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Abstract—Maintaining information privacy is challenging
when sharing data across a distributed long-term datastore. In
such applications, secret splitting the data across independent
sites has been shown to be a superior alternative to fixed-key
encryption; it improves reliability, reduces the risk of insider
threat, and removes the issues surrounding key management.
However, the inherent security of such a datastore normally
precludes it from being directly searched without reassembling
the data; this, however, is neither computationally feasible nor
without risk since reassembly introduces a single point of
compromise. As a result, the secret-split data must be pre-indexed
in some way in order to facilitate searching. Previously, fixed-key
encryption has also been used to securely pre-index the data, but
in addition to key management issues, it is not well suited for
long term applications.

To meet these needs, we have developed Percival: a novel
system that enables searching a secret-split datastore while
maintaining information privacy. We leverage salted hashing,
performed within hardware security modules, to access pre-
recorded queries that have been secret split and stored in a
distributed environment; this keeps the bulk of the work on each
client, and the data custodians blinded to both the contents of a
query as well as its results. Furthermore, Percival does not rely
on the datastore’s exact implementation. The result is a flexible
design that can be applied to both new and existing secret-split
datastores. When testing Percival on a corpus of approximately
one million files, it was found that the average search operation
completed in less than one second.

I. INTRODUCTION

Security is often a critical issue for long-term storage,
particularly given recent incidents involving insiders releasing
large amounts of private or classified information [1]. Much
of this risk is due to traditional storage systems having a
single point of compromise: the data server. If that one point
is compromised at any time during the datastore’s lifespan,
information can be leaked. This threat is obviously magnified
in a distributed environment since, by its nature, the data
is stored in multiple locations. In situations where a single
location, or site, is not trusted, but the collection of sites as a
whole is trusted, secret splitting mitigates this problem. By first
dividing a data object into shares, and then distributing each
share to an independent site in the distributed environment, no
single site has enough information to perform reconstruction
because a single share reveals nothing about the original data.

However, due to the inherent information-theoretic security
of a secret-split datastore, searching it is normally not possible
without reconstructing the original data from its constituent
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shares. Reconstruction, however, is not only computationally
infeasible, it reintroduces the single point of compromise.
As a result, the shares need to be pre-indexed in some
way that facilitates searching them. Previously, this has been
accomplished using fixed-key encryption, e.g. public-key, to
minimize, and ideally prevent, information leakage. However,
in addition to key management issues, which are undesirable
in long-term storage environments, fixed-key encryption typi-
cally suffers from a catastrophic release of information upon
compromise.

To address the need to maintain information privacy while
searching a secret-split datastore, we developed Percival: a
novel system that accomplishes these tasks without relying
on fixed-key encryption. Furthermore, Percival is completely
agnostic with regards to the datastore’s implementation since
whether the datastore is based on POTSHARDS [2] or Clever-
safe [3], the user is left with some kind of identifier that
can be used to retrieve the user’s data. Percival combines this
collection of identifiers with each data object’s search term(s)
in order to produce a set of reverse indexes; each reverse index
is in essence a search result since it maps a search term to the
set of data objects that should be found using that search term.
For our purposes, we define a search term as a single word
that has been identified to relate to a particular data object.
For example, to find the data object Moby Dick, one might use
the search term ‘whale’ in order to retrieve the object from
the datastore.

Once the set of reverse indexes is generated, each individual
index is secret split; these resulting shares are each sent to
a different query server in the distributed environment. We
define a query server as a hardware security module backed
by one or more machines working together as a single, logical
key-value store. A hardware security module [4], HSM, is
a commercially available, physical device that protects and
manages the secure pieces of this design by providing a place
to handle sensitive data in a relatively non-secure location.
It provides both tamper evidence and resistance by logging
intrusion attempts as well as clearing its internal memory if
it detects an intrusion attempt. Percival relies on the HSMs to
process all secure messages from the client, while not exposing
any information to the rest of the query server. In general,
query servers and their interaction to clients are discussed in
detail in Section IV, but for now they can be viewed as a
secure key-value store whose job it is to service search request
from authorized clients, and respond with the share of the
correct reverse index. Once a client has retrieved the shares



to a single reverse index, it is able to reconstruct that index,
thereby obtaining the set of data object identifiers that can
then be used to retrieve the desired data from the underlying
datastore.

