SAN-based Storage . 16
2.4 Object-based Storage . 19

2.4.1 Object Abstraction . 20
2.4.2 Architecture . 20
2.4.3 Systems Using Object-based Storage Model 23

2.5 The Ceph Object-based Storage System . 24

iii

3 Related Work 26
3.1 File Systems Allocation and Layout Policies 26
3.2 File System Consistency and Metadata Management 28
3.3 Distributed File and Storage Systems . 30
3.4 Distributed Cache and Cooperative Caching 34
3.5 Scientific File System Workload Study . 34

4 Workload Characterization 37
4.1 File System Workload Study . 38

4.1.1 Tracing Methodology . 39
4.1.2 File System Workload Characteristics 43
4.1.3 File System Workload Summary . 67

4.2 Object Workload Study . 68
4.2.1 Static Object Workload Characterization 69
4.2.2 Object Access Pattern . 70
4.2.3 Object Workload Characteristics Summary 72

5 OBFS Design 74
5.1 Design Overview . 75
5.2 Multiple Block Sizes . 77

5.2.1 Self-contained Region Structure . 78
5.2.2 Fragmentation . 82

5.3 Metadata and File System Structures . 85
5.3.1 Object Metadata . 85
5.3.2 Region Head and Bitmaps . 88
5.3.3 Object Lookup Table . 90

5.4 Metadata Overhead . 92
5.4.1 Space Overhead . 93
5.4.2 Run Time Overhead . 94

5.5 Summary . 97

6 OBFS Policy and Implementation Details 99
6.1 Allocation Policy . 100

6.1.1 Delayed Allocation . 100
6.1.2 Region Allocation/Selection Policy 101
6.1.3 Block Allocation Policy . 103

6.2 Reliability and Integrity . 104
6.2.1 Failure Scenarios . 106
6.2.2 Object Create/Write . 107
6.2.3 Object Delete . 108
6.2.4 Boundary Check . 109
6.2.5 File System Consistency . 111
6.2.6 Recovery Schemes . 113

iv

6.3 Region Clean . 118
6.3.1 Non-fixed Object Location and Region Packing 119

6.4 Summary . 121

7 OBFS Design Evaluation 123
7.1 Experiment Setup . 124
7.2 Synthetic Workloads Used in the Experiments 124

7.2.1 Aging Workload . 127
7.3 Region Size and Block Size . 131
7.4 Allocation Policy . 137

7.4.1 Region Allocation . 137
7.4.2 Object Fragmentation . 140

7.5 Summary . 144

8 Performance Comparison 146
8.1 Read/Write Throughput Variance . 147
8.2 Mixing Small and Large Objects . 152
8.3 Request Sizes . 155
8.4 Aged File System Performance Study . 157
8.5 Read/Write Throughput . 162
8.6 Sustained Write Throughput . 164
8.7 Synthetic Object Benchmark . 167
8.8 Summary . 170

9 Conclusions 172

Bibliography 175

v

List of Figures

2.1 The server-based storage models . 14
2.2 The SAN-based storage models . 17
2.3 OSD distributed file system architecture . 19
2.4 Comparison of traditional and OSD storage models (This figure was orginally

appeared in the OSD proposal from the technical committee T10 [80].). . . . 22

4.1 Distribution of Files . 45
4.2 Cumulative Distribution Functions (CDF) of the Size and the Number of I/O

Requests (X axis-logscale) in ior2-fileproc. The read num and write num
curves indicate the fraction of all requests that is smaller than the size given in
X axis. The read size and write size curves indicate the fraction of all trans-
ferred data that live in requests with size smaller than the value given in the X
axis. 46

4.3 Cumulative Distribution Functions (CDF) of the Size and the Number of I/O
Requests (X axis-logscale) in f1. 47

4.4 Cumulative Distribution Functions (CDF) of the Size and the Number of I/O
Requests (X axis-logscale) in m1. 48

4.5 I/O Requests over Time for ior2-fileproc Benchmarks 50
4.6 I/O Requests over Time for ior2-shared Benchmarks 51
4.7 I/O Requests over Time for ior2-stride Benchmarks 52
4.8 I/O Requests over Time for f1 Application. The number of I/O operations

plotted in figure (a) is the average amount per fifty-second bucket. 55
4.9 I/O Requests over Time during m1 Restart Phase. 56
4.10 I/O Requests over Time during m1 Write Phase. 57
4.11 Cumulative Distribution Functions (CDF) of Inter-arrival Time of I/O Re-

quests (X axis-logscale) for ior2. 58
4.12 Cumulative Distribution Functions (CDF) of Inter-arrival Time of I/O Re-

quests (X axis-logscale) for application f1 and m1. 59
4.13 Cumulative Distribution Functions (CDF) of the Size of I/O Requests over

Nodes for ior2. 62

vi

4.14 Cumulative Distribution Functions (CDF) of the Size of I/O Requests over
Nodes during f1 write phase. 63

4.15 Cumulative Distribution Functions (CDF) of the Size of I/O Requests over
Nodes during f1 restart phase. 64

4.16 Cumulative Distribution Functions (CDF) of the Size of I/O Requests over
Nodes during m1 write phase. 65

4.17 Cumulative Distribution Functions (CDF) of the Size of I/O Requests over
Nodes during m1 restart phase. 66

5.1 OBFS structure . 79
5.2 Region structure and data layout. 86

7.1 OBFS performance as the region size varies. TwoValue micro benchmarks are
used in the experiments. The ratio parameter indicates the fraction of the large
object requests. 132

7.2 OBFS performance as the large block size varies. 135
7.3 Region usage distribution under different disk utilization. 139
7.4 Average number of extents per small object as the file system ages. The disk

aged to 60% full is plotted in a dashed line. The one with 20% utilization is
depicted in a solid line. 141

7.5 Average extent size as the file system ages. 143

8.1 Short term write throughput comparison between OBFS and Ext2. The TwoValue
workload with the ratio parameter of 0.8 is employed in both experiments. . . 148

8.2 Short term read throughput comparison between OBFS and Ext2. 30000 ob-
jects are written to a fresh file system before conducting the read experiments.
The random read experiments generate read targets by randomly selecting an
object from disk. The sequential read experiments read back all objects fol-
lowing the order that they were written. 150

8.3 Write throughput varies as workload small/large ratio changes. 153
8.4 Write throughput varies as request size changes. 156
8.5 Aged file system performance study using small object and large object work-

loads. 159
8.6 Aged file system performance study using mixed object workloads 160
8.7 Overall read/write performance on aged file systems. 163
8.8 Sustained write throughput during aging process. Sub figure (a) uses a single

aging stream and collects the throughput data every minute. Sub figure (b)
uses two aging streams and collects the throughput data every ten minutes. . . 165

8.9 Performance comparison using synthetic object benchmark. 168

vii

List of Tables

4.1 The ASCI Linux Cluster Parameters . 42
4.2 File Numbers and Capacity of the 32 File Servers 44
4.3 File Open Statistics . 67
4.4 Operations During File Open . 68
4.5 Object Workload Analysis Using LLNL Workloads 70

7.1 Specifications of the Maxtor D740X-6L disk used in the experiments 124
7.2 Synthetic workloads . 125

viii

Abstract

Storage Management in Large Distributed Object-Based Storage Systems

by

Feng Wang

Driven by the requirements for extremely high bandwidth and large capacity, stor-

age subsystem architectures are undergoing fundamental changes. The object-based storage

model, which repartitions the file system functionalities and offloads the storage management

functions to intelligent storage devices, is a promising new model. In this model, Object-based

Storage Devices (OSDs) manage their own storage space, provide persistent storage, and ex-

port an object interface to the data. With abundant on-board computing power, OSDs are able

to provide complex services to facilitate high level system designs.

This thesis focuses on the design, performance and functionality of an individual

OSD in a large distributed object-based storage system, currently being developed in the Stor-

age Systems Research Center at the University of California, Santa Cruz. Based on the file sys-

tem workload analysis and the expected object workload studies, I extract unique features of

object workloads and design an efficient storage manager, named OBFS, for individual OSDs.

OBFS employs variable-sized blocks to optimize disk layouts and improve object throughput.

Object metadata and attributes are also laid contiguously together with data, which further

improves disk bandwidth utilization. The physical storage space is partitioned into fixed-size

regions to organize blocks with different sizes together, which effectively reduces file system

fragmentation in the long run. A series of experiments was conducted to evaluate OBFS per-

formance compared with two Linux file systems, Ext2 and XFS. The results show that OBFS

successfully limits the file system fragmentation even after long term aging. OBFS demon-

strates very good synchronous write performance, exceeding those of Ext2 and XFS by up to

80% on both fresh systems and aged systems. Its asynchronous write performance is about

5% to 10% lower than that of Ext2, but 20% to 30% higher than that of XFS on a lightly used

disk. On a heavily used disk, OBFS beats both Ext2 and XFS by 20%. For read operations,

the performance of OBFS almost doubles that of Ext2 and is only slightly slower than that of

XFS. Overall, OBFS achieves 30% to 40% performance improvements over Ext2 and XFS un-

der expected object workloads, and forms a fundamental building block for larger distributed

storage systems.

Acknowledgements

I thank my advisor, Scott A. Brandt for his support, guidance, friendship, and pa-

tience. I have been fortunate to work with him in the last five years. He poured uncountable

hours into my research as well as my development in general.

I gratefully acknowledge Darrell D.E. Long, Ethan L. Miller, and Richard Golding

for their collaborations and suggestions in my research. I also thank Carlos Maltzahn for his

generous service in my thesis committee. I specially thank Tyce T. McLarty for providing

file system traces and valuable suggestions on this work. The students in the Storage Systems

Research Center have been very helpful and supportive over the years. In particular, I thank

Bo Hong, Qin Xin, Scott Banachowski, and Caixue Lin, for helping me in ways too numerous

to mention.

This research was supported by Lawrence Livermore National Laboratory, Los Alamos

National Laboratory, and Sandia National Laboratory under contract B520714.

xi

To my parents, Yanlin Wang and Xianrong Li,

and my wife, Jing Liu

xii

Chapter 1

Introduction

Simulations on high performance computer systems produce very large data sets.

Rapid storage and retrieval of these data sets presents major challenges for high-performance

computing and visualization systems. Although computing power and disk capacity have both

increased at exponential rates over the past decade, disk bandwidth has lagged far behind. To

satisfy the increasing demands for high data throughput, many distributed file systems employ

storage clusters to achieve high aggregate bandwidth. However, the traditional file system

model may not work well in such environments. The excessive data forwarding as well as the

complex file management tasks may make the file servers the bottleneck of the whole system,

with disk bandwidth wasted waiting for the file servers to handle requests and forward data

from/to clients. High speed storage area networks [75, 1] and network attached storage (NAS)

enable incremental scaling of bandwidth and capacity by incorporating more storage devices

into the network. However, those devices still provide a block-level interface, leaving most

of the low-level storage management tasks to file servers, which limits the scalability of such

1

systems.

1.1 Object-based Storage

Object-based storage systems [18, 42] address these limitations through a simple

networked data storage unit, the Object Storage Device (OSD). Each OSD consists of a CPU,

network interface, local cache, and storage device (disk or small RAID configuration), and

exports a high-level data object abstraction on top of the disk (or RAID) block read/write

interface. By managing low-level storage details such as allocation and disk request scheduling

locally, OSDs provide a building-block for scalability.

OSDs store data in objects. The object is a logical abstraction between the file and

the disk block: files are comprised of data objects stored on (possibly many) OSDs and the

OSDs handle the translation from objects to disk blocks. Objects hide the physical details

related to the disk, while providing better granularity.

The object-based storage model is different from the traditional server-based stor-

age model in that it separates the storage management from the file hierarchy management.

The storage management functionalities, such as data allocation, block mapping, and request

scheduling, are offloaded to the storage nodes. File servers handle the high-level issues, such

as naming, hierarchy management and access control. The storage devices are in charge of the

low-level storage management, such as data allocation, block mapping and request scheduling.

This reduces the load on the file servers, which now only have to service metadata requests,

and enables direct, highly parallel data transfer between clients and storage nodes. Together

2

with the distribution of low-level storage management to the OSDs, this greatly improves the

scalability of file systems.

An object-based storage system may be composed of a metadata server cluster (re-

placing the traditional file servers), multiple OSDs, and a client interface for individual clients,

all connected through a high performance storage area network. The metadata cluster handles

all namespace related requests, while the OSD clusters are in charge of storing and retrieving

the actual file data. The client component talks to both metadata servers and OSDs using a

special object protocol. In such a system, metadata operations are decoupled from read and

write operations. A client wishing to open a file will first contact the metadata servers to obtain

a capability and information allowing it to locate the objects containing file data in the OSD

cluster. Subsequent read and write traffic then involves only the client and relevant OSDs

without significant metadata server interaction 1. Such an arrangement allows maximum scal-

ability for system throughput since the primary bottleneck limiting I/O transfer rates becomes

the network and the raw number of OSDs, instead of any single component within the system.

1.2 Ceph Storage System

The Ceph Storage System [37], currently being developed at the UC Santa Cruz

Storage System Research Center, is a large distributed object-based storage system based on

the object-based storage model. It aims to provide petabytes of storage and I/O bandwidth up

to one terabyte per second. In Ceph, the contents of each file are striped over a sequence of
1Some interaction is required to update metadata as the file is accessed/modified. Lazy update potentially

minimizes this interaction.

3

objects stored on OSDs using a fixed stripe unit size. Files smaller than the stripe unit size

and the tail ends of large files are placed in individual objects. Objects are placed on different

OSDs according to the RUSH [25] policy, which attempts to balance load uniformly among

OSDs and minimize the occurrences of OSD hotspots by pseudo-randomly assigning objects

to OSDs. Ceph is discussed further in Chapter 2.

The Object-based storage model, as implemented in Ceph, introduces significant

changes to the storage management in distributed file systems. By striping file data into objects

and distributing them across many OSDs, the workloads seen by Ceph storage devices are

dramatically different from those seen in traditional storage servers. The object identifier

chosen by the metadata servers no longer reflects an object’s physical location. As a result,

OSDs have to manage a flat namespace of object identifiers internally.

Some object-based file systems employ general-purpose local file systems, such as

Ext2 [7, 77], to manage their OSDs [8]. However, general purpose file systems have very

different design assumptions. They optimize for a hierarchical namespace, which makes them

quite inefficient in mapping/retrieving objects from a flat object namespace. Their allocation

policies make incorrect assumptions about the incoming workloads, which cost them oppor-

tunities to further optimize the data layout and reduce potential fragmentation. As a result,

we show that general purpose file systems are suboptimal to work as the storage manage-

ment component on OSDs, and that specially designed object file system can provide greater

throughput under expected object workloads.

4

1.3 Workloads

Understanding the workloads that a storage system is expected to handle is critical

to developing a system capable of meeting its performance requirements. While there is a

significant body of research on general purpose workloads, relatively little current research

discusses the specific workloads that will be encountered in modern high performance com-

puting platforms. In addition, due to the lack of large object-based storage systems, nothing

had previously been published on the object workload that results from even well-understood

file- and block-level workloads.

This dissertation includes a series of studies to analyze the file-level workloads gath-

ered from several typical scientific applications, as demonstrated in Chapter 4. The results

show that, on average, each application has only one or two typical request sizes. Requests

tend to be deeply buffered at the client side. Large requests from several hundred kilobytes to

several megabytes are very common. Although in some applications small requests account

for the majority of all requests, almost all of the I/O data are transferred by large requests.

All of these applications show bursty access patterns. Our research in this area has resulted

in a better understanding of the expected scientific workloads and enabled both more accurate

object workload generation and more informed system development.

1.3.1 Object Workloads in Ceph System

Based on the file system workload analysis, the major characteristics of expected

object workloads under the Ceph framework are derived. Since the majority of storage space in

5

scientific environments is consumed by large files, most on-disk objects are the same size as the

system stripe unit and the small variable-sized objects will only account for a small fraction of

objects in the system. Given a 512 KB stripe unit, more than 83% of all objects will be stripe-

unit-sized objects. Furthermore, in scientific environments most of the object requests will

read/write whole objects. Partial object accesses are not significant due to the deep client-side

buffering and the long sequential file access patterns. Object requests to individual Ceph OSDs

will exhibit little or no locality of reference between objects because of the random object

placement policy, making useless most general purpose file systems’ attempts at clustering.

In Ceph, multiple objects from a small or medium file will seldom be stored on the

same OSD.From the OSD point of view, objects will tend to be accessed randomly: it will be

rare to observe sequential object accesses on individual OSDs. As a result, the Ceph system

requires that the underlying OSD file systems provide fast object name map/retrieval from a

single flat and homogeneous object namespace. The object workloads are dominated by write

requests. Although the foreground requests from clients have to be served synchronously, there

are still a large amount of asynchronous write requests generated from background activity.

OSDs must therefore handle both synchronous and asynchronous write requests.

1.4 OBFS

1.4.1 Design

Our Object-Based File System (OBFS) is a very light-weight, highly efficient file

system designed specifically for use in OSDs in large-scale distributed object-based storage

6

systems. OBFS aims to optimize storage management on individual OSDs under the Ceph

framework. However, it can be employed in other object-based storage systems if they share

the same design assumptions: fixed stripe unit and random object placement. As described in

Chapter 5, OBFS optimizes disk layout and enhances flat name space management based on

knowledge regarding expected object workloads. It uses two block sizes: small blocks, equiv-

alent to the blocks in general-purpose file systems, and large blocks, equal to the Ceph system

stripe unit size, to greatly improve the object throughput while still maintaining efficient disk

utilization. By collecting blocks of the same size into regions, OBFS effectively alleviates file

system fragmentation as the system ages, reduces seek overhead, and minimizes recovery time

after a failure. Compared to Linux Ext2 file systems [7, 77], OBFS results in better data layout

by guaranteeing that any maximum-size object is laid sequentially and any variable-size object

is allocated to a single disk region. Object metadata are also laid contiguously with the asso-

ciated data, further improving disk bandwidth utilization. In addition, hash-based algorithms

are employed to map/retrieve objects to/from the persistent storage, efficiently managing the

flat name space exported by the OSDs.

1.4.2 Implementation

Based on our design, we implemented OBFS in Linux. Implementation details about

the object allocation, read, write, delete, and failure recovery are discussed in Chapter 6. Ob-

ject allocation involves two steps: region allocation and block allocation. The region alloca-

tion policy aims to minimize region internal fragmentation and reduce seek distance by taking

into account three factors: the distance between the last-accessed region and the target re-

7

gion, the region fragmentation, and the burstiness of workload. The block allocation uses

an extent-based policy to minimize object fragmentation. A small extent list and an extent

summary array per region are built on the fly to alleviate allocation overheads. The object

read/write/delete implementations aim to reduce extra metadata updates associated with those

object operations, while still providing strong reliability guarantees. A set of flags and specific

update procedures are introduced to achieve this goal, which leads to an efficient but relatively

complex failure recovery procedure. During file system checking, the recovery routine uses

flags and region-unique generation numbers to identify active metadata and rebuild the region

structures.

1.5 Experiments and Results

A series of experiments, discussed in Chapter 7, were conducted to evaluate the per-

formance of OBFS on both freshly installed and aged file systems. Aged file systems simulate

the state of a file system after long term usage, which often lowers file system performance

due to fragmentation of file/object data. The results show that OBFS successfully limits the

file system fragmentation after long term aging. The aging loads are evenly distributed to all

allocated regions. The low overall number of extents for all objects indicates that most objects

are laid on disk contiguously.

OBFS demonstrates very good synchronous write performance, exceeding those of

Ext2 and XFS by up to 80% on both the fresh systems and the aged systems. Its asynchronous

write performance is comparable to those of Ext2 and XFS on lightly used disks and about

8

20% better on heavily used disks. OBFS read performance nearly triples that of Ext2 and

is only slightly lower than that of XFS. Since OBFS is optimized for stripe-sized objects, it

shows extremely good performance for streaming workloads that purely contain such objects.

The sustained bandwidth on a fresh disk is about 40 MB/s for both synchronous writes and

asynchronous writes, which is apparently limited by the maximal bandwidth of the disk used

in the test system. Compared with Ext2 and XFS on a fresh system, it almost doubles the

throughput of synchronous writes and improves by 50% the throughput of the asynchronous

writes. On an aged system, OBFS still leads by 15% to 50%. Putting all those factors into

account, OBFS achieves 18% to 200% performance improvements over XFS and Ext2 respec-

tively under expected object workloads.

1.6 Conclusion

OSDs are the basic storage units for large distributed object-based storage systems.

Any bandwidth change of individual OSDs will be proportionally reflected in the overall sys-

tem bandwidth. Thus, a small improvement of the OSD throughput can lead to a large en-

hancement of the overall throughput. However, the characteristics of the object workloads are

dramatically shifted from what the traditional file systems experience and optimize for due to

the novel object-based architecture.

OBFS is designed specifically for OSDs under the Ceph framework. It employs two

different block sizes and uses regions to organize blocks of the same size together. Combined

with its optimized metadata layout and allocation policy, it greatly reduces object fragmenta-

9

tion in the long run. It handles a flat object name space through a hash-based structure, which

makes it very efficient in storing and retrieving a large amount of objects. Compared with Ext2

and XFS, it demonstrates very good performance in both read and write operations.

The overall contributions of this work are summarized as below:

• File system workloads in modern high-performance scientific environments have been

re-examined and evaluated, which faciliates the design of large scale storage systems.

• Based on the file system workload analysis, an object workload has been studied (under

a set of assumptions corresponding to the Ceph architecture). This work provides the

characteristics of object workload in Ceph framework. It gives a good example of what

the object workload may look like and is useful for systems sharing similar assumptions

with Ceph.

• A novel design for file systems on object-based storage devices is presented.

• A completed version of OBFS has been implemented into Linux.

• The performance of our OBFS is studied and evaluated in details using various work-

loads and benchmarks with different characteristics.

The rest of the disseration is arranged as follows: Chapter 2 provides the background

of this work. Chapter 3 discusses the related work on file system design and workload analy-

sis. File system workload studies in scientific environments and object workload analysis of

Ceph system are presented in Chapter 4. Chapter 5 describes the overall design of our OBFS

and Chapter 6 provides the implementation details. OBFS evaluations and performance com-

10

parisons with Ext2 and XFS are presented in Chapter 7 and Chapter 8 respectively. Chapter 9

summaries the design of OBFS and concludes the contributions of this work.

11

Chapter 2

Background

This chapter provides some background and context for the research described in this

dissertation. Although the primary focus of the dissertation is on file systems for object-based

storage devices, it does not operate in isolation and its design is informed by the successes

and failures of previous systems. Accordingly, we begin with a brief high-level discussion

of traditional storage models, including directly-attached storage, server-based storage, and

SAN-based storage. We then discuss the new object-based storage model, which addresses

some of the limitations of server-based storage. Finally, we discuss the Ceph object-based

storage system, in which the work described in this dissertation was done.

2.1 Directly-attached Storage

Directly-attached storage, as its name suggests, is directly connected to clients using

SCSI, ATA, or FibreChannel protocols. It exports its storage space through a block interface.

12

A directly-attached storage device cannot be shared among multiple hosts. Some high-end

arrays provide multi-channel interfaces that can be connected to two or more different hosts,

but they are primarily used for high availability. Only one of connected servers actually uses

the storage during normal operation; all other servers that connect to the same storage de-

vice are configured as fail-over servers and only access the device when the primary server is

unavailable.

Directly-attached storage is simple and easy to use. It requires minimal configura-

tion and is very robust for normal applications. The close coupling of the directly-attached

storage and its host allows for good performance and simplifies the storage management tasks

on individual hosts.

However, the strong affinity between storage devices and hosts imposes severe limits

on global storage manageability, utilization, and scalability. The directly-attached storage

model does not support resource sharing among multiple hosts. In an environment that requires

multiple hosts to access the same data set, the hosts have to explicitly move data between

different domains. Important storage management tasks, such as backup, have to be perfermed

on a host-by-host basis, which significantly increases global management complexity.

Such a non-sharing architecture also greatly reduces global storage utilization. Free

space in one host cannot be utilized by others. Balancing storage space between hosts in-

volves physical movements of the storage devices and relatively complicated reconfiguration

processes.

Finally, the storage resources managed by individual hosts are hard to scale. A

directly-attached storage device consumes a certain amount of host resources, such as main

13

Disk Array

IP Network

Storage
Clients

Storage
Servers

Figure 2.1: The server-based storage models

memory for in-core data structures and bitmaps and CPU cycles for doing I/Os, which are

roughly proportional to the size of the device. As more and more devices added to a host,

the aggregrate management overhead is significant enough that it may compete with the user

applications on the host.

2.2 Server-based Storage

Server-based storage, as shown in Figure 2.1, introduces a dedicated file/storage

server that is separated from application servers (storage clients). The storage server manages

a set of storage devices and shares them with multiple hosts through the network. All of the

storage clients on the same network with the server can access the storage using file-level

protocols, such as NFS and CIFS.

The server-based storage model provides a sharing architecture that improves stor-

14

age manageability and utilization. The server provides a central point for storage management

instead of multiple isolated domains. All storage devices exported by the server are shared by

the hosts, which balances the storage balance among hosts and effectively improves the overall

utilization. The dedicated server can devote all of its resources to storage management, and is

thereby able to handle more storage devices. As a result, the storage clients on the network can

access much larger storage with relatively low overheads than the hosts using directly-attached

storage.

Although the server-based storage model provides better scalability, the centralized

server or server cluster is still a performance bottleneck as the requirements for large capacity

and high bandwidth scale up. Since the storage devices are attached to the server either directly

or through a storage area network, they are typically invisible to the clients. As the only au-

thority in the system, the server or server cluster needs to handle both the high-level hierarchy

requests, such as naming, access control, and authentication, as well as the low-level storage

management requests, such as data allocation and request scheduling. The server cluster also

takes the responsibility for forwarding data between clients and storages devices. A typical

I/O process in a system using this model is initiated by a client sending a file request, such as

a file open request, to a server in the server cluster. The server looks up the corresponding file

metadata and responses the client with a file handle. A series of read/write requests are then

sent to the server by the client. The server, on behalf of the client, allocates storage space on

disk, updates the metadata, and performs real disk reads/writes.

As the system scales up, an individual server may not be able to satisfy the require-

ments for ever larger capacity and higher bandwidth. In that situation, a server cluster is used

15

to manage a shared storage pool or a set of directly-attached storage devices and export a sin-

gle file system image or multiple independent file system images to all clients. The maximal

throughput of a system using this model is limited by the aggregrate link bandwidth and pro-

cessing power of the server cluster and the aggregated bandwidth of the underlying storage

devices. If the links and computing power of the server cluster are saturated, increasing the

underlying storage bandwidth will not improve overall system throughput. As a result, scaling

up the server cluster becomes the key issue that determinates the overall system throughput.

However, the coherent requirement of the clustering protocol makes it extremely difficult to

scale up the server cluster. Lock contention for both the namespace and the physical resource

management severely constrains the size of the server cluster. Moreover, data forwarding im-

poses significant overhead on the server cluster, further reducing its scalability. As a result,

storage systems using the server-based model can hardly satisfy the requirements for tens of

petabyte storage and several terabytes per second aggregrate bandwidth, which is required

in the next-generation storage systems, especially high-end systems in scientific computing

environments.

2.3 SAN-based Storage

The SAN-based storage model further improves bandwidth scalability by enabling

direct data transfer between clients and storage devices. In a SAN-based stoarge system, all

storage devices, clients, and servers are connected through a storage area network, as shown

in Figure 2.2. Since the storage devices are now visible to the clients, the server cluster is no

16

Disk Pool
Cluster
Metadata Server

Storage Area Network

WAN
WAN
Clients

IP Network

SAN
Clients

Figure 2.2: The SAN-based storage models

longer responsible for data forwarding between them. A client can initiate direct data transfer

using special protocol, such as iSCSI, to any device in the SAN after acquiring appropriate

permissions from the server cluster. To read/write a file, a client first issues a file open request

to a server through either the SAN or a separate IP network. The server responds the client

with a list of file block mappings. The client then uses this information to directly contact

disks through the SAN and retrieve data as needed.