Percival also provides mechanisms for clients to add content
to the datastore as well as for rotating the secret aspects
of the design via the HSM as required. Due to the nature
of the environment Percival is intended to operate within, it
is designed to operate while compromised. For example, it
assumes that at least one query server has been compromised
at all times, minimizes the release of information in the event
that a client is compromised, and assumes that information
is potentially leaked via communication channels despite the
security of SSL, e.g. message contents remain hidden to an
attacker but the size of a message is able to be detected.

In order to test its performance, we implemented Percival
and ingested the Digital Corpora [5] consisting of approx-
imately one million files of varying types, e.g. text, PDF,
HTML. Search terms for each file were identified by perform-
ing a term-frequency inverse-document-frequency analysis of
the word stems contained within each file. Percival’s search
speed is based upon the time complexity of each query server’s
key-value store and found to be less than one second. The cost
of this performance is the space required at each site to store
the secret-split reverse indexes, which is typically on the order
of gigabytes.

II. BACKGROUND: SECRET SPLITTING

Secret splitting is an example of a threshold
scheme (N : T ); it involves the act of splitting a piece
of data, D, into N pieces, or shares, such that any T shares
are required for reassembly, where 0 < T ≤ N . For example,
a 10 : 6 splitting scheme generates 10 equally-sized shares,
where any 6 shares will enable the reconstruction of the
original data. All ten shares are sibling shares of one another:
a share is a sibling of another share if they are both generated
as part of the same set from the same piece of original data,
D. A critical property of secret splitting is that, with less
than T shares, no data can be revealed.

There are several known techniques to accomplish splitting
a secret, all of which have varying levels of security. Shamir
first introduced the concept of secret sharing [6]; Shamir secret
sharing provides provably information-theoretic security, the
cost of which being that each share is the size of the original
data. AONT-RS [7] combines an all-or-nothing transform with
Reed-Solomon coding, resulting in a secret-splitting algorithm
that is more efficient with storage space: each share is only
d/T bytes, for a total storage of d·N/T , where d is the size of
the data in bytes. However, AONT-RS is only computationally
secure, not information-theoretically secure, since with fewer
than T shares an attacker could guess a fixed-size key, thereby
making it possible to verify whether those shares correspond
to the data of interest.

While both of these approaches provide different levels of
security, our design is agnostic with respect to the choice of
secret-splitting algorithm, treating the algorithm as a black

box. It is worth mentioning, however, that if a Galois field is
used to facilitate splitting the data, e.g. Shamir’s secret sharing,
the field prime should not be relied upon to be kept secret
as this has been shown to cause information release despite
forcing an attacker to reconstruct the data without the field’s
characteristic [8].

III. DESIGN OVERVIEW

It is important to have a clear, high-level, understanding of
Percival so that details of its design are framed in the proper
context. For this reason, we now present a general overview
of the architecture and information flow within Percival.

A. Query Server and Datastore Overview

Percival consists of two main layers: a query layer and a
data layer. The query layer represents the collection of query
servers: the secure key-value stores responsible for handling
search requests from clients. The data layer is not restricted to
being a secret-split datastore, e.g. POTSHARDS or Cleversafe.
However, since it is reasonable to assume that an application
that warrants the use of Percival would also warrant a secret-
split datastore, we assume that the underlying datastore is
also secret-split. Furthermore, Percival does not depend on
the exact implementation of the datastore, it can be applied to
both new and existing applications. Figures 1 and 2 illustrate
two such possible distributed configurations. For brevity, we
assume a POTSHARDS type configuration where there exists
a collection of data servers to which the client saves and
requests data objects. However, the reader should feel free to
replace the data layer with any desired secret-split datastore;
it will have no impact on the overall design or security of the
system.

Fig. 1: POTSHARDS example configuration. Each geograph-
ically separate site contains two servers: a query server and a
data server.

B. Information Flow Overview

During normal operation, clients are able to talk to both
query and data servers, but the only in-band communication
between any of the servers occurs during disaster recovery.
Figure 3 shows the flow of information in the system during
a search. In general, a client begins the search process by
sending its search request to each query server, who responds



Fig. 2: Cleversafe example configuration. Each geographically
separate site contains a single query server. The data layer is
handled by a 3rd party, e.g. Cleversafe.

Fig. 3: Overview of information flow during a query. (1) A
client starts the process by sending a search request to each
of the query servers. (2) Each query server responds with
the correct share of a secret-split reverse index, or a non-
empty response signifying ‘not found’. (3) The client can then
either make additional queries, or proceed and request the data
of interest from the data servers by sending the appropriate
identifier(s). (4) Each data server then responds with its share
of the secret-split data object.

with the correct share of a secret-split reverse index, or a non-
empty response signifying to the client that there is no data that
satisfies the search request. Reconstructing the reverse index
reveals the identifiers for data objects that satisfy the search.
After which, the client can either make additional queries,
or, in the case where it has identified the data of interest,
request the data object’s shares from the data servers using
the appropriate identifier(s).

C. Splitting Scheme Flexibility

Two important design considerations when performing se-
cret splitting are how many shares to generate and setting
the reconstruction threshold. Recall that the reconstruction
threshold determines the minimum number of shares required
in order to reconstruct the original data. The number of shares

to generate can be influenced by factors such as performance
requirements, i.e. more shares results in more processing time,
or the number of available sites at which to store the shares.
The threshold is typically set based on the tradeoff between
security and availability. A high threshold means more sites
need to be compromised before data is leaked to an attacker,
but if set too high, it increases the risk of a denial of service
attack. For example, if the threshold is set to require 9 out of
10 shares to reconstruct the data, it becomes more difficult for
an attacker to obtain the required number of shares. However,
if just two sites are compromised, an attacker can corrupt or
otherwise modify those shares such that it is impossible for
anyone to obtain the required number of valid shares, thereby
successfully executing a denial of service attack and ultimately
data loss. An overly high threshold also increases the risk of
a ransomware attack [9]: the attacker encrypts the data, and
then ransoms it back for a price.

In contrast to a high threshold, a low threshold improves
availability because a denial of service attack is much more
difficult to carry out, but the low threshold increases the risk of
leaking information due to the few number of sites that need
to be compromised in order to reach this lower threshold.

Percival provides a level of flexibility with regard to these
design considerations because it separates the reverse indexes
from the stored data objects, i.e. the query layer from the
data layer. As a result, different secret-splitting schemes can
be used to address different operational needs or security
requirements for each layer.

D. Access Control

Authentication is the linchpin of any security system, the
compromise of which results in unauthorized data release and
potential data loss. External to Percival, we assume there is a
secure framework to which clients authenticate. Percival then
uses the provided credentials to segregate the system such
that the data loss due to a compromise of said credentials is
as localized as possible. Specifically, Percival accomplishes
this by creating a unique set of reverse indexes for each
authentication credential. Note that access control does not
apply to Percival’s claim regarding fixed-key encryption. A
compromised access control credential can potentially result
in a release of information in both Percival and standard fixed-
key encryption based systems.

If there are a large number of such credentials, this can
potentially result in very large space overhead. To address this
issue, we assume that role based access control, RBAC, is
used as the authentication framework, since it has been shown
that on average, organizations have roughly 20 roles defined in
their RBAC system [10]. This minimizes the space overhead
while allowing the system to be segregated to localize the
potential data loss.