By removing the data forwarding step, the SAN-based storage system eliminates the

bandwidth constraint imposed by the aggregrate link bandwidth of the server cluster. Overall

system throughput is able to scale proportional to the aggregrate storage bandwidth up to the

maximal capacity provided by the SAN. Server load is also greatly reduced, which makes it

possible to handle more file requests from clients. In addition to the performance benefits, the

17

SAN-based storage further consolidates storage management in the distributed environment.

More storage can be incorporated into a SAN-based system and managed centrally.

Although the SAN-based storage model provides better scalability and manageabil-

ity, it has its own limitations. Since the clients can communicate directly with the disks, which

have limited intelligence on board, security becomes a big issue in the SAN environment. The

system built on the SAN-based storage model trusts every host in the same SAN. It relies

on strict authentication for SAN clients to guarantee data safety. However, once a host joins

the SAN, there is no effective way to prevent it from performing malicious operations. Any

compromised host in the SAN may access and damage the whole system.

The processing power of the server cluster can still become a performance bottleneck

in a large system. Despite eliminating the data forwarding functionality, the server cluster is

still in charge of low-level storage management tasks, such as block allocation and layout

optimization. Significant amounts of memory resource, computing power, and link bandwidth

are spent in servicing those requests and managing related data structures. For example, a 10-

PB file system contains 160-GB block bitmaps, assuming that the block size remains 8 KB.

Even with a 256-KB block size, the block bitmaps still consume 5 GB. Fitting such big bitmaps

in core imposes great challenges to the server cluster. A common practice is to delegate a

portion of the bitmap to every server in the cluster. However, since the namespace partitions

among the server cluster do not closely track the physical resource partitions, the mismatch of

those two may result in extra data movement and resource locking. For instance, to free a file

from one server, it may need to access a portion of the block bitmap managed by another server.

This may involve a complicated distributed locking procedure or multiple RPC calls between

18

Several Thousand OBSDs

Client Storage
Server
ComponentsSystems

OBSD

OBSD

Area
Wide

Clients

Scale
Tera-

Computers

Metadata
Server

Visuali-
zation
Systems

Multiple Access
Paths to Redundant
Backbone

OBSD

Cluster

Backbone
High Performance

Figure 2.3: OSD distributed file system architecture

servers. As a result, it is hard to scale up the server cluster while still exporting a single file

system image, which limits the ultimate scalability of the SAN-based storage systems.

2.4 Object-based Storage

Object-based storage, first proposed by Gibson et al. [18], extends the SAN-based

storage architecture by offloading the physical storage management functionality to intelli-

gent storage devices and enforcing security policies on them. The intelligent storage device,

referred to as an object-based storage device, presents an object interface that encapsulates

the physical storage details. The object name, unlike the block number, does not associate

directly with any physical resources. It is the OSD’s responsibility to map an object into the

19

disk blocks.

2.4.1 Object Abstraction

The object is a storage abstraction that lies between the file and the logical disk

block. It hides the physical details related to the low-level storage, while providing a better

granularity for storage management. The object name, unlike the disk block number, has no

direct relation to the object’s physical location or its relationship with other objects. Compared

with the file abstraction, objects provide a user-visible entity that can be used to facilitate data

placement in a distributed environment and enforce security policy at a finer granularity.

The object concept also provides an ideal data layout and security unit that aligns to

the storage device boundary in distributed environments. Objects can be used to pack multiple

small files together or break down large files to optimize the disk bandwidth and network

bandwidth utilization for the OSD cluster. The object access control is handled by individual

OSDs, which helps the metadata server cluster to enforce the system security policy.

2.4.2 Architecture

Object-based storage provides an extremely scalable architecture and strong security

guarantees. It eliminates the file server as a bottleneck by offloading storage management to

the OSDs and enables load balancing and high performance by striping data of a single file

across multiple OSDs. It also enables a high level of security by using cryptographically

secured capabilities [18, 59] and local data security mechanisms [45].

A file system employing the object-based storage model is depicted in Figure 2.3. In

20

this system, a metadata server cluster services all metadata requests, manages the hierarchical

file namespace, handles authentication and protection, and provides clients with the file to

object mapping. Clients may then contact the OSDs to retrieve the objects corresponding to

the files they want to access. In such a system, metadata operations are completely decoupled

from read and write operations. A client wishing to open a file will first contact the metadata

servers to obtain a capability and information allowing it to locate the objects containing the

file data in the OSD cluster. Subsequent read and write traffic then involves mostly the client

and relevant OSDs, only rarely involving the metadata server further. Upon receiving a client

request, an OSD will validate this request by comparing it with the companioned capability.

Only if the request matches the access control information, encoded in the capability, will the

OSD service it.

Object-based storage reduces the server load by offloading the physical storage man-

agement to OSDs and thus improves the system scalability. As shown in Figure 2.4, the server

cluster is only responsible for meteadata related requests. This greatly reduces the locking

contention and data movement caused by the physical resource management, which effectively

increases the server cluster scalability. All block allocation and layout optimization function-

alities are delegated to OSDs. The overall system processing power scales proportionally to

the number of OSDs in the system. Thus, object-based storage allows maximum scalability

for system throughput since the primary bottleneck limiting I/O transfer rates becomes the

network, instead of any single component within the system.

Compared with SAN-based storage, object-based storage provides much better ac-

cess controls and much stronger security guarantees. As we mentioned in Section 2.3, a file

21

Applications

System call interface

File system
client component

File system
storage component

Sector/LBA interface

Block I/O manager

Applications

System call interface

File system
client component

File system
storage component

OBSD interface

Block I/O manager

Traditional Model OBSD Model

Figure 2.4: Comparison of traditional and OSD storage models (This figure was orginally
appeared in the OSD proposal from the technical committee T10 [80].).

22

system using the SAN-based storage model cannot provide a finer granularity for the access

control and the security check because all the hosts in the SAN can perform I/Os directly to the

disks. The system either rejects a client access to a disk or allows it to access the entire disk.

Object-based storage, on the other hand, benefits from the intelligent OSDs, which can help to

enforce complex access-control and security policies. Unlike a dumb disk that allows a client

to access all its blocks equally, an OSD requires the client to present a capability for every

request it issued. Such a capability contains access-control and authentication information,

which is used by the OSD to validate the client request. This capability is typically signed by

the metadata server to prevent a malicious client from faking one. Such a security framework

only trusts the server cluster and the OSDs without imposing any requirement on the clients.

It enables object-based storage to be adopted in an untrustworthy environment.

2.4.3 Systems Using Object-based Storage Model

Distributed object-based storage systems, first used in Swift [10] and subsequently

used in systems such as NASD [19], Storage Tank [27], Lustre [8], Slice [3], and Panasas [49]

are built on this model.

Much research has gone into hierarchy management, scalability, and availability of

distributed file systems such as AFS [46], Coda [29], GPFS [65], GFS[73], and Lustre [8], but

relatively little research has been published that aims toward improving the performance of the

storage manager. Because modern distributed file systems may employ thousands of storage

devices, even a small inefficiency in the storage manager can result in a significant loss of

performance in the overall storage system. In practice, general purpose file systems are often

23

used as the storage manager. For example, Lustre uses the Linux Ext3 file system as its storage

manager [8]. Since the workload offered to OSDs may be quite different from that of general

purpose file systems, we can build a better storage manager by matching its characteristics to

the workload.

2.5 The Ceph Object-based Storage System

Ceph is a large scale object-based storage system currently being developed in Stor-

age System Research Center at UC, Santa Cruz. The Ceph architecture contains four key

components: a small cluster of metadata servers (MDSs) that manages the overall file system

name space, a large collection of OSDs that store data and metadata, a client interface, and

a high-speed communications network. OBFS is designed as a sub-component to run on the

individual OSDs in the Ceph system.

Ceph’s metadata server cluster is based on a dynamic metadata management design

that allows it to dynamically and adaptively distribute cached metadata hierarchically across

a set of MDS nodes. Arbitrary and variably-sized subtrees of the directory hierarchy can be

reassigned and migrated between MDS nodes to keep the workload evenly distributed across

the cluster. This distribution is entirely adaptive and based on the current workload character-

istics. A load balancer monitors the popularity of metadata within the directory hierarchy and

periodically shifts subtrees between nodes as needed. The resulting subtree-based partition is

kept coarse to minimize prefix replication overhead and preserve locality. Ceph’s OSD cluster

is used for storing both data and metadata. Intelligent OSDs allow data replication, failure

24

detection, and recovery activities take place semi-autonomously under the supervision of the

MDS cluster. This intelligence in the storage layer allows the OSD cluster to collectively

provide a reliable, scalable, and high-performance object storage service to client and MDS

nodes.

In Ceph, the contents of each file are striped over a sequence of objects stored on

OSDs. To ensure that tens of thousands of clients can access pieces of a single file spread

across thousands of object-based disks, Ceph must use a distribution mechanism free of central

bottlenecks. This mechanism must accommodate replication, allow for the storage system to

be easily expanded, and preserve load balance in the face of added capacity or drive failures.

We chose the RUSHR variant of the RUSH [25] algorithm to distribute data because it meets

all of these goals.

The Ceph client combines a local metadata cache, a buffer cache, and a POSIX

call interface. The client communicates with the MDS cluster to open and close files and

manipulate the file name space, while maintaining a local metadata cache both for efficiency

and to “learn” the current partition of metadata across the MDS cluster. Metadata consistency

is currently similar to that of NFS: inode information in the cache remains valid for a fixed

period before subsequent stat operations require contacting the MDS cluster. The client

reads from and writes to files by communicating with OSDs directly: once a file has been

opened, the inode number and byte offset specify (via RUSH) an object identifier and OSD to

interact with. A buffer cache serves to filter out redundant file I/O while maximizing the size

of file requests submitted to OSDs.

25

Chapter 3

Related Work

There has been a tremendous amount of research in file and storage systems. This

chapter surveys some of the more closely related research and places the research described in

this dissertation in context by comparing and contrasting it to the work of others.

3.1 File Systems Allocation and Layout Policies

Many other file systems have been proposed for storing data on disk; however, nearly

all of them have been optimized for storing files rather than objects. In this section, we discuss

research in allocating disk space and handling metadata.

The Berkeley Fast File System (FFS) [40] and related file systems such as Ext2

and Ext3 [77] are widely used today. They all try to store file data contiguously in cylinder

groups—regions with thousands of contiguous disk blocks. This strategy can lead to fragmen-

tation, preventing data for larger files from being stored contiguously, so techniques such as

26

extents and clustering [41, 71] are used to group blocks together to decrease seek time. Anal-

ysis has shown that clustering can improve performance by a factor of two or three [68, 71],

but clustered file allocation becomes less successful in aged file systems because it is difficult

to find contiguous blocks for clustered allocation.

To improve the clustering technique, McKusick et al. [38] provide a new allocation

algorithm, which adds a reallocation step to the original FFS disk allocation algorithm. The

reallocation step tries to re-examine and optimize the block allocation before those blocks are

written to disk. This delayed allocation scheme can better exploit the existing clusters of free

space.

Similar to the approach of the FFS, McVoy et al. discuss the file system clustering

technique to obtain the extent-like performance for the SUN UFS [41]. They attempt to place

logically sequential file data on physically contiguous disk blocks and transfer data in multiple-

block chunks. The performance of such file systems is good when the file systems are fresh and

nearly empty. However, as file system ages, data fragmentation will compromise the benefits

achieved by data clustering.

WAFL [24], a file system layout specially designed for file systems to work in an

NFS appliance, is optimized for writes. Rather than pre-allocating fixed disk space for the

metadata, WAFL uses a file to organize all of the metadata, allowing it write both data and

metadata blocks at any free location. This approach introduces an indirect metadata map-

ping through the file interface, which enables the flexible metadata writes. However, WAFL

aims at the NFS environment, where writes dominates. Like LFS discussed below, its read

performance is poor when files are randomly written in and sequentially read out.

27

Colocating FFS (C-FFS) [16] explicitly groups small files into contiguous disk lo-

cation and, like WAFL, uses directory files to organize the metadata. In the file allocation

process, C-FFS tries to incorporate the new file blocks into an existing group associated with

the directory that names the file. Compared with the FFS allocation policy, C-FFS improves

performance by 40 to 60%, when the data access pattern matches the namespace locality.

Log-structured file systems [61, 67] group data by optimizing the file system for

writes rather than reads, writing data and metadata to segments of the disk as they arrive.

This works well if files are written in their entirety, but can suffer on an active file system

because files can be interleaved, scattering a file’s data among many segments. In addition,

log-structured file systems require cleaning, which can reduce overall performance [6].

XFS [47, 74] is a highly optimized file system that uses extents and B-trees to pro-

vide high performance. Similar to the reallocation technique presented in the FFS of the 4.4

BSD Operating System, XFS employs a delayed allocation technique. Buffered data blocks

are not assigned disk space until those blocks need to be flushed to disk. The delayed alloca-

tion technique can effectively reduce the small extents which can result from small incremental

data writes.

3.2 File System Consistency and Metadata Management

Existing file systems must do more than allocate data; they must also manage large

amounts of metadata and directory information. Metadata management introduces significant

overhead to file system performance due to the extra disk accesses for metadata and maintain-

28

ing file system consistency. In this section, we discuss related work in managing metadata and

maintaining file system consistency.

FFS provides strong consistency by synchronously writing each block of meta-

data [40]. The metadata are flushed back to disk in fixed order as they are updated, which

guarantees that the file system can be recovered to a consistent state after a system crash.

However, the synchronous metadata writes can significantly impair file system performance.

Soft Updates [39] attacks this problem by removing metadata updates from the crit-

ical path while still guaranteeing the metadata are written to disk in predefined order. Soft

Updates tracks the dependencies of metadata updates and enforces the dependencies as those

metadata are flushed back to disk.

Write-ahead logging [21] is a technique that first emerged in database research be-

fore becoming widely used in file systems [28, 78, 77, 20]. Metadata operations are written to

an auxiliary log and committed to disk before any blocks modified by corresponding metadata

operations reach disk. After a system crash, file systems can be recovered to a consistent state

by replaying the valid operations in the write-ahead log. If the log is updated synchronously,

the file systems provide consistency as strong as that of FFS. If the log is maintained asyn-

chronously, the file systems are more like those using Soft Updates. Another approach in

configuring write-ahead log is called metadata group commit. It batches multiple log writes

and commits them to disk together synchronously [21], which is quite useful in highly con-

current systems.

Log-structured file systems [61, 67] provide a different approach for metadata man-

agement. Rather than updating metadata in a fixed position, LFS writes the modified data into

29

a segment log. The order of the metadata operations in the segment log reflects the actual

metadata update order, which guarantees file system recoverability.

Besides those software techniques, the metadata update problem can be addressed

by hardware techniques, such as non-volatile RAM (NVRAM). Systems designed with the aid

of NVRAM, such as Rio [12] and WAFL [24], exhibit better performance than those that use

Soft Updates and write-ahead logging.

Most systems do not store data contiguously with metadata, decreasing performance

because of the need for multiple writes. Log-structured file systems [61, 67] and embedded

inodes [16] store metadata and data contiguously, avoiding this problem, though they still

suffer from the need to update a directory tree correctly. Techniques such as logging [78] and

Soft Updates [39] can reduce the penalty associated with metadata writes, but cannot eliminate

it.

3.3 Distributed File and Storage Systems

The Network File System (NFS) [63] was first introduced by SUN Microsystems for

use in UNIX operating system environments. NFS is a network protocol. It takes advantage

of the Virtual File System (VFS) and supports various local file systems through the VFS

interface. The storage management is done by local file systems.

The Sprite File System [53], developed by University of California at Berkeley,

provides a single-system image, in which files are equally accessible by any workstation in the

network. Sprite provides stronger consistency semantics than NFS. A log-based file system

30

(Sprite LFS) [61] serves as its local file system.

The Andrew File System (AFS) [46] and its successor the DEcorum File System

(DFS) [28] provide a highly scalable architecture. Andrew provides a homogeneous, location-

transparent file name space to all the client workstations by using a set of trusted servers. The

operating system running on each workstation intercepts file system calls and forwards them

to a user-level process called Venus, which manages the local data cache and communicates

with the file servers.

The Coda File System [64] is a descendant of AFS which was designed to be more

resilient to failures by using replication and disconnected operation. It relaxes the consistency

requirements to allow efficient disconnected operation. It optimistically assumes that clients

work on their own separate home directories, in which very little sharing will happen.

Many scalable storage systems such as GPFS [65], GFS [57], Petal [36], Swift [10],

RAMA [44], Slice [3] and Zebra [22] stripe files across individual storage servers. These

designs are most similar to the file systems that will use OSDs for data storage; Slice explicitly

discusses the use of OSDs to store data [3]. In systems such as GFS, clients manage low-level

allocation, making the system less scalable. Systems such as Zebra, Slice, Petal, and RAMA

leave allocation to the individual storage servers, reducing the bottlenecks; such file systems

could take advantage of our file system running on an OSD. In GPFS, allocation is done in

large blocks, resulting in fewer disk seeks overall but very low storage utilization for small

files.

High-performance, scalable file systems have long been a goal of the high-performance

computing (HPC) community. HPC systems place a heavy load on the file system [52, 69, 79],

31

placing a high demand on the file system to prevent it from becoming a bottleneck. As a re-

sult, there have been many scalable file systems that attempt to meet this need; however, these

file systems do not support the same level of scalability that Ceph does. Some large-scale

file systems, such as OceanStore [32] and Farsite [2] are designed to provide petabytes of

highly reliable storage, and may be able to provide simultaneous access to thousands of sep-

arate files to thousands of clients. However, these file systems are not optimized to provide

high-performance access to a small set of files by tens of thousands of cooperating clients.

Bottlenecks in subsystems such as name lookup prevent these systems from meeting the needs

of an HPC system. Similarly, grid-based file systems such as LegionFS [82] are designed

to coordinate wide-area access and are not optimized for high performance in the local file

system.

Parallel file and storage systems such as Vesta [13], Galley [51], RAMA [44], PVFS

and PVFS2 [11, 33], the Global File System [73] and Swift [10] have extensive support for

striping data across multiple disks to achieve very high data transfer rates, but do not have

strong support for scalable metadata access. For example, Vesta permits applications to lay

their data out on disk, and allows independent access to file data on each disk without ref-

erence to shared metadata. However, Vesta, like many other parallel file systems, does not

provide scalable support for metadata lookup. As a result, these file systems typically provide

poor performance on workloads that access many small files as well as workloads that require

many metadata operations. They also typically suffer from block allocation issues: blocks

are either allocated centrally or, in the Global File System, via a lock-based mechanism. As

a result, these file systems do not scale well to write requests from thousands of clients to

32

thousands of disks. Similarly, the Google File System [17] is optimized for very large files

and a workload consisting largely of reads and file appends, and is not well-suited for a more

general HPC workload because it does not support high-concurrency general purpose access

to the file system.

Recently, many file systems and platforms, including Federated Array of Bricks

(FAB) [62], IceCube [26], Lustre [8, 66], GPFS [65], the Panasas file system [81], pNFS [23],

Sorrento [76], and zFS [60] have been designed around network-attached storage [18, 19]

or the closely related object-based storage paradigm [4]. All of these file systems can stripe

data across network-attached devices to achieve very high performance, but they do not have

the combination of scalable metadata performance, expandable storage, fault tolerance, and

POSIX compatibility that Ceph provides. pNFS [23] and the Panasas object-based file sys-

tem [81] stripe data across network-attached disks to deliver very high data transfer rates, but

they both suffer from a bottleneck in metadata lookups. Lustre [8, 66] has similar functional-

ity: it supports nearly arbitrary striping of data across object storage targets, but it hashes path

names to metadata servers. This approach distributes the metadata load, but destroys locality

and makes POSIX compatibility difficult, despite approaches such as LH3 [9]. GPFS [65] also

suffers from metadata scaling difficulties; while block allocation is largely lock-free, as it is in

most object-based storage systems, metadata is not evenly distributed, causing congestion in

metadata lookups. Moreover, none of these systems permits a client to locate a particular block

of a file without consulting a centralized table. Sorrento [76] alleviates this problem somewhat

and evenly distributes data and metadata among all of the servers, but only performs well in

environments with low levels of write sharing in which processors work on disjoint data sets.

33

FAB [62] focuses on continuously providing highly reliable storage; while its performance is

acceptable, FAB provides very high reliability at the cost of somewhat reduced performance.

Ceph takes the opposite approach: provide very high performance and reasonable reliability.

3.4 Distributed Cache and Cooperative Caching

Caching is well accepted as a viable method for alleviating the performance mis-

match between main memory and disk. However, single point caching has limited scalability.

Cooperative caching, where cache servers support each other in serving requests for cached

objects, has emerged as an approach to overcome this limitation.

Muntz et al. studied the multilevel cache architecture on distributed file systems in

the LAN environment [48]. They found “disappointingly low” hit rates in the intermediary

servers. The reason for the low hit rates is that caches in different servers are managed inde-

pendently. The same cache management policy is employed in those caches, which results in

“inclusive” cache behavior. Those cached objects in server caches may also exist at the client

caches. If any request cannot be satisfied at client caches, it cannot hit in server caches.

Dalin et al. presents several cooperative caching schemes to improve distributed file

system performance [14]. In this study, they try to coordinate all the file caches in clients and

servers to form a large efficient file cache. Through trace-driven simulation, they found as

much as half of raw disk accesses can be reduced compared with the non-cooperative schemes

and the read response time is improved by 73%.

34

3.5 Scientific File System Workload Study

The I/O subsystem has been a system performance bottleneck for a long time. In

parallel scientific computing environments, the high I/O demands make the I/O bottleneck

problem even more severe. Kotz and Jain [30] surveyed impacts of I/O bottlenecks in ma-

jor areas of parallel and distributed systems and pointed out that I/O subsystem performance

should be considered at all levels of system design.

Previous research showed that the I/O behavior of scientific applications is regular

and predictable [43, 54]. Users have also made attempts to adjust access patterns to improve

performance of parallel file systems [69].

There are several studies on file system workload characterizations in scientific en-

vironments [5, 31, 43, 50, 58]. They have shown that file access patterns share common

properties such as large file sizes, sequential accesses, bursty program accesses, and strong

file sharing among processes within a job. A more recent study showed that applications use a

combination of both sequential and interleaved access patterns and all I/O requests are chan-

neled through a single node when applications require concurrent accesses [70]; we observe

similar phenomena in one of the applications under our examinations.

Pasquale and Polyzos found that the data transfer rates ranges from 4.66 to 131

megabytes/sec in fifty long-running large-scale scientific applications [54]. They also demon-

strated that the the I/O request burstiness is periodic and regular [55].

Baylor and Wu showed that the I/O request rate is on the order of hundreds of re-

quests per second [5]; this is similar to our results. They also found that a large majority of

35

requests are on the order of kilobytes and a few requests are on the order of megabytes; our

results differ in this regard.

Previous research has mainly investigated scientific workloads in the 1990’s, al-

though technology has evolved very quickly since then. In our study, we observe changes in

large-scale scientific workloads, and provide guidelines for future file system designs based

on a thorough understanding of current requirements of large-scale scientific computing.

36

Chapter 4

Workload Characterization

Parallel scientific applications require high-performance I/O support from underly-

ing file systems. A comprehensive understanding of the expected workload is therefore es-

sential for the design of high-performance parallel file systems. We re-examine the workload

characteristics in parallel computing environments in the light of recent technology advances

and new applications. We analyze application traces from a cluster with hundreds of nodes.

On average, each application has only one or two typical request sizes. Large requests from

several hundred kilobytes to several megabytes are very common. Although in some applica-

tions small requests account for more than 90% of all requests, almost all of the I/O data are

transferred by large requests. All of these applications show bursty access patterns. More than

65% of write requests have inter-arrival times within one millisecond in most applications. By

running the same benchmark on different file models, we also find that the write throughput

of using an individual output file for each node exceeds that of using a shared file for all nodes

by a factor of 5. This indicates that current file systems are not well optimized for file sharing.

37

4.1 File System Workload Study

Parallel scientific applications impose great challenges on not only the computa-

tional speeds but also the data-transfer bandwidths and capacities of I/O subsystems. The U.S.

Department of Energy Accelerated Strategic Computing Initiative (ASCI) projected comput-

ers with 100 TeraFLOPS, I/O rates of 50–200 gigabytes/second, and storage system capacities

of 0.5–20 PB in 2008. The projected computing and storage requirements are estimated to

400 TeraFLOPS, 80–500 gigabytes/second, and 3–20 PB in 2008 [15]. The observed widen-

ing disparity in the performance of I/O devices, processors, and communication links results

in a growing imbalance between computational performance and the I/O subsystem perfor-

mance. To reduce or even eliminate this growing I/O performance bottleneck, the design of

high-performance parallel file systems needs to be improved to meet the I/O requirements of

parallel scientific applications.

The success of file system designs comes from a comprehensive understanding of

I/O workloads generated by targeted applications. In the early and middle 1990s, significant

research effort was focused on characterizing parallel I/O workload patterns and providing

insights into parallel system designs [5, 31, 43, 70]. The following decade has witnessed sig-

nificant improvements in computer hardware, including processors, memory, communication

links, and I/O devices. At the same time, systems are scaling up to match the increasing

demands of computing capability and storage capacity. This advance in technologies also

enables new scientific applications. Together these changes motivate us to re-examine the

characteristics of parallel I/O workloads a decade later.

38

We traced the system I/O activities under three typical parallel scientific applica-

tions: the benchmark ior2 [35], a physics simulation, f1, running on 343 nodes, and another

physics simulation, m1, running on 1620 nodes. The detailed descriptions of those applica-

tions can be found in Section 4.1.1.2. We studied both static file system and dynamic I/O

workload characteristics. We used the results to address the following questions:

• What were the file sizes? How old were they?

• How many files were opened, read, and written? What were their sizes?

• How frequent were typical file system operations?

• How often did nodes send I/O requests? What were the request sizes?

• What forms of locality were there? How might caching be useful?

• Did nodes share data often? What were the file sharing patterns?

• How well did nodes utilize the I/O bandwidth?

4.1.1 Tracing Methodology

All the trace data in this study was collected from a large Linux cluster with more

than 800 dual-processor nodes at the Lawrence Livermore National Laboratory (LLNL) 1. A

development version of Lustre Lite [66] is employed as the parallel file system and the Linux

kernel in use is a variant of 2.4.18.
1Tyce T. McLarty helped us collecting the traces.

39

4.1.1.1 Data Collection

Tracing I/O activity in large scale distributed file systems is challenging. One of the

most critical issues is minimizing the disturbance of tracing on the measured system behaviors.

A commonly-used method is to develop a trace module that intercepts specific I/O system

calls—a dedicated node in the cluster collects all trace data and stores them to local disks.

However, due to time limits, we chose a simpler approach: we employed the strace utility

with parameters tuned for tracing file-related system calls. The trace data were written to local

files. We relied on the local host file systems to buffer trace data.

Although the strace utility greatly simplifies the tedious data collection process, this

approach has two shortcomings: first, strace intercepts all I/O-related activities, including

parallel file system, local file system, and standard input/output activities. This results in

relatively large data footprint. Second, the strace utility relies on the local file system to buffer

traced data. This buffer scheme works poorly when the host file system is under heavy I/O

workloads. In such a scenario, the host system performance might be affected by the frequent

I/Os of the traced data.

The shortcomings were not significant in our trace collection because of the large I/O

requests and the relatively short tracing periods. As discussed in Section 4.1.2, I/O requests

in such a large system are usually around several hundred kilobytes to several megabytes.

Even in the most bursty I/O period, the total number of I/Os per node is still around tens

of requests per second. Up to one hundred trace records will be generated on each node

per second on average. Buffering and storing these data has only a slight impact on system

40

performance. Moreover, instead of tracing the whole cluster, we only study several typical

scientific applications. These applications are usually composed of two stages: a computation

phase and an I/O phase. The typical I/O stage ranges from several minutes to several hours.

During this period, each node usually generates several hundred kilobytes of trace data, which

can be easily buffered in memory.

4.1.1.2 Applications and Traces

All of the trace data were collected from the ASCI Linux Cluster in Lawrence Liv-

ermore National Laboratory (LLNL). This machine is currently in limited-access mode for

science runs and file system testing. It has 960 dual-processor nodes connected through a

Quadrics Switch. Two of the nodes are dedicated metadata servers and another 32 nodes are

used as gateways for accessing a global parallel file system. The detailed configuration of this

machine is provided in Table 4.1 [34]. We traced three typical parallel scientific applications

during July, 2003. The total size of the traces is more than 800 megabytes.

The first application is a parallel file system benchmark, ior2 [35], developed by

LLNL. It is used for benchmarking parallel file systems using POSIX, MPIIO, or HDF5 in-

terfaces. Ior2 writes a large amount of data to one or more files and then reads them back

to verify the correctness of the data. The data set is large enough to minimize the operating

system caching effect. Based on different common file usages, we collected three different

benchmark traces, named ior2-fileproc, ior2-shared, and ior2-stride, respectively. All of them

ran on a 512-node cluster. ior2-fileproc assigns an individual output file for each node, while

ior2-shared and ior2-stride use a shared file for all the nodes. The difference between the last

41

Table 4.1: The ASCI Linux Cluster Parameters

Total Nodes (IBM x355) 960
Compute Nodes 924
Login Nodes 2
Gateway Nodes 32
Metadata Server Nodes 2

Processor per Nodes (Pentium 4 Prestonia) 2
Total Number of Processors 1920
Processor Speed (GHz) 2.4
Theoretical Peak System Performance (TFlops) 9.2
Memory per Node (GB) 4
Total Memory (TB) 3.8
Total Local Disk Space (TB) 115
Nodes Interconnection Quadrics Switch

two traces is that ior2-shared allocates a contiguous region in the shared file for each node,

while ior2-stride strides the blocks from different nodes into the shared file.

The details about the other two applications are limited since they are both secret

applications inside LLNL. Although we are assured that they are representative of the types

of applications typically run at LLNL, we only have the minimal information about those

applications. The second application, f1, is a physics simulation run on 343 processes, in

which a single node gathers a large amount of data in small pieces from the others nodes. A

small set of nodes then write these data to a shared file. Reads are executed from a single

file independently by each node. This application has two I/O-intensive phases: the restart

phase, in which read is dominant; and the result-dump phase, in which write is dominant. The

corresponding traces are named f1-restart and f1-write, respectively.

The last application, m1, is another physics simulation which runs on 1620 nodes.

This application uses an individual output file for each node. Like the previous application,

42

it also has a restart phase and a result-dump phase. The corresponding traces are referred as

m1-restart and m1-write, respectively.

4.1.1.3 Analysis

The raw trace files required some processing before they could be easily analyzed.

Unrelated system calls and signals were filtered out. Since each node maintained its own trace

records, the raw trace for each application is composed of hundreds of individual files. We

merged those individual files in chronological order. Thanks to the Quadrics switch, which

has a common clock, the traced time in those individual trace files was globally synchronized.

Our analysis work, such as request inter-arrival time, was greatly simplified by sorting all

requests into a chronologically sorted trace file.

A good understanding of file metadata operation characteristics is important. How-

ever, our traces are not large enough to capture general metadata access patterns. Therefore,

the following section focuses more on file data I/O characterization.

4.1.2 File System Workload Characteristics

We present the characteristics of the workloads, including file distributions and I/O

request properties. We study the distributions of file size and lifetimes and show the uniqueness

of large-scale scientific workloads. We focus on three typical applications as described in

Section 4.1.1.2 and examine the characteristics of I/O requests, such as the size and number of

read and write requests and the burst and the distribution of I/O requests on various nodes.

43

Table 4.2: File Numbers and Capacity of the 32 File Servers

Num. of files Total file size
mean 305,200 1044.33 GB
standard deviation 75,760 139.66 GB
median 305,680 1072.88 GB
minimum 67,276 557.39 GB
maximum 605,230 1207.37 GB

4.1.2.1 File Distributions

We collected file distributions from thirty-two file servers that were in use for the

ASCI Linux cluster during the science runs phase. Each file server has storage capacity of

1.4 terabytes. The file servers were dedicated to a small number of large-scale scientific ap-

plications, which provides a good model of data storage patterns. On average, the number of

files on each file server was 350,250, and each server stored 1.04 terabytes of data, more than

70% of their capacity. On most of the file servers, the number and capacity of files are similar

except for five file servers. Table 4.2 displays statistic values of the number and capacity of

files on these servers, including mean, standard deviation, median, minimum and maximum.

Figure 4.1(a) presents file size distributions by number and file capacity. The ranges

of file sizes are sampled from 0–1 Byte to 1–2 Gigabytes. Some of the partitions were merged

due to space limitations. We observed that over 80% of the files are between 512 kilobytes

and 16 megabytes in size and these files accounted for over 80% of the total capacity. Among

various file size ranges, the most noticeable one is from 2 megabytes to 8 megabytes: about

61.7% of all files and 60.5% of all bytes are in this range.

We also measure the file ages on those servers using their creation time. We divided

44

range of file sizes
0 1B 1 KB 512 KB 1 MB 2 MB 4MB 8 MB 16 MB 32 MB 256 MB 512 MB 2 GBpe

rc
en

ta
ge

 in
 a

ll t
he

 fi
le

s
(%

)

0

10

20

30

40

50 number of files
capacity of files

(a) By File Sizes

range of file ages
0 1 day 1 wk 2 wk 4 wk 8 wk 13 wk 26 wk 52 wkpe

rc
en

ta
ge

 in
 a

ll t
he

 fi
le

s
(%

)

0

10

20

30

40

50 number of files
capacity of files

(b) By File Ages

Figure 4.1: Distribution of Files

45

Request Size (bytes)
0 10 100 1000 1e4 1e5 1e6

Fr
ac

tio
n

of
 R

eq
ue

st
s

0

0.2

0.4

0.6

0.8

1 read_num
read_size
write_num
write_size

Figure 4.2: Cumulative Distribution Functions (CDF) of the Size and the Number of I/O
Requests (X axis-logscale) in ior2-fileproc. The read num and write num curves indicate the
fraction of all requests that is smaller than the size given in X axis. The read size and write size
curves indicate the fraction of all transferred data that live in requests with size smaller than
the value given in the X axis.

file ages into 9 categories: from 0–1 day to 52 weeks and older. As illustrated in Figure 4.1(b),

60% of the files and 50% of the bytes lived from 2 weeks to 8 weeks, while 6.6% of the files

and 7.3% of the bytes lived less than one day. The lifetime of the traced system is about 1 year,

so no files lived longer than 52 weeks.

4.1.2.2 I/O Request Sizes

Figures 4.2– 4.4 show the cumulative distribution functions of request sizes and

request numbers. Since all three ior2 benchmarks have identical request size distributions, we

only show one of them. As shown in Figure 4.2, ior2 has only an unique request size of around

64 kilobytes.

Figure 4.3(a) shows the write request size distribution of the result-dump stage in

46

Request Size (bytes)
0 10 100 1000 1e4 1e5 1e6

Fr
ac

tio
n

of
 R

eq
ue

st
s

0

0.2

0.4

0.6

0.8

1

write_num
write_size

(a) f1-write

Request Size (bytes)
0 10 100 1000 1e4 1e5 1e6

Fr
ac

tio
n

of
 R

eq
ue

st
s

0

0.2

0.4

0.6

0.8

1

read_num
read_size

(b) f1-restart

Figure 4.3: Cumulative Distribution Functions (CDF) of the Size and the Number of I/O
Requests (X axis-logscale) in f1.

47

Request Size (bytes)
0 10 100 1000 1e4 1e5 1e6

Fr
ac

tio
n

of
 R

eq
ue

st
s

0

0.2

0.4

0.6

0.8

1 read_num
read_size
write_num
write_size

(a) m1-write

Request Size (bytes)
0 10 100 1000 1e4 1e5 1e6

Fr
ac

tio
n

of
 R

eq
ue

st
s

0

0.2

0.4

0.6

0.8

1 read_num
read_size
write_num
write_size

(b) m1-restart

Figure 4.4: Cumulative Distribution Functions (CDF) of the Size and the Number of I/O
Requests (X axis-logscale) in m1.

48

the first physics simulation, f1. Almost all the write requests are smaller than 16 bytes, while

almost all the I/O data are transferred in the requests with sizes larger than one megabyte.

This turns out to be a common I/O pattern of scientific applications: a master node collects

small pieces of data from all computing nodes and writes them to data files, which results in

a huge number of small writes. Other nodes then read and write these data files in very large

chunks. There are less than five percent read requests in the result-dump stage so that we

ignore the read request curves in figure 4.3(a). Similarly, we ignore the write request curves in

figure 4.3(b) because very few write requests can be observed in the restart stage.

Figure 4.4(a) and Figure 4.4(b) show the same write request distribution in the restart

and result-dump stages of the second physics simulation, m1. The two spikes in the write num

curves indicate two major write sizes: 64 kilobytes and 1.75 megabytes, respectively. Each

of them accounts for 50% of all write requests. More than 95% of the data are transfered by

large requests, which is also shown in Figures 4.4(a) and 4.4(b). Reads in m1 are dominated

by small requests less than 1 kilobytes. However, a small fraction (less than 3%) of 8 kilobyte

requests accounts for 30% of all read data transfer. This is similar to the read distribution in

Figure 4.4(b): 5% of the read requests contribute to 90% of all data read.

4.1.2.3 I/O Accesses Characteristics

Figures 4.5–4.10 show I/O accesses characteristics over time. The resolution for

these figures is 1 second except Figure 4.8(a), which uses a resolution of 50 seconds. Fig-

ures 4.5–4.7 show that the request number distribution and the request size distribution are

almost identical in ior2 due to the fixed size requests used in those benchmarks. The ior2-

49

Snapshot Time (sec.)
0 6 12 18 24Nu

m
be

r o
f I

/O
 O

p.
(X

 1
e4

)

0
2
4
6
8

10
12
14 read_num

write_num

(a) ior2-fileproc number

Snapshot Time (sec.)
0 6 12 18 24Da

ta
 S

ize
 o

f I
/O

 O
p.

 (G
B)

0
2.0
4.0
6.0
8.0 read_size

write_size

(b) ior2-fileproc size

Figure 4.5: I/O Requests over Time for ior2-fileproc Benchmarks

50

Snapshot Time (sec.)
0 12 24 36 48Nu

m
be

r o
f I

/O
 O

p.
 (X

 1
e4

)

0
1
2
3
4
5

read_num
write_num

(a) ior2-shared number

Snapshot Time (sec.)
0 12 24 36 48Da

ta
 S

ize
 o

f I
/O

 O
p.

 (G
B)

0
0.5
1.0
1.5
2.0
2.5
3.0 read_size

write_size

(b) ior2-shared size

Figure 4.6: I/O Requests over Time for ior2-shared Benchmarks

51

Snapshot Time (sec.)
0 30 60 90 120 150 180Nu

m
be

r o
f I

/O
 O

p.
 (X

 1
e3

)

0
5

10
15
20 read_num

write_num

(a) ior2-stride number

Snapshot Time (sec.)
0 30 60 90 120 150 180Da

ta
 S

ize
 o

f I
/O

 O
p.

 (G
B)

0

0.4

0.8

1.2 read_size
write_size

(b) ior2-stride size

Figure 4.7: I/O Requests over Time for ior2-stride Benchmarks

52

fileproc benchmark, using the one-file-per-node model, presents the best write performance.

Up to 150,000 write requests per second, totaling 9 gigabytes per second, are generated by

the 512 nodes. However, the ior2-shared and ior2-stride benchmarks can only achieve 25,000

write requests per second, totaling 2 gigabytes per second. These two benchmarks use the

shared-region and the shared-stride file model, respectively. We believe that the performance

degradation is caused by the underlying file consistency protocol. This result is somewhat

counterintuitive. The shared-region file model appears to be similar to the one-file-per-node

model because the contiguous regions in the former are analogous to the separate files in the

latter. Therefore, their performance should be comparable as well. The severe performance

degradation implies that the shared-file model is not optimized for this scenario.

After a write, each node reads back another node’s data as soon as it is available. The

gaps between the write and read curves in each sub-figure reflect the actual I/O times. Obvi-

ously, the ior2-fileproc benchmark demonstrates much better performance: only 10 seconds

are used in this model, while more than 20 seconds are needed to dump the same amount of

data when using the shared file model. Since reads must be synchronous, we can easily figure

out the file system read bandwidth from the read size curve. The ior2-fileproc and ior2-shared

benchmarks have comparable read performance. However, the ior2-stride has the worst read

performance, only 100 megabytes per second for 512 nodes. This result is not surprising: the

stride data layout in shared files limits the chances of large sequential reads.

Figure 4.8 shows the I/O access pattern of the application f1. As we mentioned

before, f1-write has very few reads and f1-restart has very few writes. Therefore, we can

ignore those requests in the corresponding figures. In Figure 4.8(a), we chose a resolution

53

of 50 seconds because it becomes unreadable if we use finer time resolutions. The spike of

the write-num curve is caused by the activities of the master node to collect small pieces of

data from other computing nodes. At its peak time, nearly 1 million file system requests are

issued per second. However, due to the very small request size (8 to 16 bytes), this intensive

write phase contributes negligable amounts of data to the overall data size. In the rest of

the application, large write requests from 48 nodes dominate the I/O activities. Requests are

issued in a very bursty manner. Figure 4.8(b) zooms in on a small region of Figure 4.8(a) with

1 second resolution. It shows that sharp activity spikes are separated by long idle periods. At

the peak time, up to 120 megabytes per second of data are generated by 48 nodes. In the restart

phase of f1, read requests become dominant. However, both the number and the data size of

read requests are small compared to those in the write phase.

Figures 4.9 and 4.10 presents the I/O access pattern of the physics application m1.

It demonstrates very good read performance: nearly 28 gigabytes per second bandwidth are

achieved by 1620 nodes, thanks to the large read size (1.6 megabytes – 16 megabytes). Like

f1, its write activities are also bursty. We observed that the write curves have similar shapes in

Figure 4.10: They all begin with a sharp spike followed by several less intensive spikes. One

possible explanation is that the file system buffer cache absorbs the coming write requests at

the begin of the writes. However, as soon as the buffer is filled up, the I/O rate drops to what

can be served by the persistent storage.

54

Snapshot Time (sec.)
0 1800 3600 5400Nu

m
be

r o
f I

/O
 O

p.
 (X

 1
e6

)
Da

ta
 S

ize
 o

f I
/O

 O
p.

 (G
B)

0
0.2
0.4
0.6
0.8
1.0 write_num

write_size

(a) time-f1-write

Snapshot Time (sec.)
0 20 40 60 80 100Da

ta
 S

ize
 o

f I
/O

 O
p.

 (G
B)

0
0.02
0.04
0.06
0.08
0.1 write_size

(b) time-f1-write-short

Snapshot Time (sec.)
0 6 12 18 24

Nu
m

be
r o

f I
/O

 O
p.

Da
ta

 S
ize

 o
f I

/O
 O

p.
 (K

B)

0

500

1000

1500 read_num
read_size

(c) time-f1-restart

Figure 4.8: I/O Requests over Time for f1 Application. The number of I/O operations plotted
in figure (a) is the average amount per fifty-second bucket.

55

Snapshot Time (sec.)
60 120 180 240Nu

m
be

r o
f I

/O
 O

p.
 (X

 1
e3

)

0

4

8

12

read_num
write_num

(a) m1-restart-num

Snapshot Time (sec.)
60 120 180 240Da
ta

 S
ize

 o
f I

/O
 O

p.
 (G

B)

0
5

10
15
20
25

read_size
write_size

(b) m1-restart-size

Figure 4.9: I/O Requests over Time during m1 Restart Phase.

56

Snapshot Time (sec.)
0 60 120 180 240Nu

m
be

r o
f I

/O
 O

p.
 (X

 1
e3

)

0
2
4
6
8

10
read_num
write_num

(a) m1-write-num

Snapshot Time (sec.)
0 60 120 180 240Da

ta
 S

ize
 o

f I
/O

 O
p.

 (G
B)

0
2
4
6
8

read_size
write_size

(b) m1-write-size

Figure 4.10: I/O Requests over Time during m1 Write Phase.

57

Time (ms.)
0 1 4 16 64 512Fr

ac
tio

n
of

 R
eq

ue
st

s

0
0.2
0.4
0.6
0.8

1

read
write

(a) inter-ior2-fileperproc

Time (ms.)
0 1 4 16 64 512Fr

ac
tio

n
of

 R
eq

ue
st

s

0
0.2
0.4
0.6
0.8

1

read
write

(b) inter-ior2-shared

Time (ms.)
0 1 4 16 64 512Fr

ac
tio

n
of

 R
eq

ue
st

s

0
0.2
0.4
0.6
0.8

1

read
write

(c) inter-ior2-strided

Figure 4.11: Cumulative Distribution Functions (CDF) of Inter-arrival Time of I/O Requests
(X axis-logscale) for ior2.

58

Time (ms.)
0 1 4 16 64 512Fr

ac
tio

n
of

 R
eq

ue
st

s

0
0.2
0.4
0.6
0.8

1

read
write

(a) inter-f1-write

Time (ms.)
0 1 4 16 64 512Fr

ac
tio

n
of

 R
eq

ue
st

s

0
0.2
0.4
0.6
0.8

1

read
write

(b) inter-m1-write

Time (ms.)
0 1 4 16 64 512Fr

ac
tio

n
of

 R
eq

ue
st

s

0
0.2
0.4
0.6
0.8

1

read
write

(c) inter-m1-restart

Figure 4.12: Cumulative Distribution Functions (CDF) of Inter-arrival Time of I/O Requests
(X axis-logscale) for application f1 and m1.

59

4.1.2.4 I/O Burstiness

To study I/O burstiness, we measured I/O request inter-arrival times. Figures 4.11

and 4.12 show the cumulative distribution functions (CDF) of I/O request inter-arrival times.

Note that the x-axis is in the logarithmic scale. Write activity is very bursty in the ior2 bench-

marks and the f1 application: about 65–100% of write requests have inter-arrival times within

1 millisecond. In ior2 and f1, most of the write activities are due to memory dump and I/O

nodes can issue write requests quickly. However, write activity on m1 is less intensive than on

ior2 and f1 because ml distributes I/O activities evenly on a larger (3X–5X) cluster, which has

3 to 5 times more nodes than those for ior2 and f1.

On the other hand, read requests are generally less intensive than write requests

because reads are synchronous. In particular, Figure 4.11(c) indicates that ior2 under shared-

strided files suffers low read performance, as described in Section 4.1.2.3. In this scenario,

data are interleaved in the shared file and read accesses are not sequential.

4.1.2.5 I/O Nodes

In this section, we study the distributions of I/O request sizes and numbers across

the different nodes, as shown in Figure 4.13– 4.17. For the ior2 benchmarks, read and writes

are distributed evenly among nodes, as shown in Figures 4.13(a) and 4.13(b), because each

node executes the same sequence of operations in these benchmarks.

In the physics application f1, a small set of nodes write gathered simulated data to a

shared file. Therefore, only a few nodes have significant I/O activity in their write phase and

most of the transfered data are from large write requests (14% of the write requests), as shown

60

in Figures 4.14(a) and 4.14(b). There is little read activity in the write phase. However, read

requests are evenly distributed among nodes in the restart phase and their sizes are around 1

megabyte, as shown in Figures 4.15(a) and 4.15(b). There is little write activity in the restart

phase.

In the restart and write phases of the physics application m1, I/O activity is well

balanced among nodes, as shown in Figures 4.16(a)–4.17(b). We also observe significant

write activity in the restart phase.

4.1.2.6 File Opens

We also studied the file open patterns of the applications. All file open data are

retrieved directly from the application traces. Since our traces are at the file system level,

every trace record, corresponding to a file operation, contains a file handle number, either as

an operation parameter or as a return value. For example, a file open record saves the opened

file handle number as the return value and a file read record saves the file handle number as the

parameter. Using the file handle number in every trace record, we compiled the file activities

between pairs of open/close operations and retrieved their characteristics, shown in Table 4.3

and Table 4.4.

In both tables, we differentiate data file operations from the other operations. The

data file is defined as the file that actually stores the application data. In large distributed

storage systems, especially in scientific computing environments, I/Os to the application data

dominate. Their characteristics are more interesting and have more impact on the file system

design. Therefore, we list them separately in both tables.

61

Number of Requests
0 100 200 300 400 500

Fr
ac

tio
n

of
 N

od
es

0
0.2
0.4
0.6
0.8

1

read
write

(a) node-ior2

Size of Requests (GB)
0 0.02 0.04 0.06 0.08 0.1

Fr
ac

tio
n

of
 N

od
es

0
0.2
0.4
0.6
0.8

1

read
write

(b) node-ior2

Figure 4.13: Cumulative Distribution Functions (CDF) of the Size of I/O Requests over Nodes
for ior2.

62

Number of Requests (X 1e6)
0 2 4 6 8 10

Fr
ac

tio
n

of
 N

od
es

0
0.2
0.4
0.6
0.8

1

read
write

(a) node-f1-write-num

Size of Requests (GB)
0 0.2 0.4 0.6

Fr
ac

tio
n

of
 N

od
es

0
0.2
0.4
0.6
0.8

1

read
write

(b) node-f1-write-size

Figure 4.14: Cumulative Distribution Functions (CDF) of the Size of I/O Requests over Nodes
during f1 write phase.

63

Number of Requests
0 5 10 15 20 25 30

Fr
ac

tio
n

of
 N

od
es

0
0.2
0.4
0.6
0.8

1

read
write

(a) node-f1-restart-num

Size of Requests (KB)
0 200 400 600 800 1000 1200

Fr
ac

tio
n

of
 N

od
es

0
0.2
0.4
0.6
0.8

1

read
write

(b) node-f1-restart-size

Figure 4.15: Cumulative Distribution Functions (CDF) of the Size of I/O Requests over Nodes
during f1 restart phase.

64

Number of Requests
0 150 300 450 600 750

Fr
ac

tio
n

of
 N

od
es

0
0.2
0.4
0.6
0.8

1

read
write

(a) node-m1-write-num

Size of Requests (GB)
0 0.02 0.04 0.06 0.08 0.1

Fr
ac

tio
n

of
 N

od
es

0
0.2
0.4
0.6
0.8

1

read
write

(b) node-m1-write-size

Figure 4.16: Cumulative Distribution Functions (CDF) of the Size of I/O Requests over Nodes
during m1 write phase.

65

Number of Requests
0 150 300 450 600 750

Fr
ac

tio
n

of
 N

od
es

0
0.2
0.4
0.6
0.8

1

read
write

(a) node-m1-restart-num

Size of Requests (GB)
0 0.02 0.04 0.06 0.08 0.1

Fr
ac

tio
n

of
 N

od
es

0
0.2
0.4
0.6
0.8

1

read
write

(b) node-m1-restart-size

Figure 4.17: Cumulative Distribution Functions (CDF) of the Size of I/O Requests over Nodes
during m1 restart phase.

66

Table 4.3: File Open Statistics

Overall Number of File Opens Number of Data File Opens
Applicatons Read/Write Read Write Read/Write Read Write
ior2 6,656 5,121 0 1,024 0 0
f1-write 3,871 6,870 718 98 10 34
f1-restart 3,773 6,179 0 0 343 0
m1-restart 17,824 22,681 12,940 0 1,620 12,960
m1-write 17,824 21,061 12,960 0 0 12,960

In all applications, files tend to be opened either for both reading and writing or

only for reading. We observe significant write-only files only in the physics application m1,

as shown in Table 4.3. However, data files are opened either read-only or write-only except

for the benchmark ior2. The open operations on the data files only account for a small portion

of the overall files opened. Given the fact that the data file operations dominate the overall

I/O, the small number of data file opens implies longer open time and more I/O operations

during each open. As listed in Table 4.4, the open duration of data files ranges from several

seconds to several hundred seconds, which is typically 2 to 20 times longer than overall file

open durations. The average number of operations and the size of data files on each open

operation are also much larger than those on the overall files. For example, up to 400 MB data

are transferred during each data file open in physical application f1-write.

4.1.3 File System Workload Summary

In this study, we analyzed application traces from a cluster with hundreds of pro-

cessing nodes. On average, each application has only one or two typical request sizes. Large

requests from several hundred kilobytes to several megabytes are very common. Although

67

Table 4.4: Operations During File Open

Avg. open time Avg. IOs per Open Avg. IO Size per Open
Applications Overall Data File Overall Data File Overall Data File
ior2-fileproc 0.4 sec 4.5 sec 44.4 512.0 2.8 MB 32.8 MB
ior2-shared 0.7 sec 5.2 sec 44.4 512.0 2.8 MB 32.8 MB
ior2-stride 7.6 sec 26.57 sec 44.4 512.0 2.8 MB 32.8 MB
f1-write 20.2 sec 504.9 sec 14.8 142161 2.4 MB 3993.5 MB
f1-restart 0.02 sec 0.1 sec 0.5 1 << 1 MB << 1 MB
m1-restart 1.2 sec 3.9 sec 4.2 15.3 3.7 MB 8.5 MB
m1-write 1.2 sec 2.4 sec 4.3 17 3.1 MB 6.5 MB

in some applications, small requests account for more than 90% of all requests, almost all of

the I/O data are transferred by large requests. All of these applications show bursty access

patterns. More than 65% of write requests have inter-arrival times within one millisecond in

most applications. By running the same benchmark on different file models, we also find that

the write throughput of using an individual output file for each node exceeds that of using a

shared file for all nodes by a factor of 5. This indicates that current file systems are not well

optimized for file sharing. In the applications examined, almost all I/Os are performed on a

small set of files containing the intermediate or final computation results. Such files tend to

be opened for a relatively long time, from several seconds to several hundred seconds. And a

large amount of data are transferred during each open.

4.2 Object Workload Study

Our research on the scientific application workloads has led to a better understanding

of the expected environments for the large scale distributed file systems and enabled more

68

informed system development. However, such information is not adequate in designing a file

system for object storage devices. As we described in Section 2.5, Ceph services file system

requests through the client component in each client. The file system requests will be buffered

at the client side and eventually translated into object requests. The object workload has unique

characteristics that directly impact our OBFS design. Different architectures of high-level file

systems and various data management policies may result in different object workloads. In

this section, we study the object workload characteristics in Ceph and discuss their impact on

the design of our OBFS.

4.2.1 Static Object Workload Characterization

Ceph breaks files into multiple objects using a fixed stripe unit size. Because the

majority of disk space in scientific environments is occupied by large files–much larger than

the system stripe unit size–most objects will be uniformly sized. However, small files and tails

of large files will be packed into individual object, which will generate non-trivial number of

small objects. In the following discussion, we refer to stripe-unit-size objects as large objects

and smaller non-uniformly-sized objects as small objects.