IV. QUERY SERVER

We now present the design and operational details of a query
server, including its role during ingestion, specifics about its
hardware security module, and how it performs salted hashing



to facilitate search operations. Recall that we define a query
server as a hardware security module backed by one or more
machines working together as a single, logical key-value store,
all contained within a single geographical location. Our use
of a key-value store is for clarity and brevity. It is possible,
and likely, that a real-world Percival installation would use
a suitable replacement. For example, the secure partitioning
scheme as defined by Parker-Wood et al. [11] can be used
as a secure and efficient way to store and quickly access the
query server’s shares.

A. Ingestion

The first step during ingestion is to identify the keywords for
each data object. For our purposes, keywords are synonymous
with search terms. The set of keywords for a data object define
how that data object can be retrieved as a result of a search
operation, i.e. how clients will search for their data using
search terms. Once the set of keywords has been identified
for each data object to be ingested, the reverse indexes for the
corpus are generated by turning the mapping of data object to
keywords to become a mapping of keyword to data object(s).
Each of these reverse indexes can be viewed as a successful
result to a search operation. This operation is illustrated in
Figure 4.

Fig. 4: Generating reverse indexes. Once the keywords for
each data object have been identified, they are transformed
into reverse indexes mapping keywords to their data object(s).

The next step during ingestion is to secret split each of these
reverse indexes, and then distribute the resulting query shares
to the query servers such that no two sibling shares are stored
on the same query server. Recall that sibling shares are shares
that originated from the same piece of data, or reverse index
in this context. Figure 5 is an example of sending a single
query share and its keyword to be stored on query server n.

The (keyword : RBAC) credential pair is sent directly to
the HSM over its own network interface, while the share is
sent directly to the key-value store backend of the query server
via its separate network interface. This is to ensure that the
actual keyword is never exposed to the query server, and is
instead pre-processed by the HSM. During this pre-processing,

Fig. 5: Overview of ingesting a query share. The keyword and
RBAC credential are sent to the HSM, while the query share
is sent directly to the key-value store. Once the keyword has
been processed into a hash string, the resulting hash and query
share are stored in the server’s key-value store.

the HSM performs a hash of the keyword and the provided
RBAC credential, which is the same credential required by an
authorized client in order to retrieve this query share in the
future. The HSM then performs one more salted hash using
the query server’s unique salt. Section IV-C discusses the salt
in detail. For now, it is sufficient to understand that each salt
is kept secret by being generated by, and never leaving, the
HSM, and its purpose is to ensure that each query server’s
contents are unique. Once the HSM has completed its pre-
processing, i.e. the keyword has been transformed into the
final hash string, the resulting hash and query share are stored
in the query server’s key-value store. The HSM also stores the
keyword internally to be used when performing salt rotation.

B. Hardware Security Module

Each HSM is a commercially available, physical piece of
rack-mounted hardware that has its own network interface.
Typical applications for an HSM include [4]:

1) The key generator and safe key storage facility for a
certificate authority,

2) An accelerator for SSL connections,
3) A tool for securely encrypting sensitive data for storage

in a relatively non-secure location,
4) A secure key generator for smartcard production.
Percival leverages the HSM to handle all server-side hashing

as well as safeguarding the query server’s salt. The HSM
provides both tamper evidence as well as tamper resistance
in the form of logging and clearing its internal memory
if it detects a potential intrusion. The price, however, of
this secure crypto-processing is limited internal memory and
low bandwidth. Typical models have an internal memory of
roughly 10 MB and a bandwidth of less than 1 MB/s [12].
However, since Percival separates search processing from the



actual data objects, this bandwidth limitation only impacts
the rate of incoming search requests from clients, which is
easily overcome by placing additional HSMs in parallel on
each query server. As a result, Percival easily scales based on
the size of the expected client base. Table I lists two examples
of commercially available hardware security modules.

It is important to not confuse an HSM with a trusted
platform modules, or TPM. A TPM handles similar job types,
but is typically mounted directly on the motherboard, and as
such, does not have its own network interface. As a result,
all communications to and from the TPM must go through
the motherboard, which would break Percival’s security model
since Percival relies on the HSM to keep its processing
completely isolated from the rest of the query server.