Objects are distributed across the OSD cluster according to object placement poli-

cies. Object size is an important parameter that balances the aggregrated bandwidth of sequen-

tial file accesses and the overheads of object managements. A small object size increases the

total number of objects in the system for a fixed mount of file data. Extra space and compu-

tational overheads associated with each object, such as object metadata and attributes, impose

more cost for file I/Os as the number of objects scales up. Disk and network bandwidth uti-

69

Table 4.5: Object Workload Analysis Using LLNL Workloads

Stripe size (KB) Total Obj. Num. (million) Avg. obj. per file small obj. ratio
32 399.3 130 3.3%
64 200.4 65 5.2%
128 100.9 33 7.8%
256 51.2 16 12.3%
512 26.3 8 16.8%
1024 13.8 4 28.4%

lization are also reduced due to the smaller object sizes. On the other hand, a large object

size may reduce the average number of objects per file. In scientific environments, file I/Os

are typically bounded by the aggregated bandwidth of underlying OSDs containing those data.

Thus, performance benefits gained from parallel I/Os to multiple OSDs decrease proportional

to the size of the objects.

Table 4.5 presents the characteristics of the expected object workloads based on the

LLNL file system snapshots. As we can see from the table, small stripe sizes, such as 32 KB

and 64 KB, introduce huge amount of objects into the system: about 10 to 30 times more than

that using the largest stripe size. The majority of all objects are uniformly-sized. The small

objects account for only 3.3% to 28.4% of the number of objects when the stripe size varies

from 32 KB to 1024 KB. Consequently, the OBFS design optimizes for those fix-sized objects.

4.2.2 Object Access Pattern

In scientific environments, applications tend to access files sequentially. Although

huge numbers of small random requests are observed in some situations, the total amount

70

of data transfered by them can be ignored because client caches can effectively absorb those

small requests and hide them from the underlying storage devices. Therefore, file data are

typically dumped to the underlying storage devices in large chunks. As a result of the deep

client buffering, most object requests tend to access objects as a whole. Using the LLNL

application m1 as an example, more than 85% of all object requests access entire objects if the

system has a stripe-unit size of 512 KB.

In the Ceph architecture, objects are distributed across the OSD cluster randomly.

After mapping file requests into object requests, the sequential access pattern can hardly be

observed on an individual OSD. The object sequential access is defined as the object access

order strictly following the order they were initially written to the OSD. The objects com-

prising small and medium files will typically be spread across different OSDs. Sequentially

accessing those files will lead to random object accesses in otherwise unrelated OSDs. Very

large files may have multiple objects on each OSD. Long sequential accesses to those large

files may result in sequential object accesses on individual OSDs. However, the run lengths

of such sequential object accesses are greatly reduced due to the large OSD cluster and evenly

distributed schemes. For example, if the OSD cluster has one hundred OSDs, a long sequential

access to a file with one thousand objects may result in a ten-object sequential access on each

OSD. Such short sequential object accesses can be further destroyed by interleaved object ac-

cesses from other clients. In short, sequential objects accesses will be rare and those that do

occur will generally have short run-lenghs. From an individual OSD point of view, accesses

to objects will be random, and little benefit will be realized from attempting to optimize the

location of related objects.

71

An individual OSD is likely to see more write requests than read requests. Both

because many read requests can be served by large client caches and because the replication

schemes used in the large distributed object system double or triple the total number of write

requests. For example, Ceph can ensure data safety by double or triple mirroring objects

to different OSDs. A write request to an object can therefore result in two or three write

requests to different OSDs, including both synchronous and asynchronous requests. In order

to guarantee data safty, OSDs must synchronously serve foreground write requests. However,

some background requests such as those due to object migration or data recovery may be

served asynchronously to maximize disk bandwidth utilization.

4.2.3 Object Workload Characteristics Summary

Most objects are the same size as the system stripe unit size. Based on the LLNL file

system snapshots and assuming a system stripe size of 512 KB, around 83% of all objects will

be large objects. In scientific environments, the majority of all object requests access whole

objects. Partial object accesses are not significant. Objects on an individual OSD show very

weak relationship with each other due to the need for objects of an individual file to be placed

on different OSDs to allow for high-performance parallel access to a single file. Objects from

a small or medium file are rarely placed on the same OSD and few objects from a large file will

ever be on the same OSD. From the OSD point of view, objects tend to be accessed randomly

and seldomly show a sequential pattern. Object workloads are dominated by write requests.

Although the foreground requests from clients have to be served synchronously, there are still

a lot asynchronous write requests generated from background activities. OSDs have to handle

72

both synchronous and asynchronous write requests efficiently.

73

Chapter 5

OBFS Design

The expected object workload of an individual OSD shows unique characteristics. A

specially optimized file system for such object workloads is able to fully utilize the underlying

storage bandwidth and provide better performance than general-purpose file systems. OBFS

has been designed to be the storage manager on an individual OSD in the Ceph system. It

optimizes disk layout and enhances flat-namespace management based on our understanding

of the expected object workload. In this chapter, we present the OBFS design as follows:

a design overview is provided in Section 5.1; We then discuss the variable-sized blocks in

Section 5.2 and the self-contained region structure in Section 5.2.1; The metadata and file

system structures and their on-disk layouts are presented in Section 5.3, followed by a brief

discussion about their benefits and overheads in Section 5.4; We conclude this chapter in

Section 5.5.

74

5.1 Design Overview

As described in Section 4.2, the expected workload of our OSDs is composed of

many objects, with sizes ranging from a few bytes up to the file system-stripe-unit size. There-

fore, OBFS needs to optimize large object performance to provide a high overall throughput

without over-committing resources to small objects. Increasing the file system block size can

provide the throughput needed for large objects, but at the cost of wasted storage space due

to internal fragmentation for small objects. For the LLNL workload, more than 10% of the

available storage space would be wasted if 512 KB blocks are used, while less than 1% of the

space would be lost if 4-KB blocks are used. In a 20 PB storage system, this 9% difference

represents about 180 TB. The situation is even worse for a workstation file system, where

512 KB blocks would waste more than 50% of the space in such a system.

To use large blocks without wasting space, small objects must be stored in a more

efficient manner. To address this need, OBFS employs multiple block sizes and uses regions,

analogous to cylinder groups in FFS [40], to keep blocks of the same size together. An object

cannot span multiple regions. Thus, the read/write performance of large objects can be greatly

improved by using very large blocks, while small objects can be efficiently stored by using

small blocks. Regions can also greatly reduce the system fragmentation as the file system

ages. Large objects are always laid contiguously on disk using large blocks. While small

objects can be fragmented inside regions, such fragmentation cannot span a region boundary.

In the scientific workloads that we are interested in there are far fewer small block regions than

large block regions. Thus, the fragmentation is constrained to a limited number of regions no

75

matter how long the file system is exercised. In the worst case–say the workload is composed

of huge numbers of small objects–OBFS degenerates to a general purpose local file system

containing all small block regions. However, in the normal case in which large objects and

small objects are mixed together, OBFS can significantly reduce the overall fragmentation,

especially after long-term running.

In addition to reducing fragmentation, regions also provide failure boundaries for

a file system. OBFS partitions all important metadata into regions and manipulates them

separately. Combined with a boundary check technique that validates I/O addresses of normal

operations, OBFS is able to isolate any random error inside a region boudary.

Another important feature of OBFS is the use of a flat namespace. As the low-level

storage manager in an object-based distributed file system, OBFS has no information about the

logical relationship among objects. No directory information or useful locality information is

likely to be available. Note that in a small system in which an OSD may hold several objects of

a file, some locality information may be available. However, this does not extend to multiple

files in the same directory or other tidbits that are useful to general-purpose file systems. Many

general-purpose file systems such as Linux Ext2 are extremely inefficient in managing very

large directories due to the fact that they do linear search, resulting in O(n) performance on

simple directory operations. To avoid this, OBFS uses hash tables, like Ext3 [77], to organize

the objects and achieve much higher performance on directory operations.

76

5.2 Multiple Block Sizes

The multiple-block-size strategy used by OBFS aims to lay out variable-sized ob-

jects sequentially without overcommitting disk space for small objects due to the block internal

fragmentation. Although our region policy supports as many different block sizes as there are

regions, too many different block sizes will make space allocation and data management ex-

cessively complicated. In our current scheme, OBFS uses two block sizes: small and large.

Small blocks are 4 KB, the logical block size in Linux, and large blocks are 512 KB, the high-

level system-stripe-unit size and twice the block size of GPFS (256 KB). The block sizes are

system-tunable parameters that have direct impacts on the overall performance and the disk

utilization. The detailed performance comparisons for different block sizes are available in

Section 7.3.

Those regions that contain large blocks are called large block regions and those that

contain small blocks are called small block regions. Objects with system-stripe-unit size are

always allocated into large block regions, where each object only occupies one large block.

Regions that have not been initialized are referred as free regions. All other objects are allo-

cated into small block regions, which, like files in a traditional file system, may span multiple

small blocks inside a region. With this strategy, large objects can be laid out contiguously on

disk in a single large block. OBFS further simplifies the large object layout by collocating the

object metadata, the onodes, together with large blocks. Only one disk seek is incurred during

the transfer of a large object. The throughput of large objects is greatly improved, thanks to

the reduced metadata operations and the shortened seek time inherent in this design. For small

77

objects, OBFS eliminates additional operations on metadata by removing the need for indirect

blocks for large objects. Dividing the file system into regions also reduces the sizes of other

file system data structures such as free block lists or maps and thus makes the operations on

those data structures more efficient.

The idea of large/small blocks is similar to that of the block/fragment in FFS. Like

FFS, which uses bigger blocks to optimize disk bandwidth utilization and small fragments

to improve space utilization, OBFS achieves the same goal by employing large/small blocks.

However, their optimization scopes have some difference due to the different assumptions of

expected workloads. A file in FFS is composed of multiple blocks and fragments, while an

object in OBFS can only employ either a large block or multiple small blocks. Since most

objects are laid contiguously on disk through large blocks, OBFS needs to optimize the layout

of the small block objects, which is done by organizing them into regions. While in FFS,

fragments are generated on demand by breaking down a block and spreading it across the

whole file system. It may easily fragment the free space as the system ages, depending upon

workload characteristics. Moreover, if many blocks are partially used due to fragments, it may

incur extra overheads by packing and relocating those fragments.

5.2.1 Self-contained Region Structure

OBFS design partitions a raw disk into self-contained regions. As shown in Fig-

ure 5.1, regions are located in fixed positions on the disk with uniform sizes, except the last

one, which may be a partial region. All blocks in a region have the same size, but the block

sizes of different regions may be different. Any given object can only live inside one region,

78

Region n

Boot
sector

Region 1
Region
head

Free
onode
map

Data blocks and
onodes

Region
head
Free
block
bitmap

Onode
table
Free
onode
bitmap

Data blocks
Region 2

Disk

Large
block
region

Small
block
region

Figure 5.1: OBFS structure

79

with all necessary metadata encapsulated in that region. The block size in a free region is

undefined until that region is initialized on demand. When there are not enough blocks to

satisfy a write request or the free space is too fragmented, OBFS will allocate a free region

and initialize it to contain the desired block size. Used regions are inserted back into the free

region list when all of their blocks are freed.

A region is self-contained in that it is able to store and retrieve all its objects in-

dependent of other regions and global data structures. All the metadata for its objects are

packed inside the region. The global data structures in OBFS are designed to facilitate region-

based management of objects. However, in the scenarios in which those global structures are

damaged, OBFS is still functional and can re-assemble them using the redundant information

stored in the regions. This eliminates global data structures as a single point of failure in the

system. In the case of non-recoverable errors, such as media failures or software bugs that

destroy important metadata, it is still possible to retrieve most objects in an OSD.

The region structure also provides a failure boundary in a finer granularity inside

a file system. Regions manage their own resources independently, which prevents random

errors in one region from corrupting data and metadata in others. OBFS maintains such failure

boundaries by enforcing address checks for every I/O: the disk address of an I/O, initiated to

one region, must fall inside the region’s address space. Those checks typically happen during

mapping of the objects or region structures to disk blocks. As a result, any random error is

always confined inside a region and will not introduce catastrophic events that may potentially

destroy the whole file system. For example, a random bit flip in a block bitmap may cause a

used block to be allocated again. If such a duplicated block happens to be used by an inode or

80

an indirect block, it can potentially redirect a regular file write into any position on disk, which

may destroy the whole file system. In OBFS, duplicated blocks across region boundaries can

be detected before actual data is written back to disk. Therefore, data corruption caused by

various random failures can only happen inside a region. If any error is found in some region,

it is adequate to only scan the region to bring the whole system back to a consistent state. We

will discuss the failure scenarios and recovery details in Section 6.2.

The region concept is similar to the allocation group or allocation unit in general-

purpose Unix file systems. They all partition the disk space into smaller units and optimize

data layout by co-allocating file/object metadata together with data blocks in the same unit.

However, the allocation group does not provide a clear logical boundary: a file/object can still

be placed across different allocation groups. Although an allocation group contains sufficient

metadata, such as the block bitmap, to manage all its physical resources, it lacks some logical

structures that enable it to independently manage its file/object namespace. It has to rely on

other allocation groups and global structures to store and retrieve files/objects. For instance, to

read/write a file/object in one allocation group, it needs to first load the corresponding directory

entry, which may be located in another allocation group. The region structure in OBFS extends

the allocation group concept and provides an isolated domain for both physical resources and

logical namespace. Such a design is enabled by the object workload characteristics under the

Ceph framework: the object size is bounded by the system-stripe-unit size and the logical

relationship among objects is opaque at the OSD level.

81

5.2.2 Fragmentation

The design of the region structure and the variable-sized blocks can potentially re-

duce file system fragmentation, avoids unnecessary wasted space, and more effectively uses

the available disk bandwidth. In this section, we discuss several different types of fragmenta-

tion: object fragmentation, free space fragmentation, region fragmentation, and block internal

fragmentation. The object fragmentation refers to the situation that an object is not laid con-

tiguously on the disk. The free space fragmentation means that the disk free space is parti-

tioned into small pieces, which are not able to provide contiguous space for new objects. The

region fragmentation refers to the unusable space due to mismatch of the object type and the

region type. And the internal fragmentation refers to the wasted space inside a block due to

the allocation alignment.

The large block in OBFS guarantees that all stripe-unit-sized objects are laid con-

tiguously on disk no matter how long the system ages, since those objects occupy exactly one

large block each. In traditional block-based file systems, a file is composed of multiple blocks.

During a file allocation, the block allocator tends to select as the candidate the nearest free

block from the last allocated block of the same file. In a system with plenty of free space, such

a scheme is able to place a file contiguously on disk. However, in a heavily used system or

an already fragmented system, the block allocation policy tends to spread a file into multiple

disk locations and further fragment the free space because it only does one block allocation at

a time. Thus, the traditional block-based file systems usually exhibit decreased performance

as the system ages and disk usage increases. The extent-based file systems, on the other hand,

82

manage the free space in variable-sized extents. Their allocation policies have a global view of

the free space and are able to achieve nearly optimal allocation results. Under the expected ob-

ject workloads, the optimal layout of large objects in OBFS guarantees that the fragmentation

of those large objects is much less than that in the block-based file systems and is comparable

to or a little better than that in the extent-based file systems.

The small object allocation, as described in Section 6.1, employs an extent-like al-

location policy. It builds up a very compact free extent list in core for each small block region,

which tracks large free extents of that region. The allocation for large extents can be done very

quickly by looking up the in-core list, while small extents are allocated through scanning the

block bitmap. Such a scheme is able to achieve much better layout of small objects than those

in the traditional block-based file systems, and a little worse or comparable layout than those

in the extent-based file systems.

OBFS improves the global free space fragmentation by separating small objects into

different regions from large objects. As a result, the free space fragmentation is bounded inside

the small block regions. In a scenario in which objects come and go frequently, a traditional

file system can be severely fragmented due to the mix of small and large objects. For example,

an extent-based file system may receive a small object allocation request after removing a large

object. It will break down the freed large object space to serve the outstanding small object

request if no matched small extent is found. If such a pattern keeps repeating, the free space

of the file system will be fragmented. OBFS adapts to the mixed workloads much better than

the traditional file systems. No matter how long a file system ages, the large block regions are

still able to provide contiguous space for large objects.

83

By introducing the region concept, OBFS can significantly alleviate the file system

aging problem. However, it can potentially incur a region fragmentation problem. Specifically,

an OBFS may run into a situation that regions of one type are sparsely occupied by live objects,

while regions of the other type are short of free space. Although the overall disk utilization may

be far from full, an object write to the region of the latter type will find no free space. The file

system has to stop and clean those regions. However, such a situation can only happen in the

very rare case that the ratio of large to small objects changes significantly during the lifetime of

the system. By choosing the right region size and using the region-packing technique described

in Section 6.3 we can dramatically decrease the region clean events.

Higher throughput in OBFS does not come at the cost of wasted disk space. Internal

fragmentation in OBFS is comparable to that in a general-purpose Unix file system. Because

the small block size in OBFS is the same as the block size in most Unix file systems, large

blocks do not waste much space because they are only used for objects that will fill or nearly

fill the blocks. The only wasted space will be due to objects stored in large blocks that are

nearly, but not quite, as large as a stripe unit. This can be limited with a suitable size threshold

for the blocks used for an object. One minor complication can occur if an object starts small

and then grows past this threshold. Our current implementation recopies the object into a large

block when this occurs. Although this sounds expensive, it happens rarely enough (due to

aggressive write coalescing in the client caches) that it does not have a significant impact on

system performance. Also, and the inter-region locality of the small blocks makes this a very

efficient operation.

84

5.3 Metadata and File System Structures

One goal of the OBFS design is to minimize file system metadata to make them as

efficient as possible. As mentioned in Section 4.2, OBFS is designed specifically for managing

a flat namespace without worrying about the complicated directory hierarchy. This gives us

an opportunity to simplify the metadata structures to reduce metadata-related overhead and

maximize data throughput. To achieve this goal, we design different metadata schemes for

large and small objects, respectively. The important metadata include the onode, bitmaps for

both onode and data blocks, region head for region-related information, and object lookup

table.

5.3.1 Object Metadata

Object metadata, referred as an onode, is used to track the status of an object. On-

odes are pre-allocated in a fixed position at the head of a small block region, similar to the way

inodes are placed in cylinder groups in FFS [40]. In a large block regions, shown in Figure 5.2,

onodes are packed together with data blocks on disk, similar to embedded inodes [16]. This

allows for very low overhead of metadata updates since the metadata can be written together

with the corresponding data block in a large, sequential disk write.

Figure 5.2 shows that each onode has a unique 32-bit identifier consisting of two

parts: a 16 bit region identifier and a 16 bit in-region object identifier. If a region occupies

256 MB on disk, this scheme will support OSDs of up to 16 TB, and larger OSDs are possible

with larger regions. To locate a desired object, OBFS first finds the region using the region

85

Onode

0
Onode index

Free
onode
bitmap

Region ID
31

+

15

Data
block

Region
head

Onode ID

(a) Large Block Region

Onode index
15

Onode table
Free
block

bitmap

Onode ID

Region ID
0

Region
head

Free
onode
bitmap

31

Data blocks

+

(b) Small Block Region

Figure 5.2: Region structure and data layout.

identifier and then uses the in-region object identifier to index the onode. This is particularly

effective for large objects because the object index points directly to the onode and the object

data, which are stored contiguously.

In the current implementation, onodes for both large and small objects are 512 bytes,

allowing OBFS to avoid using indirect blocks entirely. The large onode size also allows OBFS

to pack more small files (less than 384 bytes) directly inside onodes, which can greatly improve

the small file performance and reduce wasted space. Since the identifier of a large object can

be used to directly address the block, an onode of a large block is exempted from storing

address information. Instead, it is dedicated for object attributes and file system book-keeping

information.

Small objects, on the other hand, are composed of multiple small blocks and require

onodes to keep track of such address information. In the OBFS design, the maximum size of

86

a small object is always less than the stripe unit size, which is 512 KB. Because the OBFS

layout policy assigns objects to a single region, we can use the relative address to index the

blocks. The number of bytes for a block address depends upon the region size and is initialized

during the OBFS format process. For example, assuming that the region size is 256 MB and

the small block size is 4 KB, there will be fewer than 216 small blocks in a region, allowing

a two-byte address to index all of the blocks in the region. If an OBFS employs a region size

larger than 256 MB, it can either change the small block size proportionally to maintain the

two-byte small block address or simply assign more bytes for small block addresses.

Blocks allocated to an object are organized into extents, which are represented by

tuples: <block address, object offset, length> inside an onode. In the normal configuration,

the size of a tuple is four bytes. The first two bytes are used for the block address. The rest

are assigned to object offset and length, one byte each. By using the object offset parameter,

OBFS allows holes inside an object. However, the boundary of a hole has to align to the

underlying small block size. Given an onode size of 512 bytes, it might be possible that a

heavily-fragmented object will not fit all its address tuples into the onode since OBFS reserves

the first 128 bytes of an onode for object attributes and other book-keeping information. For

example, an object with 96 or more noncontiguous extents requires 384 or more bytes insides

an onode, which cannot be satisfied by the current 512-byte onode. To address this problem,

the OBFS allocation policy limits the maximal number of extents for an object. If the free

space of a region is too fragmented, OBFS will either skip that region or start a clean process

to clean the region and produce more contiguous space. The clean action rarely happens

because it implies that all small regions are heavily used and that no free region is available,

87

which is only possible when the disk utilization is extremely high. OBFS keeps monitoring

the fragmentation of the small block regions. If it reaches a predefined threshold, the clean

process will be triggered in the background. Such background cleaning can further reduce

the occurrence of a foreground clean process and improve performance even when the system

utilization is very high.

Besides the address information, three important fields are also stored in both the

large and small object onodes, including an object identifier, a generation number, and a valid

flag. The object identifier provides a reverse mapping from an onode to the object it stores.

The generation number and the valid flag are used to identify whether an onode is active.

Those fields contains redundent structural information. OBFS uses them to rebuild important

data structures if the file system experiences serious damages, as described in Section 6.2.

5.3.2 Region Head and Bitmaps

The region head data structures summarize the region status and maintain the bitmaps

for both onodes and blocks. Region heads for large block regions are quite simple in that they

contain only region summaries together with block bitmaps. Since the onodes for large blocks

are packed with large blocks, the onode bitmaps are merged with the block bitmaps. A small

region head is composed of a region summary, an onode bitmap, a block bitmap, and a small

delete log.

Region heads are laid at the beginning of regions on disk and organized into the

Region Head List (RHL) in core. The RHL serves the same purpose as the block bitmaps and

inode bitmaps in the traditional file systems. However, unlike the bitmaps in traditional file

88

systems, those in the RHL need not be updated synchronously to guarantee data reliability.

Instead, OBFS stores a valid bit in each onode, from which the block and onode bitmaps can

be rebuilt.

Each region maintains a monotonically-increasing generation counter. Any update

to the region structures as well as the onodes will obtain a generation number from the counter,

and then increase the generation counter by one. The generation number will be stored together

with those bitmaps and onodes. To obtain more finely grained updates, bitmaps are broken into

to 4 KB chunks. The first four bytes of each chunk are reserved for the generation number.

In the face of various failures, the one with a larger generation number is more trustable. For

example, after an OBFS crash, the fsck process will check each region by scanning the onodes

and comparing their generation numbers with those of the onode bitmaps. If the generation

number of an onode is larger than that of the onode bitmap, it will use the onode valid bit

to update the onode bitmap and the extent tuples to update the block bitmap. This approach

gives OBFS more flexibility to choose which metadata to update. It potentially reduces the

mandatory metadata updates to guarantee data durability. Synchronous writes can benefit sig-

nificangly from this scheme. If we assume that a region head has been loaded into memory,

a large object create/write to that region requires only one disk access, which writes a large

block and the contiguous onode. A small object create/write requires at most one more meta-

data update to write the onode in addition to the data block updates. The onode bitmap and

block bitmap are only flushed to disk periodically. OBFS chooses to update the onode bitmap

during delete operations. Multiple delete operations can be packed and updated to the disk in

one single bitmap write. A more detailed discussion of data reliability and recoverability is

89

presented in Section 6.2.

Two additional flags, a dirty flag and a corruption flag, are stored in the region head.

The former flag is set on when an on-disk onode in that region is updated and cleared as the

onode and block bitmaps are flushed back to disk. The latter flag is set on whenever OBFS

detects a corrupted metadata in that region. It can only be reset after the region is scanned and

fixed.

The size of a region head varies depending upon its type. The large-block-region

head consumes less than 4 KB, while a small-block-region head occupies 32 KB disk space,

assuming that the region size is 256 MB and the small block size is 4 KB. For a 500 GB

disk, the maximal disk space used by region heads is about 64 MB if there are all small block

regions. If we assume that 80% of all regions are large block regions, the total region head

size is about 20 MB. Although we expect all region heads to be loaded into memory given

their relatively small sizes under normal object workloads, OBFS does load them on demand

and page them out if more memory space is desired. An in-core region head list works as a

region head cache to manage all active region heads in the LRU fashion. After a region head

has been loaded into memory, it will be inserted into the list. Those inactive region heads at

the list tail can be purged out of memory if memory usage is under pressure.

5.3.3 Object Lookup Table

Given an object identifier, we need to retrieve the object from the disk. In a hierar-

chical namespace, data lookup is implemented by following the path associated with the object

to the destination directory and searching (often linearly) for the object in the directory. In a

90

flat namespace, linear search is prohibitively expensive. OBFS uses a hash table, the Object

Lookup Table (OLT), to manage the mapping between object identifiers and onode identifiers.

Each valid object has an entry in OLT that records its object identifier and onode identifier.

The OLT is a very compact data structure compared with the namespace manage-

ment structures of other local file systems. The size of OLT is proportional to the number of

objects in the OSD: with 200,000 objects residing in an OSD, OLT requires around 2 MB.

Each hash entry contains 8 bytes, 4 bytes for the object identifier and 4 bytes for the onode

identifier. Sixteen hash entries are packed into a hash line and every four contiguous hash

lines are allocated to a block, which is 512 bytes. Hash entries are loaded into main memory

in the unit of a block. The last entry in each hash line is reserved as a link pointer to connect

more hash lines if more entries are needed for the same hash buckets. The number of hash

buckets initiated is based on the disk size and the estimation of the average object size during

the mkfs process. Given a disk with 500 GB capacity and the average object size of 250 KB,

OBFS uses 215 hash buckets and pre-allocates 219 hash entries. This accounts for one hash

line for each hash bucket. The total space pre-allocated to OLT is a little more than 4 MB.

The pre-allocated part of OLT is called the base part of OLT. It has a fixed location on disk,

contiguously after the super block. If the base part of an OLT cannot hold all of the entries,

OBFS will dynamically allocate a meta file in a small block region to collect the extra entries.

If OBFS needs to append a new hash line to a hash bucket, it will allocate the new hash line

in a meta file and put the onode identifier of that meta file and in-file offset of the new hash

line into the last entry of the target hash bucket. Those extra hash lines are referred as the

extensible part of OLT.

91

During a normal file system mount, the base part of OLT is loaded into main mem-

ory and stays there until the file system is unmounted. This in-memory structure would appear

to waste a certain amount of main memory if the file system is seldom touched. However,

in normal situation, the overall throughput is significantly improved because the in-core OLT

greatly reduces lookup overhead. Compared with the directory entry cache used by traditional

file systems to retrieve the structural information, OBFS’s OLT has a much smaller footprint in

memory. Given a system with 400,000 objects, an OBFS can fully load all the object-mapping

information in core using less than 5 MB memory resources. While for a traditional local

file system, more than 20 MB memory resources are needed to store all the directory entries

for the objects. The small memory footprint of OLT effectively increases the data cache size,

reduces disk accesses, and improves the lookup speed.

5.4 Metadata Overhead

The metadata overheads of a file system include the extra space used for storing its

metadata, additional I/Os to read and write them, and computation time for retrieving desired

information from them. The design of OBFS focuses on reducing the overheads and achieving

both space efficiency and time efficiency. Compared with a general-purpose file system, the

functionalities of the small file system on OSDs are much simpler. Traditional file system

structures, including the popular VFS layer, are too heavily weighted in this scenario and

introduce too much overhead because they have to satisfy a wide range of requirements and

implement various features. OBFS metadata, specializing for the flat namespace and space

92

management, remove unnecessary data structures and make them as compact as possible. This

results in better space utilization and fewer I/Os for metadata.

5.4.1 Space Overhead

OBFS reserves one onode for each large block and one for every eight small blocks.

In the default configuration, every 512-KB large block consumes one 512-byte onode. In small

regions, every eight small blocks, totaling 32 KB, have one pre-allocated onode. The size ratio

of onode to data ranges from 0.1% to 1.7%. If the workload is composed of 80% of large

objects and 20% of small objects, only 0.4% of all used space will be occupied by onodes.

Besides the onodes, OLT and region heads also have persistent copies on disk. The size of

the OLT is proportional to the total number of objects on disk. Because each object has one

8-byte entry in the OLT, the space used by the OLT is negligible. Region heads have different

structures for large and small regions. A large region head contains only the book-keeping

information and a block bitmap. For a 256 MB region, 32 KB disk space is enough for its

region head. However, OBFS reserves the first 512 KB to make the region head align with the

large block boundary. In the default configuration, a 256 MB small region has a 8 KB onode

bitmap, a 1 KB onode map, and a 64 KB log. OBFS reserves 64 KB for a small region head

and 64 KB for its log. Therefore, around 0.05% to 0.2% of disk space is reserved for region

heads. In summary, the disk space occupied by OBFS metadata typically ranges from 0.6% to

2% of all the space in normal situations.

The in-core file system structures are also very compact, as we described in Sec-

tion 5.3.3 and Section 5.3.2. By using large blocks, the bitmaps for those large blocks require

93

much less memory resources. For example, a traditional file system with a 4-KB block size

on a 256 GB disk needs at least 8 MB block bitmaps and several hundred KB inode bitmaps.

A random workload with frequent write/delete operations may touch most regions of those

bitmaps, which forces those bitmaps to stay in core and consumes large amount of memory

resources. In OBFS, assuming 80% of disk space is occupied by large blocks, the total space

consumed by bitmaps is a little more than 1.6 MB. Such a small footprint makes them much

easier to fit into memory and incurs much less disk traffic. Considering that disk requests

for bitmaps are typical in the critical paths of object operations, reducing those requests can

significantly improve the overall throughput. Another improvement of OBFS structures is the

OLT, which completely replaces the role of dentry cache in traditional Unix file systems. Each

entry in the OLT is only 8 bytes, sixteen times smaller than the typical size of a dentry. Several

megabytes are enough to hold the entire OLT into main memory, which results in fast name

lookups. In general, the compact in-core data structures of OBFS save a lot of main memory

for data cache, eliminate a large number of disk accesses, and shorten the critical paths of

many object operations.

5.4.2 Run Time Overhead

Object operations need to first read their metadata to retrieve physical layout infor-

mation and related attributes. Some operations, such as object creates/writes, have to modify

their metadata as well. Those metadata references and modifications consume a significant

amount of computational time and incur a lot of small disk I/Os. The OBFS design tries to

minimize both costs.

94

Many general-purpose file systems, such as Linux Ext2, assume small to medium

directory sizes. To find a file in a directory, they simply go through the directory linearly and

lookup file entries one by one. Such a linear search scheme becomes excessively inefficient

as directories become very large. In a directory with thousands of objects, an object lookup

operation has to examine, on average, half of the directory entries to find out the matched one.

Create operations have even worse performance because they have to compare all the existing

entries to make sure the name is unique. Although it is possible to add an additional hash layer

to manage large directories, it is quite inefficient to implement such a layer on top of current

directory structures. Some of the latest file systems, such as XFS, use B+ tree or hash-based

structures to manage the directory structure. Searching dentries in those file systems would be

much easier. However, the size of directory entries in those file systems are still the same as

that of Ext2. As a result, they can buffer fewer dentries than OBFS, given the same amount

of memory, which imposes more pressure on main memory and causes more disk accesses for

file name translations.

Besides its compacted size, the OLT data structure is also designed for efficient hash

insertion and retrieval. Each hash line in the OLT has 128 bytes and contains 16 entries. Most

lookups for a hash bucket can be done in one or two memory loads. On the other hand, lookups

in the normal dentry cache have to load the entire dentry into CPU for comparison, which can

easily trash a whole CPU cache line. Searching a hash bucket with 16 entries may require

16 or more memory loads. Although currently we are more interested in the disk bandwidth

optimization, simple file system structures will find their place as OSDs become larger and

more complicated. In the scenario of multiple clients accessing the same OSD, the system

95

might be memory bound, making simple and efficient data structure highly desirable.

Metadata updates typically generate small non-contiguous disk requests. In a sys-

tem dominated by synchronous file writes, those metadata updates have to be synchronous to

guarantee file data persistence. As a result, normal data accesses are often disrupted by them

and a significant amount of disk bandwidth is wasted in serving them. For example, a file

create operation needs at least five writes, four of which are to metadata: one modifying the

inode bitmap, one modifying the block bitmap, one updating the allocated inode, and the last

one inserting a dentry into its parent directory. To guarantee the atomicity of this operation,

there might be an additional log write. Such extra metadata writes would hurt small file per-

formance badly. Journaling file systems batch those small I/Os into logs to delay their impacts

to the foreground activities. However, those updates have to be written to their original posi-

tions eventually. If the system is heavily loaded, the extra writes to the log may further hurt

the overall performance. That is why journaling file systems may become slower under heavy

loads.

OBFS solves this problem by re-designing the metadata structures so that at most

one synchronous metadata update is required for each object operation. Such a design relaxes

the dependency of OBFS to the transaction log. For a synchronous object create/write, OBFS

only needs to write its onode together with the data to guarantee its persistence. All other

updates to OLT and region headers can be delayed and batched with other requests together to

disk. This approach is further augmented by collocating onodes for large objects. As a result,

a synchronous large object create/write requires only one disk access to sequentially write

both its data and onode, assuming OLT and the corresponding region head are already loaded

96

in memory. The large object read benefits from the addressable onode identifier, which can

directly calculate its disk address without loading its onode. This greatly improves the large

object read throughput. A synchronous small object create/write generates one additional write

to its onode besides the data block writes. The read operation of a small object is similar to

that in the traditional file system. It has to first load the onode to retrieve the object to block

mapping and then read back requested data blocks.

In summary, the OBFS design minimizes the metadata operations associated with

object data operations. Combined with the always-in-core name lookup service, OBFS man-

ages to maintain the overall metadata overhead at a very low level.

5.5 Summary

As a storage manager on individual OSDs, OBFS is expected to see object-level

workloads, which have quite different characteristics than those of the file-level and block-

level workloads. Based on our object workload analysis under the Ceph system, we present

a simple, highly efficient design for OBFS and discuss the rationale behind the design by

comparing it with what the general-purpose file systems normally do.

OBFS employs variable-sized blocks to achieve better sequential layout for differently-

sized objects. It uses the self-contained region structure to organize blocks of the same kind

together, which is able to reduce free space fragmentation as the system ages. The file system

metadata are also partitioned into regions and operated independently. This provides better

failure isolation and reduces recovery overheads. To better manage a flat namespace, OBFS

97

employs a compact hash-based structure that enables fast mapping between the global object

name and its internal identifier. Finally, OBFS collocates large blocks and their metadata to-

gether to minimize the metadata I/Os associated with the object data operations. In summary,

the OBFS design adapts to the special object workload under the Ceph system. Such a de-

sign is able to provide potentially high throughput, maintain reasonable disk utilization, and

guarantee strong data reliability.

98

Chapter 6

OBFS Policy and Implementation

Details

The OBFS design employs variable-sized blocks and partitions disk space into re-

gions. It optimizes for a flat and homogeneous object namespace through a hash-based in-

dexing structure and a small set of specially designed object metadata. The disk layout in

OBFS uses the hints from the expected object workloads to reduce disk seeks between object

operations and minimize the file system fragmentation in the long run. These design choices

provide a good framework for supporting the expected object workloads. At the same time,

they are quite different from the design of the general-purpose file systems, which means that

they change various policies and implementation details including allocation, reliability, and

the possible need for region cleaning. In this chapter, we first describe the allocation policy in

Section 6.1. The file system reliability, failure scenarios, and recovery schemes are discussed

99

in Section 6.2. We further study the region cleaning problem and present several techniques to

mitigate it in Section 6.3. Finally, we conclude this chapter in Section 6.4.

6.1 Allocation Policy

The allocation policy of OBFS involves three allocation decisions: first, which type

of blocks the object should use; second, which region to put the object in; and finally, which

blocks in that region will store the object. For every new object, OBFS first decides what type

of block(s) it should use. In the Ceph system, the decision as to the object type is assisted by

the client component, which informs OSDs of the expected size of an object. Thus, OBFS

can identify the object type even if it is only partially written. If the expected object size

is equivalent to the system stripe unit, a large block is assigned to the object; otherwise, it

uses small blocks. OBFS then selects an appropriate region from which the block(s) are to be

allocated. If no qualified region is found, a free region will be initialized to the desired type.

The final step is to allocate blocks and an onode inside that region.

6.1.1 Delayed Allocation

OBFS buffers new objects in the object cache and delays allocating space for the

objects until they are flushed to the disk. The actual allocation happened when an object is

issued to the disk-request queue. This scheme can potentially reduce object fragmentation by

aggregating multiple small pieces of a partially written object together and allocating a large

contiguous extent for it. It also increases the chance for clustering multiple unallocated objects

100

during flush time. Since the object allocation happens right before the object being served by

the disk, the allocator can approximate the disk head position and allocate objects to the nearby

regions to reduce the seek overhead.

6.1.2 Region Allocation/Selection Policy

During the region allocation/selection step, OBFS searches the Region Head List

(RHL) to find a candidate region that contains enough free blocks of a given type. Three fac-

tors are taken into consideration during the region allocation/selection: the distance between

the last-accessed region and the target region, the region fragmentation, and the workload

burstiness.

All region heads in RHL are organized into three sub-lists: a large block region list,

a small block region list, and a free region list. All of the sub-lists are sorted by the region

addresses. There are two in-core pointers associated with the first two sub-lists respectively:

an outstanding large region pointer that indicates the region where the previous large object

I/O happens, and an outstanding small region pointer that points out the last-accessed small

block region. The outstanding pointers are updated whenever an I/O request hits a region that

differs from the current outstanding regions.

The allocator uses the outstanding region pointers to approximate the disk head po-

sition at the allocation time. It tends to allocate objects to the nearby regions to minimize the

seek overhead. Using a small object allocation as an example, the region allocation/selection

process starts from the outstanding small block region. The allocator first evaluates the poten-

tial object fragmentation in that region through a pre-allocation process. The detailed discus-

101

sion of the pre-allocation process can be found in Section 6.1.3. If the pre-allocation process

shows that the region excessively fragments the new object, OBFS will scan the small region

list sequentially, starting from the current outstanding region, to retrieve adjancent regions and

repeat the evaluation process. If no qualified region is found, OBFS chooses the nearest free

region and formats it into the requested type.

The region allocation policy used in the current implementation is conservative in

allocating a free region: it prefers to use existing regions rather than allocating a new one. For

example, between a free region with a distance of one and an existing region with a distance

of five, OBFS tends to consume available blocks in the existing region, instead of allocating

that free region. This conservative approach may lead to some performance degradation as the

file system ages due to long seeks between regions. However, such degradation is typically

amortized by consequent write requests into the same region and thus has less impact on the

overall performance. More importantly, it is compensated for by preserving more free regions

that are valuable in handling different types of workloads.

The last heuristics OBFS uses involve allocating/selecting regions based on the in-

tensiveness of the write workload. The allocation routine keeps monitoring the request arrival

rate to the disk-request queue. As the arrival rate becomes high and the disk queue builds up

with many write requests pending, it is better to allocate a fresh new region, where the large

number of write requests can be laid sequentially, rather than using an existing region with

only a few free blocks scattered around.

102

6.1.3 Block Allocation Policy

Block allocation for a large object is straightforward because it only needs to find

one free block in the target region, mark it as used, and store the object in it.

For objects that use small blocks, an extent-like allocation policy is employed.

OBFS goes through the region block bitmaps trying to find a free extent that is large enough

to hold the incoming object. In the scenario that multiple large extents are found, OBFS uses

the worst-fit policy, breaking down the largest free extent to store the object and returning the

unused portion to the free list. If such a free extent is not available, the largest extent in that

region is assigned to the object. The amount of space allocated in this step is subtracted from

the object size, and the process is repeated until the entire object is allocated.

6.1.3.1 Extent-summary Array and Large-extent List

Two in-core data structures, an extent-summary array and a large-extent list, are

maintained for each region on the fly to facilitate the allocation process. The extent-summary

array is designed to guide the extent search. It tracks the total number of extents in different-

sized categories in a region. In our current implementation, an array contains 128 integers

that correspond to extent size from 4 KB to 512 KB. The value of the Nth integer in the

array represents the total number of N-block extents in the region. For example, a region that

contains M 16-KB extents will set the values of the fourth bucket in its summary array to be

M. The large-extent list records up to 128 large extents, sorted by their disk addresses. It helps

the allocator to directly grab a large extents without first scanning the block bitmap.

103

6.1.3.2 Small Block Allocation

In searching for a given-sized extent, the allocator first looks up the extent summary

array to see if there is a perfect match. This step is done by simply examining the value of

the corresponding bucket in the array. A positive value of that bucket means the perfect match

exists. It then scans the block bitmap to retrieve the address of the extent. If no perfect match

is found, the allocator picks up the largest extent from the head of the large-extent list, breaks

it down to desired size if it is larger than the requested size, and allocates it to the object. This

process can be repeated until the requested space is fully allocated.

6.1.3.3 Pre-allocation Process

Besides the normal allocation process, OBFS also introduces the pre-allocation pro-

cess, which is used to evaluate the potential fragmentation of an object if it is allocated into a

region. The pre-allocation process has the similar procedure as the normal allocation except

that it will not scan the bitmap to retrieve the extent details. Instead, it only looks up the

extent-summary array to calculate the total number of fragments an object will have. Such in-

formation can be used to assist the region allocation to decide the final destination, as described

in Section 6.1.2.

6.2 Reliability and Integrity

As a storage manager at the OSD level, OBFS provides strong guarantees of data

reliability and system integrity. Although the OBFS design focuses on object throughput by

104

minimizing metadata read/write per object operation, no compromise of data safety has hap-

pened. In the face of various failures, OBFS only trusts the onodes, the onode bitmaps, and

the delete log, as described in Section 6.2.3. All other data structures can be rebuilt directly or

indirectly from them. In addition, OBFS tags every onode and bitmap write with a generation

number, which gives OBFS a hint about the write generation when those two structures do not

agree with each other.

The simple metadata update scheme gives good performance without sacrificing data

reliability and file system structure consistency. However, good performance does not come

without cost. Compared with the journaling approach, such as the one used in Ext3, OBFS

takes a relatively long time to recover from a system crash because it needs to scan all active

onodes and onode bitmaps to rebuild the OLT and the block bitmaps. However, this process is

not excessively expensive since the important data structures are partitioned into regions and

located in the fixed locations among regions. Those metadata only account for a small fraction

of the overall disk space, which can be easily loaded from disk and parsed in memory. On

the other hand, a journaling file system may have to perform a full system scan due to some

internal structure corruptions, such as bad recovery logs or corrupted directory structures. In

such a case, OBFS shows much better recovery performance thanks to its simple metadata

structures.

In the rest of this section, we first discuss the failure scenarios that are expected to

be handled, followed by detailed descriptions of the object create/write and delete operations,

and how OBFS guarantees data reliability during those operations. Then we will explain how

the region structure provides a failure boundary to isolate random errors. Finally, we present

105

the recovery scheme in the current design.

6.2.1 Failure Scenarios

OBFS considers two types of failures. One is the loss of volatile memory, such as

power failures and unclean shutdowns. The other is the random error, such as software bugs

and bit rot, both in memory and on disk. The first type of failure is easy to detect because the

whole system is halted and the normal operation is interrupted. The latter one, on the other

hand, may not be detected at the time that it happens. It will stay in the system and propagate

its effects to other parts of the system until it causes serious damage to file system structures

or corrupts user data. For example, a flipped bit in a block bitmap may cause an already-used

block to be allocated again. If this duplicated block lives in an important metadata structure,

such as an inode or a directory block, it may cause serious damages to file system structures.

Such errors are random and usually have much worse impacts on the system. Although some

techniques, such as mirroring and checksum, may protect the system from being compromised

by a random error, they are not sufficient to defend against internal software bugs, which are

inevitable in large systems.

The design of OBFS minimize the impact of random errors through a self-contained

region structure. It introduces a boundary check for every I/O operation, which helps to

quickly detect random errors and confine them inside the region in which they happen. In other

words, the damage caused by a random error will not propagate beyond the region boundary.

As a result, OBFS can preserve most of its objects in the face of various hardware and software

failures.

106

6.2.2 Object Create/Write

As a low level storage device, an OSD should provide strong data reliability guar-

antees. Before committing a write, it is important for an OSD to make sure that all of the data

as well as the necessary metadata are on persistent storage. Therefore, unlike other general-

purpose file systems that assume asynchronous writes, OBFS treats every object write from

clients as synchronous unless the asynchronous flag is explicitly set. The strong guarantee

for the user data also implies a strong guarantee for file system structure consistency. If the

structures used for retrieving data are damaged, there is no way to ensure data reliability even

if the data is stored stably somewhere on the persistent storage. In this sense, the synchronous

file write in some general-purpose file systems–e.g., Ext2–is not good enough since the struc-

tural changes are delayed. Although a file system scan can retrieve the data of the lost objects,

their names may be permanently lost, which makes them essentially useless in a distributed

environment. OBFS solves this problem by storing the global object identifier in its onode.

Together with a valid bit in the onode, OBFS can always identify if an onode is valid by scan-

ning the fixed location onode table and retrieving the object data, no matter how badly the

system structures have been damaged.

Besides the synchronous create/write workload, OSDs may also see a great amount

of asynchronous create/write traffic among themselves. Those operations are mostly for repli-

cation or management purposes. For example, objects are replicated to protect against a single

point of failure. The primary copy should be written synchronously to an OSD, while the

secondary and the tertiary copies may be asynchronously written before committing. Other

107

cluster management work, such as the workload balance between clusters, uses asynchronous

writes to improve the overall throughput and minimize the disruption of foreground activities.

For such workloads, OBFS forces the update ordering between the object data and their on-

odes. An object onode is always pinned in memory until its data has reached disk. Only after

all of its data has been flushed back to disk is it unpinned and ready for I/Os. This simple or-

dering can avoid the situation in which the object onode has reached the disk while its data is

lost. Since the onode size in OBFS is exactly the disk sector size, onode I/Os are independent

of each other. No Soft Update style techniques are needed, which further simplifies the OBFS

design.

In additional to the onode update, an object create/write operation may also need to

update the block/onode bitmaps and the OLT. OBFS chooses to lazily flush them back to disk.

There are several advantages by doing so: first, the synchronous create/write performance can

be significantly improved since the bitmap or OLT updates are decoupled from the critical

paths. Second, multiple updates to the bitmaps and the OLT can be packed together, which

can greatly reduce small metadata writes. However, asynchronously updating the bitmaps and

the OLT requires a relatively complicated check scheme to restore the system consistency after

a crash. We will discuss it in detail in Section 6.2.6.

6.2.3 Object Delete

In OBFS, object deletion is implemented as an asynchronous operation. Every delete

operation updates the in-core data structures by adding an entry into the region delete log,

marking its onode invalid, and clearing the used bit in the block/onode bitmaps. Dirty logs

108

are flushed to the disk every second or when there are more than 16 pending entries. The

modifications to the onode will be piggybacked with the adjacent onode operations to reduce

disk I/Os. As soon as the onode reaches the disk, the delete operation is considered complete

and a completion entry is added to the log.

Because the log updates are asynchronously written to the disk, it may happen that

the deleted onode is reused while the completion log has not reached the disk. If the system

crashes right at this moment, some objects could be identified as deleted objects and cleared

from the system during the recovery process. To avoid this, every log write and onode write

are tagged with a generation number, unique in a region. An object is marked as deleted only

when the generation number of the delete log entry is larger than the one with its onode. The

asynchronous delete operations can achieve batched delete performance and minimize their

impacts on the foreground workload. However, there is a short window in which those deletes

are committed while the on-disk data structures are not changed. System crashes during that

window may void the deletes and leave unreferenced objects in OSDs. If users are more

concerned about the data security or the wasted disk space used by those orphan objects, they

can force synchronous object delete, which guarantees that the deleted objects are removed

from the namespace before return. Alternatively, these orphaned objects can be found by

scanning the metadata in a high-level filesystem consistency check.

6.2.4 Boundary Check

As demonstrated in section 4.2, the object workload has two important aspects: ob-

ject sizes are always smaller than the system stripe unit size, and the objects in an OSD are

109

largely independent of one another. The OBFS design makes use of these characteristics to

partition the global storage space into relatively small independent regions. Each region has

its own self-contained data structures and a clear physical boundary. Since an object can only

live in a single region, all I/Os to an object must fall inside that region. OBFS enforces the

boundary check for every disk I/O during the logical address to physical address mapping. For

instance, OBFS will check if an object I/O will cross the region boundary and whether it will

touch the metadata areas. The same checks apply to the metadata operations. Those checks

provide a failure boundary for each region. An operation can only read/modify its target re-

gion. Any I/O outside of that region will be treated as an error and denied immediately.

In addition to the corrupted region metadata, a damaged OLT may also redirect an

object request into a wrong region. For example, a bad OLT may mistakenly map an object,

say A, into object B’s location. If a user updates object A, it could trash object B’s data.

However, this wrong mapping is not able to corrupt the region metadata or further damage the

whole system structures because the metadata of object B is still consistent. Updates to object

A have to follow the extent information inside the onode of object B, which prevents them

from writing to an arbitrary place on the disk.

In a traditional file system, the physical space is a global resource. Every object

obtains the space from the same resource pool. Given an error in a file system, there is no

limit to how far it can propagate. A good example is that a corrupted block address in a file

inode may direct the disk I/O to the wrong place, which may happen to be owned by the

global block bitmaps. Any further operations may get incorrect allocation information from

the bitmaps and further spread the errors out. Therefore, a full system check is mandatory if

110

some structural errors are detected, such as duplicated blocks and corrupted inodes, since the

file system has no idea how long the error has existed and how badly it has affected the system.

The journaling technique does not help here because it is a method to protect the system from

interrupted transactions rather than from random failures. With a relatively larger OSD, such

a full check for a traditional file system may last for hours or even longer.

OBFS shows its unparalleled advantage in this area. Any random error that occurs

in a region is confined in that region. System check only applies to the region where the error

has been detected. Only when the OLT or the superblock are damaged does OBFS need to

scan the full system. Since the OLT and the superblock are much smaller than the rest of

the file system, the chance of corrupted OLT due to random errors is fairly small. We can

further reduce the corruption of important metadata by protecting them with erasure coding or

replication schemes. This provides bounded recovery time no matter how large the OSD is.

Moreover, such a check can be done online without taking the whole OSD offline. The errors

can even be masked from the user. In the worst case, users only notice certain delays for some

object I/Os.

6.2.5 File System Consistency

OBFS consistency comprises of two different components: region internal consis-

tency and OLT consistency. Region internal consistency means that the region metadata are in

agreement with each other. OLT consistency means that the OLT agrees with all the metadata

in every region. The system recovery process involves both the individual region recovery and

the global OLT re-construction.

111

6.2.5.1 Region Metadata Update Process and Internal Consistency

As we mentioned in Section 6.2.2 and Section 6.2.3, OBFS requires only one meta-

data update before committing a create/write or a delete opertion. Whenever a new onode

is written to a region, the on-disk structure of that region becomes temporarily inconsistent.

Such inconsistency can be eliminated only after all dirty bitmaps of that region are flushed

back to disk. Since OBFS flushes the dirty bitmaps periodically, there is a short window of

inconsistency. If the system crashes during this window, OBFS has to scan all the onodes of

that region to rebuild the region bitmaps. To faciliate the recovery process, OBFS maintains a

dirty flag, described in Section 5.3.2, for each region. It is set on before writting a new onode

to the disk and cleared after all dirty bitmaps are flushed back to the disk. During a recovery

process, this flag indicates whether a region is in the consistent state.

6.2.5.2 OLT Update Process and Consistency

The OLT consistency is tracked by the OLT generation array, as described in Sec-

tion 5.3.3, which contains the outstanding generation numbers from all the regions. It is al-

ways updated together with the OLT. OBFS can check whether the on-disk OLT is consistent

with an on-disk region by comparing the generation number in both the region head and the

generation-number array.

The OLT update process starts by freezing the in-core OLT and the generation-

number array. All the new updates to them are temporarily buffered in a new cache using

the copy-on-write technique. OBFS then sets the update flag of the on-disk OLT to indicate

that the OLT update is in progress. Dirty blocks in the OLT are then issued to disk, followed by

112

the generation-number array updates. Finally, the update flag is cleared. After the completion

of all data flushing, the newly-updated OLT entries in the temporary cache are merged back

with the OLT and the generation-number array.

The generation-number array helps OBFS to reduce the number of regions that needs

to be scanned during the OLT recovery process. Since the generation counter in a consistent

region always reflects the generation number of the last update to the region metadata, OBFS

can compare it with the corresponding generation number in the OLT generation array to see

if the OLT is up to date. A mismatch of the values indicates that there are new updates to the

region metadata after the current OLT was written. Thus, the onodes in that region need to be

scanned to rebuild the OLT. Otherwise, the OLT is consistent with that region and the recovery

process can simply skip it.

6.2.6 Recovery Schemes

In Section 6.2.1, we classified the file system failures into two categories: interrup-

tion of normal operations and random errors. We introduce two recovery processes, the crash

recovery process and corruption recovery process to handle the two types of failures.

6.2.6.1 Crash Recovery

The crash recovery aims to bring the system back to a consistent state after a system

crash. It assumes that the inconsistent state is caused by losing volatile memory rather than

random corruptions. After the recovery, no committed requests should be lost.

The crash recovery process scans and recovers individual regions independently. It

113

starts by scanning all the region heads sequentially. If the corruption flag is set, it will switch

to the corruption recovery, as specified in Section 6.2.6.2. Assuming that the corruption flag

is off, it continues to check the dirty flag. An off dirty flag means that the region is internally

consistent and there is no need to perform the crash recovery for that region. Otherwise, it will

load the entire region metadata to rebuild the region structures. The final step is to compare

the region generation counter with the corresponding generation number in the OLT generation

array. If they do not match, the recovery process will initiate the OLT rebuild process. In the

rest of the sub-section, we will focus on the individual region recovery and the OLT rebuild

process.

The individual region recovery is the most important component in the crash recov-

ery process. It restores the internal consistency of a region by scanning all the onodes and the

delete log to rebuild the onode and block bitmaps. During the onode scanning, it checks the

valid flag of every onode to see if the onode is active. For a valid onode, it then compares the

generation number of the onode with the one in the onode bitmap. If the onode’s generation

number is larger, it will set the corresponding bit in the onode bitmap and updates the block

bitmap using the extent information inside the onode. After scanning all the onodes, the re-

covery process will parse the delete log and apply changes to the bitmaps. As we mentioned

in Section 6.2.3, the delete log replay process compares the generation number of the log with

the one in the related onode to decide whether an onode is valid. It will use this information

to clear corresponding bits in the onode and block bitmaps. The maximum generation number

found during the recovery process will be used to update the region generation counter. The

last step is to flush all those bitmaps and the region heads back to disk.

114

The OLT rebuild process restores the consistency between a valid region and the

OLT. It also needs to scan all the onodes in that region. For each valid onode, it retrieves

the corresponding OLT entry using the object identifier stored in the onode. If the entry is

out-dated or invalid, it will remove the old entry and add a new entry to reflect the changes.