TABLE I: Examples of commercially available hardware se-
curity modules [12].

Infineon SLE 88 IBM 4764
CPU 66 MHz 266 MHz
Memory 16 KB 32 MB
I/O 12 KB/s 9.85 MB/s
SHA-1 1KB 155 KB/s 1.42 MB/s

These modules also feature a means of secure communica-
tion between HSMs that provide the same security guarantees
as the module itself, which allows multiple HSMs to share
the contents of their internal memory without compromising
the security guarantees of the HSM. This feature is leveraged
by Percival in two ways. First, during initialization and salt
rotation, it enables a single HSM to generate the query server’s
salt and share it with the other HSMs. Second, the HSMs
maintain a list of all keywords in the system in order to
facilitate hash updates during salt rotation without having to
store the keywords externally; this is desirable since stor-
ing this list externally is both an unnecessary administrative
overhead as well as being a potential vector for information
leakage. The space requirement for this list is not large: on
the order of megabytes, but it is also non-trivial given the
limited available internal memory provided by typical HSMs.
By placing multiple HSMs in parallel, less expensive HSMs
with less internal memory can be used due to this secure
communication channel. For simplicity, the rest of the paper
assumes a single HSM is present on each query server, but the
reader should keep in mind that they are easily parallelizable.

C. Secret Salt

Each query server has a single, unique salt that it keeps
private. The salt is randomly generated by its HSM, and during
normal operations, never leaves the HSM. However, since
nothing is impossible to break, Percival takes this potential
vulnerability into account and minimizes the information
released in the event of a salt being exposed. Specifically,
without additional elements being compromised, no informa-
tion is released simply by determining the salt for a single
query server. Section V-B1 discusses this threat model in more

detail, as well as what other information is required prior to
the privacy of the system being compromised.

The purpose of the salt is to ensure that the contents of the
query server are unique: the corresponding hashes mapped to
sibling shares stored on separate query servers are never the
same. This is required since if the hashes were the same, an
attacker would be able to identify sibling shares across query
servers using only this hash string, and thus enable targeted
theft: the ability to steal small blocks of data identified by some
characteristic, which is the identifying hash string in this case.

The salt is the basis for our claim that Percival is more
secure than standard fixed-key encryption. Typically in such
systems, if the key used to encrypt the data is compromised,
it will result in a catastrophic release of information. Whereas
in Percival, a compromised salt alone results in no loss of
information or privacy, and does not impact the security of
the data or search privacy on the other query servers.

While it is theoretically possible to brute force a query
server’s salt by performing an exhaustive key search, it is
infeasible due to the energy required based on the Landauer
limit [13], not to mention the time required to do so. The
Landauer limit, L: the theoretical minimum energy required
to erase one bit of information, is defined in Equation (1),
where k is the Boltzmann constant (∼1.38×10−23 J/K), and
T is the operating temperature in kelvins.

L = kT ln2 (1)

For example, in order to simply flip through the bits of a 256
bit salt would require 2255 bit flips. Assuming this occurred at
room temperature, the Landauer limit states this would require
at least 8.9×1039 TWh, which is many orders of magnitude
greater than all the energy that has ever been produced on the
planet [14]. As a result, it is much more feasible to attack the
salt via side channels as opposed to attempting to obtain it by
brute force.

D. Salt Rotation

In the case that it becomes necessary to change a query
server’s salt, Percival enables salt rotation such that it only
impacts that particular query server for a short period of time.
When initiating a salt update operation, the HSM is provided
with a list of all available RBAC credentials. This allows the
HSM to generate a new salt, and then simply iterate over both
the provided list of credentials and the internal list of keywords
present in the corpus, recreating the original hash as well as
the new hash for each entry in the key-value store. These pairs
of hash strings are then passed to the server’s key-value store
so that it may update its hash table, replacing the old hash
with the new one.