This process relies on the internal consistency of the region. It should alwasy check the region

internal consistency before running this process.

6.2.6.2 Corruption Recovery

Corruption recovery handles various failures caused by random errors. Unlike crash

recovery, it does not trust any piece of metadata and has to perform more comprehensive

checks for them. After recovery, the system should be brought back to the consistent state.

However, it may lose some of the objects if the error is serious enough.

The corruption recovery is performed independly on individual regions. Similar to

the crash recovery, it first scans all the onodes. For each valid onode, it performs a sanity

check to make sure the flags and values in the onode are in reasonable/predefined ranges.

It then updates the onode bitmaps and the block bitmaps using the extent information in that

onode. The recovery routine applies boundary checks during this step to find invalid addresses.

An additional scan is needed if any duplicated block is detected. A duplicated block refers to

the block that is referenced by two or more objects in a region. To resolve the conflicts caused

by the duplicated block, OBFS simply replicates the block and assigns them to both objects

that reference the duplicated block. A corruption flag is set in both objects to inform the user

that both objects’ data are not trustable.

115

After scanning the onodes, the recovery process checks the sanity of the delete log.

If the delete log is valid, it will be replayed to update the onode and block bitmaps. At this

stage, all the onodes and the bitmaps should be consistent. The following step is to rebuild

the region head, which mainly involves in recalculating the statistical information such as the

free block count. All metadata are then flushed to the disk and the corruption flag is cleared.

Finally, the recovery process initiates the OLT rebuild process, which is identical to the one

described in the crash recovery process.

6.2.6.3 Recovery Overheads

Both the crash recovery and the corruption recovery require the scanning of a num-

ber of regions. Compared with the recovery processes in a journaling file system, the crash

recovery is expected to be slower while the corruption recovery should be much faster.

The crash recovery in OBFS needs to check those inconsistent regions with the dirty

flag on. It scans onodes in those regions and rebuilds the bitmaps and the OLT. However, this

process is not excessively expensive. First, OBFS uses the dirty flag and the generation number

to identify inconsistent regions and minimize the number of regions to be scanned. Second,

the simple region data structures are guaranteed consistent after dirty bitmaps are flushed back

to disk. Therefore, the total number of inconsistent regions is bounded by the active regions

between two consecutive metadata flushings. Since OBFS tends to create objects in a few

regions during a short period, the number of such active regions should be small under normal

workloads. Finally, the region metadata is very compact and laid out contiguously on disk.

One large sequential I/O is enough to load all region metadata, including bitmaps and onodes,

116

into the disk. The recovery routine can parse the onodes and rebuild the bitmaps fully in core.

For example, the total space occupied by onodes and bitmaps is around 4 MB in a small block

region. A large sequential disk I/O can load it into memory within 100 ms.

The corruption recovery has similiar overheads as the crash recovery. It shows much

better performance when compared to general purpose file systems. If any metadata corrup-

tion is identified inside an general-purpose file system, the entire file system has to be taken

offline and all the metadata have to be scanned. OBFS, on the other hand, provides a failure

boundary through the self-contained region structure. A corruption in a region requires only

that region to be fixed. Since we can decide the region size, the recovery time for a region is

bounded. Therefore, for a single random corruption, the corruption recovery time is bounded

no matter how large the file system might be. While in a general-purpose file system, this time

is proportional to the size of the entire file system.

The failure boundary enables OBFS to perform online region repairs, which might

be important for a continuously running system. The design of breaking down a large system

into small regions favors a background-checking process. OBFS can periodically check those

long-time-untouched regions one by one in the background without severely affecting the

foreground activities. Overall, the design of OBFS provides a simple but robust system for the

OSDs. It has some key features, such as the failure isolation and fast online scan, that can be

extremely useful for the high-level distributed storage system design.

117

6.3 Region Clean

Because OBFS uses regions to organize different types of blocks, one potential prob-

lem is that it may run out of free regions and free space in regions of the desired type. Unlike

LFS [61], which must clean segments on a regular basis, OBFS never needs cleaning unless

the ratio between large and small objects changes significantly over time on an OSD that is

nearly full. We expect that such a scenario will rarely happen in practice. The cleaning process

coalesces data in the underutilized regions and creates free regions that can be used for regions

of desired types. One side effect of region cleaning is that some small block regions may be

de-fragmented during the cleaning process. Fragmented objects can be laid contiguously into

a new region during the data relocation.

The cleaning process for large block regions is very simple since the large object is

of fixed size and its metadata are collocated together with its data block. The cleaning process

starts by selecting a least-utilized region and reads out all of its objects into memory. It then

searches the rest of the large block regions to dump all those objects. After one object has

been relocated, it needs to update the OLT to reflect the change.

The small region clean may result in more overhead than that of the large region

clean process because small objects may be heavily fragmented. OBFS adopts a different

approach to clean the small block region. Instead of following the onodes to read in individual

objects, OBFS scans the onode and block bitmaps to identify all valid onodes and blocks. It

then merges those onodes and blocks into large chunks and issues raw disk I/Os to read them

all together into the memory. Finally, it parses those data blocks in memory to build temporary

118

objects that associates the in-core inodes with the in-core extents. Those in-core objects are

flushed to their new destination using the same procedure as the one in the large block region

clean process. This method eliminates the reading dependence of object data blocks to the

onodes and it greatly improves the disk bandwidth utilization by merging small extents into

large ones.

6.3.1 Non-fixed Object Location and Region Packing

In traditional file systems, file creation is expensive because it needs at least four

writes to update all modified metadata. As a result, most file updates happen in-place rather

than through relocating the whole file into a new place. OBFS, on the other hand, makes it

easy to relocate an object because of its simple metadata design: no extra writes for a large

object creation and only one extra write for a small object creation. Such relocation on update

is referred to as floating write. An object can be freely relocated into another region if it is fully

loaded into memory. In theory, this approach can achieve a WAFL-like performance because

it greatly improves the locality of object I/Os. However, it has several limitations. The object

to be relocated must be completely loaded into memory with its onode. If a part of an object

is missing in memory, the cost of reading the object and migrating it to another region may

be more expensive than simply updating in place. Second, this approach leaves multiple valid

copies of an object on disk. If the system crashes, it cannot tell which one is the latest copy.

OBFS solves this problem by storing the generation number in the OLT. To relocate an object,

OBFS will compare the old copy’s generation number with the new one obtained from the new

location. The largest number will be incremented by one and used as the new object generation

119

number. The region generation number will be advanced to the new generation number. By

doing so, OBFS can recognize the latest copy of an object from multiple out-dated copies, even

after a system crash. This results in a larger OLT and a slightly more complicated recovery

process. The last limitation is that floating write does not help with asynchronous writes. A

large object cache can effectively exploit the locality of existing objects and coalesce them

into large sequential I/Os. In such a scenario, relocating a small object may even increase the

cost because it introduces one more write to the new onode location.

In our current implementation, OBFS employs the floating write technique for two

purposes. The first is performance improvement. OBFS applies this technique only when the

following conditions are satisfied. First, the operation must be a synchronous write. Second,

the request must write the whole object and all necessary data to memory. Finally, the object

onode must be in memory if it is a small object. Given all three conditions, OBFS will treat

the object as a new object and select the optimal location for it. In case if the new location

has no advantage over the old one, OBFS will use the old one. The purpose of using the

floating write is to consolidate under-utilized regions. It is preferable to relocate objects from

a lightly-utilized region to a highly-utilized region when the ratio of free regions becomes low.

By doing so, it is possible to reduce the overhead of the region cleaning. OBFS will trigger

this migration process once the number of free regions drops below a certain threshold.

120

6.4 Summary

This chapter provides the essential policy and implementation details of OBFS. We

focus on the allocation policy, the reliability and recovery issues, and the region cleaning

policy. They are demonstrated through a series of detailed presentations on the related data

structures, discussions on execution procedures, and comparisons with other approaches in

existing general-purpose file systems.

The allocation policy in OBFS is composed of both the region selection/allocation

policy and the block allocation policy. During an object allocation, OBFS first decides which

type of blocks the object should use, assisted by the hints from the high-level file systems. It

then selects the region for the object allocation. The region allocation policy used in this step

takes into account the region distance, free space fragmentation, and workload burstiness. It

tries to balance between the optimal layout and the seek distance to provide a better region

selection during run-time. After the region selection/allocation, OBFS finally allocates blocks

in that region for the object. With the aids from two in-core data structures, OBFS achieves

extent-like allocations with relatively low overhead.

As a low-level storage manager on individual OSDs, OBFS is designed to provide

strong reliability and recoverability. OBFS guarantees the data safety after it commits the

object requests. A piece of redundant information is stored inside each onode, which can be

used to restore the system back to consistent state even after the system is seriously damaged.

The self-contained region structure helps OBFS to enforce the failure boundary. Combined

with the boundary check scheme, OBFS can always limit a random data/metadata corruption

121

inside a region. Based on those data structures, we further discuss the failure scenarios that

OBFS is expected to handle and present two recovery schemes: the crash recovery that restores

a system back to consistent state after a crash, and the corruption recovery that fixes metadata

corruptions. Compared with those recovery processes in a journaling file system, the crash

recovery in OBFS is expected to be slower, while the corruption recovery should be much

faster.

Finally, we discuss the region clean precedures and the scenarios that may trigger

those precedures. A region packing technique is also provided, which will potentially reduce

the chance of region cleaning.

122

Chapter 7

OBFS Design Evaluation

OBFS introduces several unique features such as variable-sized blocks, self-contained

region structures, and optimized region/block allocation policies. The design goal is to mini-

mize the disk fragmentation and make best use of disk bandwidth in the long run. Several key

parameters in the OBFS design have significant impacts on overall system performance. In this

chapter, a series of experiments demonstrate the effectiveness of the design decisions and eval-

uate the best choices of some key parameters. In the rest of the chapter, Section 7.1 describes

the experiment setup; Section 7.2 introduces several synthetic object workloads and bench-

marks; Section 7.2.1 explains the aging technique and describes the synthetic aging workloads

used in our experiments; Section 7.3 presents how OBFS’s throughput varies as the region size

and the block size change; The long term aging effects and the file system fragmentation are

studied in Section 7.4

123

Table 7.1: Specifications of the Maxtor D740X-6L disk used in the experiments

Capacity 80 GB
Controller Ultra ATA/133
Track-to-track seek 0.8 ms
Average seek 8.5 ms
Rotation speed 7200 RPM
Sustained transfer rate 24.2–44.4 MB/s

7.1 Experiment Setup

All of the experiments are executed on a PC with a 1 GHz Pentium III CPU and

512 MB of RAM, running Red Hat Linux, kernel version 2.6.9. To examine the performance

of the file systems with minimal impact from other operating system activities, we dedicate an

80 GB Maxtor D740X-6L disk (see Table 7.1) to the experiments. This disk is divided into

multiple 8 GB partitions. The first partition is used to install file systems and run experiments.

The rest of the partitions are used to backup aged file system images. We use aged file systems

to more accurately measure the long-term performance of the file systems. For each exper-

iment running on the aged system, we copy the aged file system image to the first partition

of the disk, unmount the disk to clean the buffer cache, then mount the aged partition to run

the benchmarks. We repeat these steps three times and take the average of the performance

numbers obtained.

7.2 Synthetic Workloads Used in the Experiments

Several synthetic object workloads are used to measure the OBFS performance. If

the workloads have write requests, it can be switched between synchronous mode and asyn-

124

Table 7.2: Synthetic workloads

TwoValue SynWrite SynRead ObjectBench
r/w Write Write Read Read & Write
properties †Two request †80% large object †60% random reads. †40% read requests.

sizes. requests. †40% sequential †36% write requests.
†ratio parameter †20% small object reads. †24% rewrite requests.
adjust their ratio. requests. †80% writes to large

†Small object objects.
requests uniformly †20% writes to small
distributed between objects.
4 KB and 512 KB. †Small object writes

uniformly distributed
between 4 KB and
512 KB.

chronous mode. If not specified, all the requests generated by synthetic workloads reference

whole objects, e.g., no partial object I/Os are used in the synthetic workloads. In this per-

formance evaluation, we adopt a closed loop scheme. A new request will be generated only

after completion of the previous one. Such workloads evaluate the maximum throughput for

an individual thread.

The simplest object workload, referred to as the TwoValue workload, employs only

two request sizes. One is the same as the large object size, which is 512 KB in the default

setting. The other is 32 KB. The ratio of these two requests is adjusted by the ratio parameter,

which indicates the fraction of all requests that use large object size. For example, a TwoValue

workload with a 0.8 ratio means 80% of all requests have a fixed size of 512 KB. The workload

generator randomly draws a number between zero and one, and compares it with the ratio

specified in the workload. If smaller, a request to a large object will be generated. Otherwise,

125

a small object request will be issued. With a ratio value of one or zero, the workload is reduced

to the fixed-size micro benchmark. The TwoValue workload is used for detailed study on the

performance impact of the block and region sizes chosen in OBFS.

The SynWrite workload simulates more realistic environments. It mixes large object

requests and small object requests with a fixed ratio of 4 to 1. The size of small object requests

are uniformly distributed between 4 KB and 512 KB.

The SynRead workload generates both sequential reads and random reads. Sequen-

tial reads, in this context, mean that the read requests issued to a set of objects follow exactly

the same order as they are written. For example, assuming object B is written immediately

after object A, a read request to object B is called a sequential read if the previous read request

is to object A. The term sequential in the context does not necessarily mean that those objects

are laid sequentially on disk. For example, on a fragmented disk, two objects written together

may be allocated far apart due to the lack of sufficient contiguous space. A random read, on

the other hand, arbitrarily selects an on-disk object without considering the write.

The last workload, called ObjectBench, simulates real scientific workloads. The key

parameters of this workload are derived from the LLNL file system workloads, as described

in Chapter 4. It is composed of 40% read requests, 36% write requests, and 24% rewrite

requests. Among them, 80% of all requests reference large objects and 20% reference small

objects. Like the SynWrite workload, the size of the small objects is uniformly distributed

between 4 KB and 512 KB. 60% of all write and rewrite requests are synchronous and the rest

are asynchronous.

126

7.2.1 Aging Workload

Most file systems show very good performances on fresh disks. However, aged

file system performance is more important since it is more representative of real working

environments. A file system has to be evaluated under both fresh and aged circumstances to

comprehensively demonstrate its advantages.

File systems age slowly under normal conditions. The long aging process can hardly

satisfy the time-constrained evaluation requirements. Special aging techniques are introduced

to achieve fast aging progress while still maintaining good similarity between the real image

and the artificially generated one.

7.2.1.1 Existing Aging Workload Generation Techniques

Smith, et al. [72] used file system snapshots and traces to approximate the possible

activities in file systems. They examined the difference between two consecutive snapshots

and generated a series of operations to transform an old snapshot into a new one. To simulate

the temporal I/Os between snapshots, they introduced a lot of random writes/deletes, which

did not affect the states of each snapshot but still extensively exercised allocation policies of

the underlying file systems. Combining both the transform operations and the random I/Os,

they eventually created a file system aging workload. Applying the aging workload to a fresh

file system, they could easily generate an aged testing platform in a relatively short time.

127

7.2.1.2 Multiple-stream Object Aging Workload

We followed Smith’s approach and developed our own aging workload, called the

multi-stream aging workload, to facilitate the evaluation of our OBFS. There are two or more

independent request streams in the workload. One of them simulates the transformation re-

quests. The rest create a number of temporal requests. For each stream, there is a workload

generator thread associated with it. It controls the request generation based on a set of work-

load parameters, which are specified before the aging process starts. Only the create and delete

requests are generated during the aging process so that we can fully exercise the file system

allocation policy in relatively short periods. All those streams use the closed-loop model: a

new request is generated only after the previous one is completed.

7.2.1.3 Aging Parameters

Several key parameters control the the workload stream characteristics, including the

large/small object ratio, create/delete ratio, the mean inter-arrival time, and the mean object

size. All the ratio numbers are between zero and one. In current implementation, we employ

the uniform distribution to generate the object size and the Poisson distribution to generate

the request inter-arrival time. Since our workload generator use the closed-loop model, the

inter-arrival time means the time between the completion of outstanding request and the issue

of the new request.

The object identifier space is partitioned into streams. Each stream owns a set of

object identifiers exclusively so that operations from one stream will not affect the activities

of other streams. There is a hash-based data structure for each stream that tracks the objects

128

it creates. The workload generator uses this structure to quickly identify an existing object so

that it can generate a delete request without querying the underlying file system. It also helps

to avoid issuing multiple create requests for the same object.

7.2.1.4 Aging Workload Generation Process

To generate a new request, the workload generator first decides the request type.

It generates a random number and compares it with the create/delete ratio. If the random

number is smaller than the ratio value, an object create request will be issued. Otherwise an

object delete request will be issued. For a create request, it further decides the object type,

large or small, by generating another random number and comparing it with the large/small

object ratio. After obtaining the object type, the generator allocates an object identifier from its

own id space and creates the object size, as specified in Section 7.2.1.3. Finally, it generates an

inter-arrival time and issue the request after the time expires. For a delete request, it generates

a random number and uses it to index the object table to find an existing object. A delete

request to that object will be issued after the inter-arrival time expires.

A challenging task is to age the disk to a desired utilization with arbitrarily large

number of requests. It requires the workload generator to keep track of the target disk usage.

When the usage is far below the desired one, it tends to issue more write requests. As the

usage exceeds the target one, it is more likely to issue delete requests. Such controls are

implemented by the variable create/delete ratio for different streams. The create/delete ratio

for the temporal request stream is fixed at 0.5 so that total create and delete request should be

equal in the long run. While the transformation stream maintains a ratio table that contains

129

variable create/delete ratios for different disk utilizations. The generator uses the actual disk

usage to index the table in order to obtain the current create/delete ratio. The ratio table is

pre-computed. When the actual usage is lower than the desired usage, the ratio is larger than

0.5, which means the possibility of generating a create request becomes larger. The bigger

the usage difference, the larger the ratio. Similiarly, when the actual usage is higher than the

desired usage, the ratio is smaller than 0.5. The bigger the usage difference, the smaller the

ratio.

Such an aging scheme simulates more realistic environments: workload characteris-

tics, e.g. create/delete ratio, fluctuates significantly from time to time due to random number

generation, which causes the disk usage to vary a lot in a short period of time. However,

the overall disk usage will eventually meet with our expection since the pre-defined table dy-

namically adjusts the create/delete ratio. Using this approach, we can easily age a disk to a

specific utilization. The create/delete ratio for the temporal request stream is fixed at 50%,

which means that none of the temporal requests will be persistent on disk in the long run. The

temporal I/O streams are tuned to be more intense than the transformation stream in order to

speed up the aging process.

In our current setup, we employ two streams, one for transformation requests and

the other for temporal requests. A total of 100,000 requests are issued for the transformation

purpose and more than 200,000 requests are issued by the temporal I/O stream. The key pa-

rameters of the transformation stream are exactly the same as the SynWrite workload. The

characteristics of the temporal I/O stream are chosen to be fully random with only one restric-

tion on the maximum object size. Although it is hard to evaluate the effectiveness of our aging

130

method due to the lack of a existing real system, we do find that our approach successfully

exercises the underlying file systems, as demonstrated in section 7.4.

7.3 Region Size and Block Size

One important parameter in traditional file systems is the block size. A file sys-

tem block is the smallest allocation unit. File data smaller than the block size consumes a

full block on disk. The space wasted due to the block allocation is referred to as the internal

fragmentation. Choosing a smaller block size will reduce internal fragmentation. However, a

smaller block size increases file system metadata sizes and associated management overheads.

As a file system ages, constant file allocation and deallocation will cause free space to be frag-

mented, which often lead to non-sequentiality of file allocations and worse performance in

the long run. This effect is exaggerated by the small block size since it reduces the minimal

contiguous disk space. Therefore, choosing a balanced block size is crucial in designing a file

system. OBFS further complicates this process because it introduces the region concept. The

disk space is partitioned into fixed size regions. Regions may have different block sizes, but

all the blocks inside a region are of the same size. In this section, we focus on studying the

performance impacts of the region size and the block size through a series of micro bench-

marks. All experiments were run on an empty disk partition using the TwoValue workloads.

Each experiment was repeated three times and the mean value of the three results is reported.

Figure 7.1 shows the overall system throughput under different region sizes. We ran

our experiments using the TwoValue workloads. The ratio parameter indicates the fraction of

131

Region Size (MB)

0 16 32 64 128 256 512 1024

Th
ro

ug
hp

ut
 (M

B/
s)

0

10

20

30

40

ratio 0
ratio 0.5
ratio 0.8
ratio 1

(a) Asynchronous Write

Region Size (MB)

0 16 32 64 128 256 512 1024

Th
ro

ug
hp

ut
 (M

B/
s)

0

10

20

30

40

ratio 0
ratio 0.5
ratio 0.8
ratio 1

(b) Synchronous Write

Figure 7.1: OBFS performance as the region size varies. TwoValue micro benchmarks are used
in the experiments. The ratio parameter indicates the fraction of the large object requests.

132

the large object requests among all requests. We vary the region size from 16 MB to 1024 MB

and evaluate them using TwoValue workloads with ratio of 0, 0.5, 0.8, and 1, respectively. The

block sizes in the experiments are set to 512 KB for large blocks and 4 KB for small blocks.

Experiments in Figure 7.1(a) employ asynchronous writes, while those in Figure 7.1(b) use

synchronous writes. From the figures, we can see the region size has a slight impact on the

overall performance. On average, write throughput improves as the region size increases.

However, the improvements can barely be observed: there are only two to four MB/s difference

between the largest region size and the smallest region size, which account for 5% to 10%

of the overall performance. We can see from both figures that overall throughput is almost

unchanged when the region size grows beyond 256 MB. This indicates that any region size

larger than 256 MB would be a good choice for OBFS.

OBFS shows the best performance under the large object workloads, which main-

tains 37 to 40 MB/s under all region sizes. It demonstrates consistent throughput whether

synchronous writes or asynchronous writes are used. This result is of no surprise since we col-

locate large blocks with their metadata. A pure large object workload will result in a sequential

disk write stream. The memory buffering during asynchronous writes has no chance to further

improve the already optimal request stream. In fact, we observe a small performance degrada-

tion using asynchronous writes. This is due to the computational overhead of examining the

disk queue and managing the cache.

The performance of small object requests, on the other hand, suffers under syn-

chronous writes. In Figure 7.1(b), a small object stream with request size of 32 KB shows

average throughput from 12 to 14 MB/s, as shown by the line with ratio of 0. With only 20%

133

of small object requests, the average throughput drops significantly from 38 MB/s to 25 MB/s.

The main reason for the performance degradation is that the small objects employ the tradi-

tional layout scheme, which separates the object data from its metadata. OBFS writes both

the data and metadata before committing the request. This causes disk seeks and decreases

the disk bandwidth utilization. Asynchronous write helps a lot in such situations, as depicted

in Figure 7.1(a). All of the small request workload and mixed workloads present good perfor-

mance around 25 to 31 MB/s.

It is interesting to note that the mixed workload with a ratio value of 0.5 shows the

worst performance under asynchronous writes. After close examination of the traces, we find

that two factors are contributed to this result: the ratio between the object metadata and data,

and the frequency of region switching. With the aid of write buffering, most object requests

can be packed into large sequential disk requests. Thus, the actual disk bandwidth utilization

is dominated by the metadata/data ratio. The larger the ratio, the lower the utilization. Another

factor, the frequent region switching, is observed only in mixed workloads. In those workloads,

OBFS has to switch between large block regions and small block regions to enforce the block

allocation rule. This causes frequent long seeks. The small object workload has the worst

metadata/data ratio. However, it has no region switch overhead, which accounts for better

throughput compared to the mixed workload with the ratio of 0.5. For the workload with the

ratio of 0.8, the better disk bandwidth utilization dominates over the region switch overhead.

Therefore, OBFS shows better throughput in such workload than in the small object workload.

Another important parameter, the large block size, is evaluated through a series of

experiments, as demonstrated in Figure 7.2. We vary the large block size from 32 KB to

134

Large Block Size (KB)

0 32 64 128 256 512

Th
ro

ug
hp

ut
 (M

B/
s)

30

35

40

45
async write
sync write

Figure 7.2: OBFS performance as the large block size varies.

135

512 KB and fix the region size 256 MB. All experiments write 2 GB of data, in the form

of large objects. As we can see from the figure, a small block size decreases the overall

throughput by 2 to 5 MB/s. However, as the large block size exceeds 64 KB, it is hard to

observe any performance difference. Although any block size beyond 64 KB will fit OBFS’s

needs, we still prefer the larger block size based on the the analysis of the scientific file system

workloads in section 4.1. Considering more than 90% of all disk space is occupied by 10% of

extremely large files, the bigger the large block is, the less blocks are consumed by those files.

Therefore, the less management overhead, both static and dynamic, is associated with them.

The small block size is not evaluated since many traditional file systems suggest the

use of 4 KB. Given that the small block allocation and usage patterns in OBFS are quite similar

to those in other traditional file systems, it is normal to expect the 4 KB block size to be a good

choice. Although some researcheres indicated that efficient handling of extremely small files

with smaller block sizes has significant impact on file system performance, it is important

to note that such conclusions are drawn from typical office and engineering environments,

where small files dominate. Our distributed file system, Ceph, is targeting scientific computing

environments. As an OSD storage manager in Ceph, OBFS has to efficiently handle object

workloads derived from such environments. The file system workload studies in Chapter 4

suggest that the number of small files are less significant in scientific environments. The

object workloads derived from them are dominated by large uniformly-sized objects. This

makes small block size less important. As a result, OBFS simply adopts the 4-KB block size

without further evaluating other alternative sizes. In the following evaluation, we set the large

block size 512 KB and the small block size 4 KB.

136

7.4 Allocation Policy

OBFS’s allocation policy consists of two parts: the region allocation policy and the

block allocation policy, as described in Section 6.1. The region allocation policy has slow

performance impacts in the long run, while the block allocation policy has immediate effects.

7.4.1 Region Allocation

While serving a new request, OBFS has two different choices for allocating space:

either allocating a new region close to the current location or seeking a long distance to use

the free space in an existing region. Using the free space in a remote existing region can

degrade performance temporarily, but it effectively conserves empty regions. These empty

regions are very valuable, especially when disk usage is high, because they provide more

buffer space in case the workload experiences temporary changes. For example, if all regions

are allocated with a few highly-utilized small block regions and many under-utilized large

block regions, OBFS may not be able to find enough space for small objects as the workload

suddenly changes to one that is dominated by small objects. This forces OBFS to start the

expensive region clean process. In our current design, OBFS adopts the conservative approach.

It always tries to consume the free space in existing regions before allocating a new one.

Although this scheme comes with some performance penalty, it is advantageous in the long

run since the region clean process will only occur in very rare cases. As we will demonstrate

in the following experiments, we have not seen the clean process being triggered in any of our

aging processes, even when we purposely disturb the aging workload to drastically change the

137

large/small object request ratios.

Figure 7.3 plots the OBFS region distribution after applying the aging workload to

the fresh file systems. The dark bars in the figure represent the large block region and the gray

bars represent the small block region. The empty regions are depicted using the white bars.

The aging workloads, as described in Section 7.2.1, are composed of two streams, one Syn-

Write workload stream to simulate the long term transformation effects and the other random

write/delete stream to mimic the temporal requests. The transformation stream has a fixed

large/small object request ratio, where large object requests account for 80%. The random

stream generates more small object requests. To further test the region allocation policy, we

change the average request inter-arrival time of the random stream several times during the

aging process. Smaller inter-arrival time of the random stream makes requests from the ran-

dom stream more intense, which effectively increases the number of small object requests in

a given period of time. This results in different large/small object request ratios. Two aged

system images are demonstrated in the figure. After aging, one represents the heavily loaded

system where 80% of all disk space is occupied. The other consumes only 20% of the disk

space. In the lightly loaded system, there are 20 large block regions, 4 small block regions,

and 5 empty regions. The large block regions maintain a fairly balanced utilization, ranging

from 20% to 30%. The small regions show very different utilizations. The first two small

regions, region 1 and 7, are almost empty, while region 14 and 20 have very high utilization.

Although we intentionally adjust the large/small object request ratio throughout the aging pro-

cess, OBFS still preserves five empty regions. A similar pattern can be observed as the disk

utilization increases. There are still three regions left untouched and large block regions have

138

Region Number

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30Pe
rc

en
ta

ge
 o

f U
se

d
Sp

ac
e

(%
)	

0

20

40

60

80

100
Large Block Region Small Block Region

(a) Disk Utilization 20%

Region Number

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30Pe
rc

en
ta

ge
 o

f U
se

d
Sp

ac
e

(%
)	

0

20

40

60

80

100
Large Block Region Small Block Region

(b) Disk Utilization 80%

Figure 7.3: Region usage distribution under different disk utilization.

139

even usages from 80% to 95%. Another nice properity is that the small block regions are

evenly distributed between the large block regions. On average, this tends to produce good

seek distances.

7.4.2 Object Fragmentation

OBFS aims to reduce disk fragmentation in the long run. Large objects in OBFS are

always contiguous on disk due to the large block. Therefore, we are more interested in small

object fragmentation and only measure its results. All the fragmentation data are collected

during the file system aging processes, as described in Section 7.2.1 The average number of

extents and average extent size are logged every ten thousand requests.

Figure 7.4(a) shows the average number of extents per object on disk. Two different

disk utilizations are plotted. Both lines show the same trend. At the very beginning, OBFS can

easily allocate contiguous space to every write request since the disk is empty. After 30,000

requests, the on-disk small objects start to fragment. The average number of extents per object

reaches two at 75,000 requests and fluctuates around two thereafter. The sharp rise and drop of

the curves are the results of changing the inter-arrival time of the temporal stream. A shorter

inter-arrival time implies that more small object requests arrive in the given time. Since OBFS

tends to serve requests in adjacent regions, the intensive small object request stream increases

the possibility of a single small block region being heavily exercised. Thus, it boosts the

average number of extents per small objects. High disk utilization incurs more pressure on

the block allocation policy, which can be clearly observed after 120,000 requests. The small

objects on the high utilization disk are more fragmented than those on the low utilization disk.

140

Number of Requests (X 1,000)

0 50 100 150 200 250 300

Av
er

ag
e

Ex
te

nt
s

pe
r O

bj
ec

t

1

2

3

4

20%
60%

(a) On-disk small object fragmentation

Number of Requests (X 1,000)

0 50 100 150 200 250 300

Av
er

ag
e

Ex
te

nt
s

pe
r O

bj
ec

t

1

2

3

4

20%
60%

(b) Overall small object fragmentation

Figure 7.4: Average number of extents per small object as the file system ages. The disk aged
to 60% full is plotted in a dashed line. The one with 20% utilization is depicted in a solid line.

141

At the end of the aging process, the small objects on the 60% full disk have a little more than

three extents.

Figure 7.4(b) counts all allocated small objects, either on disk or being deleted.

Unlike the on-disk objects that result primarily from the transformation stream, the overall

objects reflect both the transformation stream and the random stream. Since the random stream

simulates the temporary requests that tend to be removed in a short period of time, it is tuned

to be more intense and more bursty than the transformation one. Such bursty patterns tend

to increase the space pressure in the outstanding region and result in more fragmentations in

object allocations. As we can see from Figure 7.4(b), the 20% curve is similar to the one in

Figure 7.4(a), while the 60% line is quite different from the one in Figure 7.4(a) as the deleted

objects are counted in. It shows bigger fluctuation and more fragmentation, which demonstates

that at high disk utilization, OBFS is more sensitive to workload changes, as expected.

From these experiments, we see that OBFS can manage to keep fragmentation low

among small objects. The average number of extents per small object is between 2 and 3.

Considering the always-contiguous large objects, which account for the majority of on-disk

objects, the average number of extents per object is significantly lower than 2.

The average extent size is depicted in Figure 7.5. The ideal value of the average

extent size should be around 250 KB since we randomly distribute the small objects between

4 KB and 512 KB. The figure indicates that in practice OBFS can maintain its value around

100 KB. As expected, the higher the disk utilization, the smaller the average extent size.

142

Number of Requests (X 1,000)

0 50 100 150 200 250 300

Av
er

ag
e

Ex
te

nt
 S

ize

0

50

100

150

200

250 20%
60%

(a) On-disk small object extent size

Number of Requests (X 1,000)

0 50 100 150 200 250 300

Av
er

ag
e

Ex
te

nt
 S

ize

0

50

100

150

200

250 20%
60%

(b) Overall small object extent size

Figure 7.5: Average extent size as the file system ages.

143

7.5 Summary

OBFS design is specially optimized for the object workloads derived from the scien-

tific computing environments. To faciliate the performance evaluation, we introduced several

micro benchmarks and synthetic workloads, which are employed in this chapter and the fol-

lowing chapter. An object file system aging technique as well as a sythetic aging workload are

also presented to simulate a more realistic environment.

Using these micro benchmarks, we study several key design parameters of OBFS,

such as the large block size and the region size. Our results show that the region size has

only a slight impact on the overall throughput. On average, write throughput improves as the

region size increases. However, those improvements are small, ranging from 5% to 10%, that

they can barely be observed. The overall throughput is almost unchanged when the region size

grows beyond 256 MB, which indicates that any region size larger than 256 MB would be a

good choice for OBFS. We also evaluated the best large object size for OBFS and concluded

that the large block sizes between 128 KB and 1024 KB have similiar performance impacts.

Thus, we choose 512 KB as the default large block size to better cope with the object size

chosen by the high level file system design. We further study the region and object allocation

policies under long-term aging workloads. OBFS region allocation policy successfully bal-

ances the object workload across all used regions and preserves a significant amount of empty

regions even after long-term aging. Small object regions are evenly distributed among the

large object regions, which tend to leverage the seek distances in mixed object workloads. The

object fragmentation are well controlled using the object allocation policy. The small object

144

fragmentation slowly grows from 1 to 2 and flucturates between 2 to 3 during aging process.

Considering the always-contiguous large objects, which account for the majority of on-disk

objects, the average number of extents per object is significantly lower than 2.

145

Chapter 8

Performance Comparison

In this chapter, we study in detail the I/O characteristics of OBFS and compare them

with those of general purpose file systems, Ext2 and XFS. We are interested in how OBFS

would respond to various workload parameters. Since no real object workload exists, we ex-

pect to learn OBFS’s advantage or weakness under workloads with wide ranges of parameters

through those experiments, demonstrating the OBFS effectiveness even as the target object

workload shifts from its expected ranges. The workloads and benchmarks used in this chapter

are the same as those described in Section 7.2.

Objects are mapped into individual files under the root directory in Ext2 and XFS.

As we mentioned in Section 5.4.2, Ext2 suffers from big directories due to the linearly-name-

lookup scheme. It will introduce significant performance degradation if all objects are placed

in the same directory. To mitigate this problem, we create multiple directories, 256 in the

experiment systems, at the root of those file systems. An object is hashed into one of those

directories using a simple hash function: the high two bytes of its object identifier are XORed

146

with its lower two bytes, whose result is then used modulo the number of the directories under

the root. This approach alleviates the performance degradation caused by the big directory in

Ext2 and enables us to fairly compare performance difference between Ext2 and OBFS.

8.1 Read/Write Throughput Variance

OBFS is designed to provide high sustained bandwidth with minimal variation.

Some applications, such as databases, are sensitive to throughput variation because their per-

formance is severely bounded by log updates. Their normal activities stop every time log

writes block. Big throughput variations typically result in longer response time and lower

overall transaction throughput. In this section, we evaluate the throughput variation of OBFS

and compare it with that of Ext2. We choose the TwoValue workload with the ratio parameter

of 0.8 to study both the synchronous and asynchronous write characteristics. To extract the

read characteristics, we conduct experiments with both the random read and sequential read

workloads. All experiments run on fresh file systems. The throughput data are collected every

second.

Figure 8.1 shows the first 150 seconds of write experiments. As we can see from

Figure 8.1(a), OBFS has pretty constant asynchronous write throughput with a small variation

of less than 3 MB/s. Its sustained throughput floats around 40 MB/s after the buffer writes in

first several seconds. On the other hand, the asynchronous write throughput of Ext2 presents

extreme variation. The curve repeats in similar patterns: a short period of peak throughput

followed by several seconds of idleness. Linux buffer cache contributes to this throughput

147

Time (seconds)

0 30 60 90 120 150

Th
ro

ug
hp

ut
 (M

B/
se

c)

0

50

100

150

200

250

300

ext2
obfs

(a) Asynchronous write

Time (seconds)

0 30 60 90 120 150

Th
ro

ug
hp

ut
 (M

B/
se

c)

0

10

20

30

40

50

ext2
obfs

(b) Synchronous write

Figure 8.1: Short term write throughput comparison between OBFS and Ext2. The TwoValue
workload with the ratio parameter of 0.8 is employed in both experiments.

148

variation. Since Linux initiates its buffer flushing thread (bdflush) in blocking mode when the

memory pressure is high, Ext2 will choke during the dirty buffer flushing time, as indicated by

the zero throughput region in the figure. As soon as the cache space is available, Ext2 starts

to consume more buffer to serve external requests until the next flushing time. During buffer

writes, the write throughput is very high. However, the underlying disk stays idle, which hurts

the sustained throughput. OBFS addresses the variation problem by managing its own object

buffer cache in the page cache. Rather than blocking all requests until large amount of page

frames are claimed, the object buffer cache returns each page frame to the OS as soon as it is

available. Such claimed pages can be immediately used to serve pending requests. Therefore,

the cache flushing thread runs in parallel with the memory allocation thread, which reduces

the throughput variation and maximizes the disk bandwidth utilization. The average write

throughput for Ext2 is around 37 MB/s, 3 MB/s less than that of OBFS.

Figure 8.1(b) plots the synchronous write throughput variation over time. Both Ext2

and OBFS show comparable performance around 20 MB/s. However, the causes of their

variation are different: OBFS needs to jump between different regions to service different type

of requests; Ext2 has to synchronously write the file data as well as related metadata, such

as the inode and directory entry. OBFS shows a little bit less variation in synchronous write

mode.

We ran several experiments to examine the read throughput variation, as depicted in

Figure 8.2. All experiments ran on file systems with 30,000 objects, 80% large objects and

20% small objects. The random read workload simply selects one of the on-disk objects and

reads it back, while the sequential read workload reads back all objects following their write

149

Time (seconds)

0 30 60 90 120 150

Th
ro

ug
hp

ut
 (M

B/
se

c)

0

5

10

15

20

25

ext2
obfs

(a) Random read

Time (seconds)

0 30 60 90 120 150

Th
ro

ug
hp

ut
 (M

B/
se

c)

0

10

20

30

40

50
ext2
obfs

(b) Sequential read

Figure 8.2: Short term read throughput comparison between OBFS and Ext2. 30000 objects
are written to a fresh file system before conducting the read experiments. The random read
experiments generate read targets by randomly selecting an object from disk. The sequential
read experiments read back all objects following the order that they were written.

150

order. All file systems were unmounted before starting experiments to clean up the buffer

cache. In the random read experiments, as shown in Figure 8.2(a), both OBFS and Ext2 have

low throughput due to the random seeks. OBFS has a 3 to 4 MB/s advantage over Ext2, largely

owing to the collocation of the data and metadata of large objects. Although the throughput

variations are comparable to each other, we notice that Ext2 has several sharp drops every

30 seconds. One possible explanation is that the OS starts to release the buffer cache due to

memory pressures, which holds the entire cache for a short period and decreases the overall

throughput.

The sequential read experiments are plotted in Figure 8.2(b). Ext2 demonstrates

significantly better performance than OBFS in this scenario, with 10 MB/s advantage com-

pared with 30 MB/s throughput of OBFS. OBFS is not well prepared for such strict sequential

read workloads because it treats large objects and small objects differently. Large objects and

small objects are allocated in different regions even if they arrive contiguously in the same

stream. As the strict read workloads arrive, OBFS still needs to switch between regions to

retrieve those objects, while Ext2 translates the workload into nearly perfect sequential disk

I/Os. However, as we mentioned in Section 4.2, such strict sequential read workloads are un-

realistic since they require a single server to exclusively access a set of OSDs at both write and

read time and the workload stream happens to contain both large and small object requests.

This scenario is rare in a large parallel/distributed system.

151

8.2 Mixing Small and Large Objects

OBFS is designed to optimize for large objects while still maintaining good per-

formance for small objects. Although we conclude in Section 4.2 that the object workloads

for scientific environments are typically composed of more than 80% large object requests and

20% small object requests, we are still interested in studying how OBFS behaves under a wider

range of workloads. Such knowledge will help us in deciding the applicable environments of

OBFS. We set up experiments on both fresh and aged file systems and compare OBFS against

Ext2 and XFS. The benchmarks used are the TwoValue workloads with the ratio parameter

ranging from 0 to 1. The large block size and small block size are set by default to 512 KB and

4 KB, respectively. The request size in the workload is either 512 KB or 16 KB. One GB of

data are written for each run. Each experiment is repeated three times. The average throughput

is plotted in the figure.

The x axis in Figure 8.3 indicates the fraction of large object requests in all requests.

The ratio value of zero means all requests reference small objects; the ratio value of one

means that all requests are large object requests. The curves in Figure 8.3(a) show that almost

all file systems improve their write throughput, whether synchronous or asynchronous, as the

fraction of large object requests increases. The only exception is that OBFS exhibits decreased

throughput as the ratio increases from 0 to 0.2 during the asynchronous write experiments. The

main reason for this trend is related to the region switching. When the ratio is zero, OBFS

deals with only one region type. With the help of efficient metadata design, OBFS can achieve

extremely good performance compared to Ext2 and XFS. However, with large object requests

152

Workload Ratio

0 0.2 0.4 0.6 0.8 1

Th
ro

ug
hp

ut
 (M

B/
s)

0

10

20

30

40

obfs async
obfs sync
ext2 async
ext2 sync
xfs async
xfs sync

(a) Fresh File System

Workload Ratio

0 0.2 0.4 0.6 0.8 1

Th
ro

ug
hp

ut
 (M

B/
s)

0

10

20

30

40

obfs async
obfs sync
ext2 async
ext2 sync
xfs async
xfs sync

(b) Aged File System (60% full)

Figure 8.3: Write throughput varies as workload small/large ratio changes.

153

mixed in, OBFS starts to jump between regions, which degrades the performance. As the ratio

increases beyond 0.2, the benefits of large object requests offset the region switching cost

and lead the overall throughput into an up trend. Ext2 demonstrates very good asynchronous

write performance with sustained throughput around 30 MB/s. OBFS lags behind in the range

between 0.1 to 0.6. As the ratio exceeds 0.7, OBFS shows its advantages on the large object

optimization by a factor ranging from 10% to 20%.

All file systems have similiar synchronous write performances as the small object

requests dominate. The sustained throughput is around 20 MB/s. OBFS differs from the

other two when the workload contains more large object requests. Its synchronous write per-

formance improves greatly after the ratio of 0.6, while Ext2 and XFS stay at 20 MB/s with

almost no changes. It is interesting to note that OBFS has higher synchronous write through-

put than the asynchronous one when the workload contains purely large object requests. The

reason for this, as we explained before, is that OBFS allocates both object data and metadata

contiguously on the disk. Workloads with purely large requests will result in perfectly sequen-

tial disk I/Os. Buffering such workloads has no benefit. On the contrary, memory management

overheads associated with the object cache degrade the overall throughput.

Figure 8.3(b) plots the write throughput on the aged file systems. Compared with

those on the fresh file systems, both the synchronous and asynchronous writes have about

15% to 25% of performance degradation. It is obvious that the fragmented space of the aged

file systems decreases the possibility of allocating contiguous space for objects and merging

buffered requests into big disk I/Os. Again, OBFS has clear edges on both high ratio range

and low ratio range. For the middle range, OBFS is comparable to Ext2 and shows a little

154

advantage over XFS.

8.3 Request Sizes

In previous experiments, it is of no surprise to see that OBFS has clear advantage on

the large object side since its goal is to optimize for the large object workloads. However, we

did not expect to see OBFS beats the other two file systems with large margins in the small

object end. In this section, we run a series of experiments with fixed request size to illustrate

the OBFS performance for small objects. The basic setup is identical to the previous one

except that the workloads used here have only one fixed size.

OBFS shows consistent throughput for asynchronous writes. The overall throughput

is around 27 MB/s and 22 MB/s for the fresh system and the aged system respectively. Ext2

throughput becomes very low when the request size is small. With merely 1 MB/s throughput

at the request size of 8 KB, OBFS exhibits a twenty-fold performance advantage. The main

reason for such low throughput is the inability of the Ext2 directory structure in handling large

number of small objects. Ext2 employs linear search to locate a file under a directory. Such

search has to be executed for every object write/create since it needs to either find the entry or

validate that there is no duplicated copy. Although the hash-based dentry cache can reduce the

overhead in this situation, only a small fraction of dentries can be loaded into memory given

the large size of a typical dentry. Once missing in the dentry cache, Ext2 has to perform the

linear search on the expanding directory file. OBFS addresses this flat name space problem

by maintaining a very compact mapping table. On average, each object only occupies a little

155

Request Size (KB)

0 8 16 32 64 128 256 512 1024

Th
ro

ug
hp

ut
 (M

B/
s)

0

10

20

30

obfs async
obfs sync
ext2 async
ext2 sync
xfs async
xfs sync

(a) Fresh File System

Request Size (KB)

0 8 16 32 64 128 256 512 1024

Th
ro

ug
hp

ut
 (M

B/
s)

0

10

20

30

obfs async
obfs sync
ext2 async
ext2 sync
xfs async
xfs sync

(b) Aged File System

Figure 8.4: Write throughput varies as request size changes.

156

more than 8 bytes in this table. The mapping table with millions of objects can fit easily into

memory. Thus object lookup is extremely efficient for OBFS. OBFS also benefits from the

minimal metadata update associated with each object operation. Unlike Ext2 and XFS, which

require up to four different I/Os to update all related metadata, OBFS only needs one additional

I/O for object metadata. Fewer seeks are incurred and more disk bandwidth is available for

user data.

OBFS demonstrates extremely good write performance for workloads containing

purely large objects or small objects. For mixed workloads, the frequent switches between

different regions offset some of the advantages. However, it is still comparable to the other

two file systems for asynchronous writes and even shows some improvements for synchronous

writes.

8.4 Aged File System Performance Study

Aged file systems provide more realistic environments for performance evaluations.

File system throughput measured on an aged system is more useful to demonstrate its behavior

in the real world. In this section, we measure the write performance of all three file systems on

aged disks using the aging technique described in section 7.2.1. The aging workloads employ

two streams with a total write/delete requests of around 450,000. To set up the experiments, we

format a disk using one of the three file systems and apply the aging workload until a specific

number of requests have been issued. One parameter of the aging workload determines the

target disk utilization. During the aging process, the disk utilization may fluctuate, but it will

157

eventually settle on the target that we specified. Such aged disk images are backed up to

another disk so that we could run multiple experiments without repeating the time-consuming

aging process. For each run, a total data of 1 GB are dumped into the aged systems using the

TwoValue workload. The large request size is 512 KB and the small request size is 16 KB.

We can see from Figure 8.5 and Figure 8.6 that file system performance generally

decreases as the disk utilization is increased with a few exceptions. On average, Ext2 is more

sensitive to disk usage. It shows good asynchronous write performance when the disk usage is

low, while its performance drops significantly as 80% of the disk space is used up. As shown

in Figure 8.5(a), when facing the small request benchmark, Ext2 throughput at 80% disk usage

is almost half of that at 20% disk usage. For mixed workloads with Ratio of 0.5 and 0.8, its

performance degrades by a factor of 25% and 30% respectively. OBFS and XFS, on the other

hand, are less sensitive to the aged disk usage. Their curves are flatter due to their better space

management policies. Both file systems try to prevent large extent of contiguous space from

being fragmented, which is beneficial when free space is limited.

In general, OBFS performs the best for synchronous writes and shows some advan-

tages on a high utilization disk for asynchronous writes. It is a little surprising to see that

Ext2 performs better than XFS in almost all experiments. Several factors contribute to Ext2’s

success. First, Ext2 deeply buffers asynchronous writes before dumping them all together to

the disk. This increases the potential for large sequential disk I/Os. However, it also causes big

variance on throughput. We notice that Ext2 tends to choke for several seconds under inten-

sive workloads during almost all of our experiments. Such “choke” behavior is not desirable

in parallel environments since it might hold up other OSDs that depend on it. Second, XFS is

158

Disk Utilization (%)

10 30 50 70 90

Th
ro

ug
hp

ut
 (M

B/
s)

0

5

10

15

20

25

30

35
obfs async
ext2 async
xfs async
obfs sync
ext2 sync
xfs sync

(a) Small Objects (Ratio 0)

Disk Utilization (%)

10 30 50 70 90

Th
ro

ug
hp

ut
 (M

B/
s)

0

5

10

15

20

25

30

35

obfs async
ext2 async
xfs async
obfs sync
ext2 sync
xfs sync

(b) Large Objects (Ratio 1)

Figure 8.5: Aged file system performance study using small object and large object workloads.

159

Disk Utilization (%)

10 30 50 70 90

Th
ro

ug
hp

ut
 (M

B/
s)

0

5

10

15

20

25

30

35

obfs async
ext2 async
xfs async
obfs sync
ext2 sync
xfs sync

(a) Ratio 0.5

Disk Utilization (%)

10 30 50 70 90

Th
ro

ug
hp

ut
 (M

B/
s)

0

5

10

15

20

25

30

35

obfs async
ext2 async
xfs async
obfs sync
ext2 sync
xfs sync

(b) Ratio 0.8

Figure 8.6: Aged file system performance study using mixed object workloads

160

a journaling file system, which spends additional I/Os to log file system activities/transactions

and carefully chooses update orders to achieve fast recovery. Ext2 does not care about recovery

and freely writes buffered data, which achieves the best performance. Third, a synchronous

write to Ext2 only forces it to flush the user data back to the disk. The metadata is still kept

in memory. This greatly reduces small random I/Os but increases data loss probability. It is

still possible to lose an object even if it has been synchronously written to Ext2. Finally, XFS

is designed for large systems. It applies the B-Tree structure extensively internally, which is

efficient as the file system grows. Our current setup employs only an 8 GB partition for all

experiments. This may not be large enough for XFS to show significant advantage over Ext2.

Considering all these facts, we can see why XFS performs worse than Ext2 in this series of

experiments.

Another interesting point worth mentioning is that OBFS throughput actually in-

creases from 60% to 80% disk utilization. This trend is quite siginificant in Figure 8.5(b).

The throughput surges from 21 MB/s to 33 MB/s. After studying the underlying I/O traces,

we determine the OBFS allocation policy is the key factor. OBFS tends to allocate objects in

already used regions rather than touching empty regions. As showed in figure 7.3(b), OBFS

still manage to keep three empty regions on an 80% full disk after long-term aging process.

All other regions have very high utilization. Most of them are larger than 90%. When the write

workloads arrives, those existing regions are easily filled up. OBFS has to allocate the empty

regions to service more requests. Writing to those empty regions is no different from writing

to a fresh system. Thus, it is not surprsing to see the performance surge. In the future we may

explore alternative policies for region selection.

161

8.5 Read/Write Throughput

In this section, we further evaluate the read/write performance of all three file sys-

tems using the SynRead and the SynWrite workloads. The SynRead workload fetches 20% of

on-disk objects, 60% of all requests are random reads and the rest are sequential reads. No

object will be read more than once in order to avoid cache effects. Detailed descriptions of

these workloads can be found in section 7.2.

Figure 8.7(a) shows the read performance on aged file systems. Before each exper-

iment, the file system cache is cleared through unmount. XFS definitely wins in this area,

leading OBFS by 3 to 5 MB/s on average. Ext2 performs extremely poorly with the average

read throughput around merely 8 MB/s. The random read pattern in the SynRead workload

really hurts the Ext2 performance. Compared with hash table in OBFS and the B-Tree in XFS,

Ext2 simply organizes all its directory entries flat in a directory file. To find a file inside a

directory, Ext2 has to do linear search in those directory entries. In our test systems with thou-

sands of objects on the disk, this process can be very slow. Another disadvantage of Ext2 is the

block-based allocation. Since its inode can only hold twelve direct block addresses, it requires

an additional indirect block for objects large than 48 KB in our test systems. Therefore, an

object read may require more than three disk I/Os before it can actually read the object data.

Finally, the block allocation policy of Ext2 has much greater potential of fragmenting existing

free space since it has no contiguous free space concept. All these facts contribute to the poor

read performance of Ext2.

OBFS shows its advantages again on the synchronous write. It beats both Ext2

162

Disk Utilization (%)

10 30 50 70 90

Th
ro

ug
hp

ut
 (M

B/
s)

0

5

10

15

20

25

30
obfs
ext2
xfs

(a) read performance

Disk Utilization (%)

10 30 50 70 90

Th
ro

ug
hp

ut
 (M

B/
s)

0

5

10

15

20

25

30

35

obfs async
ext2 async
xfs async
obfs sync
ext2 sync
xfs sync

(b) write performance

Figure 8.7: Overall read/write performance on aged file systems.

163

and XFS by 4 to 10 MB/s. Ext2 exhibits good asynchronous write performance. OBFS’s

asynchronous write throughput, dragged down by the overhead of frequent region switching,

is about 2 MB/s slower than that of Ext2. However, it is still faster than XFS by a margin of

1 to 2 MB/s. As we discussed in the previous section, the fast asynchronous write of Ext2

sacrifices the throughput consistency and file system recoverability, which can have negative

effects in parallel environments.

8.6 Sustained Write Throughput

Although Ext2 exhibits good asynchronous write performance in short term bench-

marks, we notice consistently that Ext2 is much slower in long term aging processes. It typi-

cally requires twice as much time as those of OBFS and XFS. Figure 8.8 shows the sustained

write throughput during first two hundred minutes of aging processes. The aging workload

used in Figure 8.8(a) has only one aging stream. It collects throughput data every minute. The

aging workload used in Figure 8.8(b) contains two aging streams, one of which is to simulate

the temporal requests. The throughput data are logged every ten minutes. An aging stream

contains only object writes and deletes. All of the requests are asynchronous requests. A more

detailed description of the aging workloads can be found in Section 7.2.1.

As plotted in Figure 8.8(a), the average write throughput of Ext2 is slightly less

than 10 MB/s when facing one aging stream. This is only one half of what OBFS has and

about 50% slower than that of XFS. The aging process starts by filling the disk with certain

amount of objects. As soon as the disk usage reaches the target value, the delete requests

164

Time (minutes)

0 50 100 150 200

Th
ro

ug
hp

ut
 (M

B/
se

c)

0

10

20

30

40
ext2
xfs
obfs

(a) Single-stream aging workload

Time (minutes)

0 50 100 150 200

Th
ro

ug
hp

ut
 (M

B/
se

c)

0

10

20

30
ext2
xfs
obfs

(b) Multi-stream aging workload

Figure 8.8: Sustained write throughput during aging process. Sub figure (a) uses a single aging
stream and collects the throughput data every minute. Sub figure (b) uses two aging streams
and collects the throughput data every ten minutes.

165

kick in. In our experiments, the object deletes initiate at one minute in the time line. We can

see from the figure, in the range between one and ten minutes, OBFS write throughput drops

to 22 MB/s after deletes start arriving. Both Ext2 and XFS still maintain high throughput

beyond 30 MB/s. This is because OBFS tends to allocate objects in existing regions. When

object deletes clean up some slots in existing regions, OBFS turns back to utilize them instead

of allocating new regions. On the other hand, Ext2 and XFS tend to consume fresh disk

space to maximize throughput. As soon as all large chunks of contiguous space are used

up, they are forced to utilize the fragmented space between existing objects. This reflects

in the figure as a sharp performance drop around ten minutes in the time line. Ext2 suffers

from the mixed workload of writes and deletes. Since the objects to be deleted are selected

randomly from disk, they exercise the Ext2’s name space management extensively. Like read

requests, the delete requests in Ext2 create many small I/Os to update the directory structures

and allocation bitmaps, they severely interfere with the write stream and drag down the overall

throughput. Both XFS and OBFS use journals to log the delete transaction and minimize the

impact of delete operations on the foreground write stream. We observe the same pattern in

Figure 8.8(b). The sustained throughputs of Ext2 and XFS hang around 7 MB/s and 14 MB/s

respectively. OBFS shows a bit larger variance in multiple-stream aging workloads. This is

because one of the aging stream generates large amount of small write/delete requests from

time to time to simulate the temporal requests. OBFS is more sensitive to the sudden changes

of the large/small request ratio, which leads to fluctuations on the write throughput.

166

8.7 Synthetic Object Benchmark

To obtain a comprehensive overview of OBFS performance under more realistic en-

vironments, we test OBFS performance using the synthetic object benchmark on the entire

disk, 80 GB in total. The key parameters of this benchmark are derived from the LLNL file

system workloads, as described in Section 4.2. The benchmark contains 40% read requests,

36% write requests, and 24% rewrite requests. The random read accounts for half of all read

requests and the rest are sequential reads. Among the write and rewrite requests, 60% are syn-

chronous and 40% are asynchronous. 80% of all requests reference to the large objects, whose

sizes are 512 KB. The small object size distributes uniformly between 4 KB and 512 KB. All

experiments were run on aged disks with four different disk utilizations: 20%, 40%, 60%, and

80%. The aging workloads consist of two aging streams with a total of 4 million requests,

whose characteristics are described in section 7.2.1.

For comparison, we also show both benchmark results from the 8 GB partition con-

figuration and the whole disk configuration. As we can see from figure 8.9, all file systems

show 20% performance degradations under the whole disk setup. This is largely due to the

bandwidth difference between different regions on the disk platter. The outer-most region

has the highest bandwith, which is around 44 MB/s. The inner-most region can only achieve

24 MB/s bandwith. Since the benchmark workloads cover the entire disk evenly, the overall

throughputs in this setup are much lower than those in the 8 GB partition setup.

As we can see from Figures 8.9(a) and 8.9(b), Ext2 shows the worst performance.

Its overall throughput ranges from 4 MB/s to 8 MB/s. Several factors contribute to the low

167

Disk Utilization (%)

10 30 50 70 90

Th
ro

ug
hp

ut
 (M

B/
s)

0

5

10

15

20

25

30
obfs
ext2
xfs

(a) 8 GB disk partition

Disk Utilization (%)

10 30 50 70 90

Th
ro

ug
hp

ut
 (M

B/
s)

0

5

10

15

20

25

30
obfs
ext2
xfs

(b) 80 GB disk

Figure 8.9: Performance comparison using synthetic object benchmark.

168

throughputs. First, the block-based allocation policy of Ext2 tends to fragment objects on an

aged disk. It relies on the buffer cache to coalesce small extents and improve disk bandwidth

utilization. However, most requests in the object benchmark are synchronous writes and ran-

dom reads, which does not benefit significantly from the buffer cache. Thus, the less-optimized

allocation policy results in more disk I/Os and effectively reduces the disk bandwidth utiliza-

tion. Second, Ext2 cannot effectively handle a flat name space. To find an object, it has to

linearly search the directory containing the object, which forces the loading of almost all en-

tries of the directory into memory. Both the computation time and disk bandwidth are wasted

due to the inefficient linear search algorithm. Ext2 uses the traditional directory entry to repre-

sent a file/object. The in-core data structure of a directory entry contains a lot of unnecessary

information for a storage manager at the OSD level, which decreases the total number of en-

tries that can be cached in the memory. Thus, the object-lookup process of Ext2 is very slow

and expensive. Third, Ext2 metadata layout is not optimized for the object workloads. Sev-

eral metadata need to be updated before an object is stored reliably on the disk. The frequent

synchronous write requests in the benchmark introduce a significant amount of synchronous

metadata I/Os. It therefore decreases the overall throughput.

XFS demonstrates much better performance than Ext2. Its extent-based allocation

policy minimizes free space fragmentation, which helps to lay out objects sequentially on the

disk. XFS delays the extent allocation of a newly-written object until it is flushed to disk.

As a result, multiple partial writes of an object can potentially be coalesced together, which

further reduces object fragmentation. XFS employs B+Trees to manage its directory structure.

Retrieving an object from a directory involves only a few lookups in the B+Tree structures

169

and then loads the corresponding directory entry. This process is very fast and can avoid the

loading of too many unrelated directory entries into memory, which saves disk bandwidth and

memory space. Compared to Ext2, XFS improves the overall throughput by a factor of 2.

OBFS demonstrates the dominant performance compared to Ext2, as shown in Fig-

ure 8.9(b). Its overall throughput is about two to three times higher than that of Ext2. It is

also higher than XFS by 18% to 38%. OBFS’s advantages on large object handling, efficient

metadata management, and optimized allocation policy contribute to most of its success in this

benchmark. Similar to XFS, OBFS achieves extent-like allocation through pre-allocated large

blocks and extent-based allocation policy. It employs a very compact hash structure that en-

ables fast object mapping and retrieving. Each object occupies an 8-byte mapping entry, which

is 10 times smaller than the traditional directory entry used by XFS. Thus, OBFS can buffer

much more object-indexing information than XFS, which effectively reduces related disk I/Os

and speeds up the object lookup process. Metadata layout in OBFS is designed to minimize

disk seek overheads. The onode of a large object is co-located with the large block. A large

sequential I/O is sufficient to store or retrieve a large object. In the benchmark with mostly

large object requests, OBFS greatly improves the overall performance through efficiently large

object handling.

8.8 Summary

OBFS benefits from various special designs optimized for the expected object work-

loads, as demonstrated in a series of experiments. The results show that OBFS successfully

170

limits the file system fragmentation after long term aging. OBFS preserves reasonable amount

of regions untouched even in a highly used disk. The aging loads are evenly distributed to

all allocated regions. The average number of extents for small objects is between 2 to 3 after

300,000 aging requests. Since large objects are always laid out contiguously on the disk, the

overall number of extents for both large and small objects is far below 2. OBFS demonstrates

good synchronous write performance, exceeding those of Ext2 and XFS by up to 80% on both

the fresh systems and the aged systems. Its asynchronous write performance is about 5% to

10% slower than that of Ext2 but 20% to 30% faster than that of XFS on a lightly used disk.

While on a heavily used disk, OBFS beats both Ext2 and XFS by a factor of 20%. OBFS read

performance almost triples that of Ext2 and only slightly slower than that of XFS. Since OBFS

is specially optimized for stripe-unit-sized objects, it shows extremely good performance for

streaming workloads that purely contain such objects. The sustained bandwidth on a fresh disk

is about 40 MB/s for both synchronous writes and asynchronous writes, which is apparently

limited by the maximum bandwidth of the disk used in the test system. Compared to Ext2

and XFS on a fresh system, it almost doubles the throughput for the synchronous writes and

improves 50% for the asynchronous writes. On an aged system, OBFS still leads by a factor of

15% to 50%. Putting all those factors into account, OBFS achieves 18% to 200% performance

improvements over XFS and Ext2 respectively under expected object workloads.

171

Chapter 9

Conclusions

The fast growing needs for high performance and large capacity storage are best

served by distributed storage systems in both high-performance and general-purpose comput-

ing environments. Traditional solutions, exemplified by NFS [56], provide a straightforward

distributed storage model in which each server exports a file system hierarchy that can be

mounted and mapped into the local file system name space. While widely used and highly ef-

fective, this model was originally designed for small, low-performance (by modern standards)

storage systems and is relatively inflexible, difficult to grow dynamically, and incapable of

providing performance that scales with the number of servers in a system.

Object-based storage model [42] promises to address these limitations through a

simple networked data storage unit, the Object Storage Device. This new model is different

from traditional storage model in that it separates the storage management from the file hier-

archy management, which reduces the the load on the file servers, enables direct data transfer

between clients and storage nodes, and improves the scalability of the file systems. The new

172

storage model introduces dramatic changes in the design and development of a reliable, scal-

able, high-performance object-based storage system. Among them, how to design a small but

efficient file system for OSDs is of great challenge.

This thesis focuses on the design, performance, and functionality of an individual

OSD in a large distributed object-based storage system, currently being developed at the UCSC

Storage Systems Research Center. Based on file system workload analysis and object work-

load studies, I extract the unique features of the object workloads and design an efficient

storage manager, named OBFS, for individual OSDs. OBFS employs variable-sized blocks to

optimize disk layout and improve object throughput. Large blocks, the same size as the sys-

tem stripe unit, are used to optimize the layout of large objects. The overall throughput can be

greatly improved since the large objects account for the majority of all objects in the expected

workloads. Small 4-KB blocks are employed to lay out non-stripe-unit-sized objects to mini-

mize space wasting and improve disk utilization. Large object metadata and attributes are laid

contiguously with its data, which further improves disk bandwidth utilization. The physical

storage space is partitioned into fixed size regions to organize different sized blocks. Such

design can effectively reduce free space fragementation even after long-term aging. The file

system metadata are also partitioned into regions and operated independently. This provides

better failure isolation and reduces recovery overheads. A compact hash-based structure is

introduced to manage the flat object namespace, which preserves the important memory space

and enables fast mapping between the global object name and the internal onode identifier.

A series of experiments have been conducted to evaluate OBFS performance com-

pared with two Linux file systems, the Ext2 and XFS. The results show that OBFS successfully

173

limits the file system fragmentation even after long term aging. OBFS demonstrates very good

synchronous write performance, exceeding that of Ext2 and XFS by up to 80% on both fresh

systems and aged systems. Its asynchronous write performance is about 5% to 10% lower than

that of Ext2, but 20% to 30% higher than that of XFS on a lightly used disk. While on a heav-

ily used disk, OBFS beats both Ext2 and XFS by 20%. The read performance of OBFS almost

doubles that of Ext2 and is only slightly lower than that of XFS. Putting all these factors into

account, OBFS achieves 30% to 40% performance improvements over Ext2 and XFS under

expected object workloads, and forms a fundamental building block for the larger distributed

storage systems.

174

Bibliography

[1] Adaptec Corportaion. Fibre channel, storage area networks, and disk array systems – a white

paper. Technical report, 1998.

[2] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cermak, J. R. Douceur, J. Howell, J. R.

Lorch, M. Theimer, and R. Wattenhofer. FARSITE: Federated, available, and reliable storage for

an incompletely trusted environment. In Proceedings of the 5th Symposium on Operating Systems

Design and Implementation (OSDI), Boston, MA, Dec. 2002. USENIX.

[3] D. C. Anderson, J. S. Chase, and A. M. Vahdat. Interposed request routing for scalable network

storage. In Proceedings of the 4th Symposium on Operating Systems Design and Implementation

(OSDI), Oct. 2000.

[4] A. Azagury, V. Dreizin, M. Factor, E. Henis, D. Naor, N. Rinetzky, O. Rodeh, J. Satran, A. Tavory,

and L. Yerushalmi. Towards an object store. In Proceedings of the 20th IEEE / 11th NASA

Goddard Conference on Mass Storage Systems and Technologies, pages 165–176, Apr. 2003.

[5] S. J. Baylor and C. E. Wu. Parallel I/O workload characteristics using Vesta. In Proceedings of

the IPPS ’95 Workshop on Input/Output in Parallel and Distributed Systems (IOPADS ’95), pages

16–29, Apr. 1995.

[6] T. Blackwell, J. Harris, , and M. Seltzer. Heuristic cleaning algorithms in log-structured file

systems. In Proceedings of the Winter 1995 USENIX Technical Conference, pages 277–288.

USENIX, Jan. 1995.

175

[7] D. P. Bovet and M. Cesati. Understanding the Linux Kernel. O’Reilly and Associates, Oct. 2000.

[8] P. J. Braam. The Lustre storage architecture. http://www.lustre.org/documentation.html, Cluster

File Systems, Inc., Aug. 2004.

[9] S. A. Brandt, L. Xue, E. L. Miller, and D. D. E. Long. Efficient metadata management in large

distributed file systems. In Proceedings of the 20th IEEE / 11th NASA Goddard Conference on

Mass Storage Systems and Technologies, pages 290–298, Apr. 2003.

[10] L.-F. Cabrera and D. D. E. Long. Swift: Using distributed disk striping to provide high I/O data

rates. Computing Systems, 4(4):405–436, 1991.

[11] P. H. Carns, W. B. Ligon, R. B. Ross, and R. Thakur. PVFS: a parallel file system for Linux

clusters. In Proceedings of the 4th Annual Linux Showcase and Conference, pages 317–327,

Atlanta, GA, Oct. 2000.

[12] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Rajamani, and D. Lowell. The Rio file cache:

Surviving operating system crashes. In Proceedings of the 7th International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS), pages 74–83,

Oct. 1996.

[13] P. F. Corbett and D. G. Feitelson. The Vesta parallel file system. ACM Transactions on Computer

Systems, 14(3):225–264, 1996.

[14] M. Dahlin, R. Wang, T. Anderson, and D. Patterson. Cooperative caching: Using remote client

memory to improve file system performance. In Proceedings of the 1st Symposium on Operating

Systems Design and Implementation (OSDI), pages 267–280, Nov. 1994.

[15] DOE National Nuclear Security Administration and the DOE National Security Agency. Pro-

posed statement of work: SGS file system, Apr. 2001.

[16] G. R. Ganger and M. F. Kaashoek. Embedded inodes and explicit groupings: Exploiting disk

bandwidth for small files. In Proceedings of the 1997 USENIX Annual Technical Conference,

pages 1–17. USENIX Association, Jan. 1997.

176

[17] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. In Proceedings of the 19th

ACM Symposium on Operating Systems Principles (SOSP ’03), Bolton Landing, NY, Oct. 2003.

ACM.

[18] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang, H. Gobioff, C. Hardin, E. Riedel,

D. Rochberg, and J. Zelenka. A cost-effective, high-bandwidth storage architecture. In Proceed-

ings of the 8th International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), pages 92–103, San Jose, CA, Oct. 1998.

[19] G. A. Gibson and R. Van Meter. Network attached storage architecture. Communications of the

ACM, 43(11):37–45, 2000.

[20] D. K. Gifford, R. M. Needham, and M. D. Schroeder. The Cedar file system. Communications of

the ACM, 31(3), Mar. 1988.

[21] J. Gray and A. Reuter. Transaction Processing : Concepts and Techniques. Morgan Kaufmann

Publishers Inc., San Mateo, California, CA, USA, 1993.

[22] J. H. Hartman and J. K. Ousterhout. The Zebra striped network file system. ACM Transactions

on Computer Systems, 13(3):274–310, 1995.

[23] D. Hildebrand and P. Honeyman. Exporting storage systems in a scalable manner with pNFS.

Technical Report CITI-05-1, CITI, University of Michigan, Feb. 2005.

[24] D. Hitz, J. Lau, and M. Malcom. File system design for an NFS file server appliance. In Pro-

ceedings of the Winter 1994 USENIX Technical Conference, pages 235–246, San Francisco, CA,

Jan. 1994.

[25] R. J. Honicky and E. L. Miller. Replication under scalable hashing: A family of algorithms

for scalable decentralized data distribution. In Proceedings of the 18th International Parallel &

Distributed Processing Symposium (IPDPS 2004), Santa Fe, NM, Apr. 2004. IEEE.

[26] IBM Corporation. IceCube – a system architecture for storage and Internet servers.

http://www.almaden.ibm.com/StorageSystems/autonomic storage/CIB Hardware/.

177

[27] IBM Corporation. IBM white paper: IBM storage tank – a distributed storage system, Jan. 2002.

[28] M. L. Kazar, B. W. Leverett, O. T. Anderson, V. Apostolides, B. A. Bottos, S. Chutani, C. F.

Everhart, W. A. Mason, S.-T. Tu, and E. R. Zayas. DEcorum file system architectural overview.

In Proceedings of the Summer 1990 USENIX Technical Conference, pages 151–164, 1990.

[29] J. J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file system. ACM

Transactions on Computer Systems, 10(1):3–25, 1992.

[30] D. Kotz and R. Jain. I/O in parallel and distributed systems. In A. Kent and J. G. Williams,

editors, Encyclopedia of Computer Science and Technology, volume 40, pages 141–154. Marcel

Dekker, Inc., 1999. Supplement 25.

[31] D. F. Kotz and N. Nieuwejaar. File-system workload on a scientific multiprocessor. IEEE Parallel

and Distributed Technology, 3(1):51–60, 1995.

[32] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,

W. Weimer, C. Wells, and B. Zhao. OceanStore: An architecture for global-scale persistent

storage. In Proceedings of the 9th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS), Cambridge, MA, Nov. 2000. ACM.

[33] R. Latham, N. Miller, R. Ross, and P. Carns. A next-generation parallel file system for Linux

clusters. LinuxWorld, pages 56–59, Jan. 2004.

[34] Lawrence Livermore National Laboratory. ASCI linux cluster. http://www.llnl.gov/linux/alc/,

2003.

[35] Lawrence Livermore National Laboratory. IOR software.

http://www.llnl.gov/icc/lc/siop/downloads/download.html, 2003.

[36] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual disks. In Proceedings of the 7th Interna-

tional Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), pages 84–92, Cambridge, MA, 1996.

[37] D. Long, S. Brandt, E. Miller, F. Wang, Y. Lin, L. Xue, and Q. Xin. Design and implementa-

178

tion of large scale object-based storage system. Technical Report ucsc-crl-02-35, University of

California, Santa Cruz, Nov. 2002.

[38] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarterman. The Design and Implementation

of the 4.4 BSD Operating System. Addison–Wesley, 1996.

[39] M. K. McKusick and G. R. Ganger. Soft updates: A technique for eliminating most synchronous

writes in the Fast File System. In Proceedings of the Freenix Track: 1999 USENIX Annual

Technical Conference, pages 1–18, June 1999.

[40] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A fast file system for UNIX. ACM

Transactions on Computer Systems, 2(3):181–197, Aug. 1984.

[41] L. W. McVoy and S. R. Kleiman. Extent-like performance from a UNIX file system. In Proceed-

ings of the Winter 1991 USENIX Technical Conference, pages 33–44. USENIX, Jan. 1991.

[42] M. Mesnier, G. R. Ganger, and E. Riedel. Object-based storage. IEEE Communications Maga-

zine, 41(8), Aug. 2003.

[43] E. L. Miller and R. H. Katz. Input/output behavior of supercomputing applications. In Proceed-

ings of Supercomputing ’91, pages 567–576, Nov. 1991.

[44] E. L. Miller and R. H. Katz. RAMA: An easy-to-use, high-performance parallel file system.

Parallel Computing, 23(4):419–446, 1997.

[45] E. L. Miller, D. D. E. Long, W. E. Freeman, and B. C. Reed. Strong security for network-attached

storage. In Proceedings of the 2002 Conference on File and Storage Technologies (FAST), pages

1–13, Monterey, CA, Jan. 2002.

[46] J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H. Howard, D. S. H. Rosenthal, and F. D.

Smith. Andrew: A distributed personal computing environment. Communications of the ACM,

29(3):184–201, Mar. 1986.

[47] J. Mostek, B. Earl, S. Levine, S. Lord, R. Cattelan, K. McDonell, T. Kline, B. Gaffey, and

R. Ananthanarayanan. Porting the SGI XFS file system to Linux. In Proceedings of the Freenix

179

Track: 2000 USENIX Annual Technical Conference, pages 65–76, San Diego, CA, June 2000.

USENIX.

[48] D. Muntz and P. Honeyman. Multi-level caching in distributed file systems. Technical Report

91-3, University of Michigan Center for IT Integration (CITI), Aug. 1991.

[49] D. Nagle, D. Serenyi, and A. Matthews. The Panasas ActiveScale storage cluster—delivering

scalable high bandwidth storage. In Proceedings of the 2004 ACM/IEEE Conference on Super-

computing (SC ’04), Nov. 2004.

[50] A. L. Narasimha Reddy and P. Banerjee. A study of I/O behavior of perfect benchmarks on a

multiprocessor. In Proceedings of the 17th International Symposium on Computer Architecture,

pages 312–321. IEEE, 1990.

[51] N. Nieuwejaar and D. Kotz. The Galley parallel file system. In Proceedings of 10th ACM Inter-

national Conference on Supercomputing, pages 374–381, Philadelphia, PA, 1996. ACM Press.

[52] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. S. Ellis, and M. Best. File-access characteris-

tics of parallel scientific workloads. IEEE Transactions on Parallel and Distributed Systems,

7(10):1075–1089, Oct. 1996.

[53] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson, and B. B. Welch. The Sprite

network operating system. IEEE Computer, 21(2):23–36, Feb. 1988.

[54] B. K. Pasquale and G. C. Polyzos. A static analysis of I/O characteristics of scientific applications

in a production workload. In Proceedings of Supercomputing ’93, pages 388–397, Portland, OR,

1993. IEEE.

[55] B. K. Pasquale and G. C. Polyzos. Dynamic I/O characterization of I/O-intensive scientific ap-

plications. In Proceedings of Supercomputing ’94, pages 660–669. IEEE, 1994.

[56] B. Pawlowski, S. Shepler, C. Beame, B. Callaghan, M. Eisler, D. Noveck, D. Robinson, and

R. Thurlow. The NFS version 4 protocol. In Proceedings of the 2nd International System Admin-

istration and Networking Conference (SANE 2000), Maastricht, Netherlands, May 2000.

180

[57] K. W. Preslan, A. Barry, J. Brassow, M. Declerck, A. J. Lewis, A. Manthei, B. Marzinski, E. Ny-

gaard, S. V. Oort, D. Teigland, M. Tilstra, S. Whitehouse, and M. O’Keefe. Scalability and failure

recovery in a Linux cluster file system. In Proceedings of the 4th Annual Linux Showcase and

Conference, Oct. 2000.

[58] A. Purakayastha, C. S. Ellis, D. Kotz, N. Nieuwejaar, and M. Best. Characterizing parallel file-

access patterns on a large-scale multiprocessor. In Proceedings of the 9th International Parallel

Processing Symposium (IPPS ’95), pages 165–172. IEEE Computer Society Press, 1995.

[59] B. C. Reed, E. G. Chron, R. C. Burns, and D. D. E. Long. Authenticating network-attached

storage. IEEE Micro, 20(1):49–57, Jan. 2000.

[60] O. Rodeh and A. Teperman. zFS—a scalable distributed file system using object disks. In

Proceedings of the 20th IEEE / 11th NASA Goddard Conference on Mass Storage Systems and

Technologies, pages 207–218, Apr. 2003.

[61] M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-structured file

system. ACM Transactions on Computer Systems, 10(1):26–52, Feb. 1992.

[62] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and S. Spence. FAB: Building distributed enterprise

disk arrays from commodity components. In Proceedings of the 11th International Conference

on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pages

48–58, 2004.

[63] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and implementation of

the Sun network file system. In Proceedings of the Summer 1985 USENIX Technical Conference,

pages 119–130, 1985.

[64] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel, and D. C. Steere. Coda:

A highly available file system for a distributed workstation environment. IEEE Transactions on

Computers, 39(4):447–459, 1990.

[65] F. Schmuck and R. Haskin. GPFS: A shared-disk file system for large computing clusters. In

181

Proceedings of the 2002 Conference on File and Storage Technologies (FAST), pages 231–244.

USENIX, Jan. 2002.

[66] P. Schwan. Lustre: Building a file system for 1000-node clusters. In Proceedings of the 2003

Linux Symposium, July 2003.

[67] M. Seltzer, K. Bostic, M. K. McKusick, and C. Staelin. An implementation of a log-structured

file system for UNIX. In Proceedings of the Winter 1993 USENIX Technical Conference, pages

307–326, Jan. 1993.

[68] M. Seltzer, K. A. Smith, H. Balakrishnan, J. Chang, S. McMains, and V. Padmanabhan. File

system logging versus clustering: A performance comparison. In Proceedings of the Winter 1995

USENIX Technical Conference, pages 249–264, 1995.

[69] E. Smirni, R. A. Aydt, A. A. Chien, and D. A. Reed. I/O requirements of scientific applica-

tions: An evolutionary view. In Proceedings of the 5th IEEE International Symposium on High

Performance Distributed Computing (HPDC), pages 49–59. IEEE, 1996.

[70] E. Smirni and D. Reed. Lessons from characterizing the input/output behavior of parallel scien-

tific applications. Performance Evaluation: An International Journal, 33(1):27–44, June 1998.

[71] K. A. Smith and M. I. Seltzer. A comparison of FFS disk allocation policies. In Proceedings of

the 1996 USENIX Annual Technical Conference, pages 15–26, 1996.

[72] K. A. Smith and M. I. Seltzer. File system aging—increasing the relevance of file system bench-

marks. In Proceedings of the 1997 SIGMETRICS Conference on Measurement and Modeling of

Computer Systems, pages 203–213, 1997.

[73] S. R. Soltis, T. M. Ruwart, and M. T. O’Keefe. The Global File System. In Proceedings of the 5th

NASA Goddard Conference on Mass Storage Systems and Technologies, pages 319–342, College

Park, MD, 1996.

[74] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and G. Peck. Scalability in the

182

XFS file system. In Proceedings of the 1996 USENIX Annual Technical Conference, pages 1–14,

Jan. 1996.

[75] D. Tang. Storage area networking – the network behind the server. Technical report, Gadzoox

Microsystems, 1997.

[76] H. Tang, A. Gulbeden, J. Zhou, W. Strathearn, T. Yang, and L. Chu. A self-organizing storage

cluster for parallel data-intensive applications. In Proceedings of the 2004 ACM/IEEE Conference

on Supercomputing (SC ’04), Pittsburgh, PA, Nov. 2004.

[77] T. Y. Ts’o and S. Tweedie. Planned extensions to the Linux EXT2/EXT3 filesystem. In Pro-

ceedings of the Freenix Track: 2002 USENIX Annual Technical Conference, pages 235–244,

Monterey, CA, June 2002. USENIX.

[78] U. Vahalia, C. G. Gray, and D. Ting. Metadata logging in an NFS server. In Proceedings of the

Winter 1995 USENIX Technical Conference, New Orleans, LA, Jan. 1995. USENIX.

[79] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller, D. D. E. Long, and T. T. McLarty. File

system workload analysis for large scale scientific computing applications. In Proceedings of the

21st IEEE / 12th NASA Goddard Conference on Mass Storage Systems and Technologies, pages

139–152, College Park, MD, Apr. 2004.

[80] R. O. Weber. Information technology—SCSI object-based storage device commands (OSD).

Technical Council Proposal Document T10/1355-D, Technical Committee T10, Aug. 2002.

[81] B. Welch and G. Gibson. Managing scalability in object storage systems for HPC Linux clusters.

In Proceedings of the 21st IEEE / 12th NASA Goddard Conference on Mass Storage Systems and

Technologies, pages 433–445, Apr. 2004.

[82] B. S. White, M. Walker, M. Humphrey, and A. S. Grimshaw. LegionFS: A secure and scalable

file system supporting cross-domain high-performance applications. In Proceedings of the 2001

ACM/IEEE Conference on Supercomputing (SC ’01), Denver, CO, 2001.

183