E. Performing A Query

To conduct a query, or search request, the client first hashes
the search term with the user’s RBAC credential. This hash
string is then sent to the query servers, via their HSM, which
hashes the user’s input with the query server’s salt. The final
hash string is then passed to the key-value store, who finds



the query share, if it exists, and sends it back to the client. If
no entry is found for the given hash string, the query server
responds with a non-empty response signifying to the client
that there is no data that satisfies the search request. The size
of this ‘not found’ response is the same size as a reverse index
share; this makes all responses, regardless of search outcome,
the same size, thus preventing an attacker from differentiating
between response types in the encrypted SSL stream.

It is worth noting that while Percival does not explicitly
block use of the root RBAC credential, it is not recommended.
Since root is, in essence, simply another RBAC credential, it
is possible to ingest files and shares using root. However, this
will lead to unexpected behavior when performing a query
because using the root RBAC credential only grants access to
those files that were specifically ingested using that credential,
and no other files or shares. It is for that reason that while
using the root RBAC credential will not negatively impact the
system, its use is discouraged.

Once the client has received the set of sibling query
shares, it is able to reconstruct the reverse index in order
to obtain the list of data object identifiers, which are then
used in accordance with the chosen datastore implementation,
e.g. POTSHARDS, Cleversafe, etc. Figure 6 illustrates this
process.

Fig. 6: Simple single search term query. A client starts the
process by hashing the search term with its RBAC credential.
The resulting hash string is sent to each query server’s HSM to
be further hashed with that query server’s salt, and ultimately
used to look up the requested share of the secret-split reverse
index. Once the client has received the query shares, it is able
to reconstruct the original reverse index: mapping the search
term to the appropriate data object identifier(s).

Conjunctive queries are performed in a similar manner,
beginning with a client sending a separate search request to the
query servers for each search term. The client then reconstructs
each of the reverse indexes obtained from the query servers
and takes the union of the sets of data object identifiers. The
resulting set of identifiers represents data objects that relate to

all of the client’s search terms.

F. Adding New Content

The process to add content to Percival leverages both the
query and ingestion processes. After having identified the
keyword(s) for the data object to be ingested, the client
performs a query for each of these keywords, reconstructs
the corresponding reverse indexes, and adds the data object’s
identifier to each reverse index. Once the reverse indexes have
been updated, they are secret split and sent to the query servers
along with the hash of the related keyword and the user’s
RBAC credential. This hash is sent to each query server’s
HSM to be subsequently hashed with that query server’s salt,
the outcome of which is stored in the key-value store along
with the newly updated secret-split reverse index.

G. Concurrency

Percival uses strong strict two-phase locking [15], SS2PL,
managed by a distributed lock manager, DLM, to resolve
conflicts due to potential concurrent operations. Percival does
not rely upon the particular implementation of the DLM,
e.g. Chubby [16], only that it correctly follows the SS2PL
protocol. The three operations in Percival that rely upon the
DLM are salt rotation, query execution, and content addition.

During salt rotation, a write lock is obtained from the
DLM for all entries in the query server’s key-value store.
This prevents an add new content operation from causing an
inconsistent state due to an update collision, and prevents a
query operation from potentially obtaining an invalid search
result.

When performing a query, if a query share has been
locked for writing, the query server indicates this state to
the client instead of responding with the query share. This
can potentially cause a query operation to block if it doesn’t
receive a number of query shares equal to or greater than the
reconstruction threshold.

The last operation that can result in a potential conflict is
when adding new content; during such operations, a write lock
must be obtained for each entry to be updated. If this was not
required, two conflicting, concurrent operations could partially
overwrite each other such that a complete set of sibling shares
for an entry no longer exists in the database. Specifically, the
resulting set of shares for a single entry no longer contains
true siblings, but instead is comprised of some shares from
both operations.

The final outcome of the conflict depends on the nature of
the race condition. Recall that in an (N : T ) threshold scheme,
T shares are required for reconstruction. If the resulting set of
shares for that entry contained at least T sibling shares, the end
result would be diminished reliability and a loss of information
from the other operation. Alternatively, if the resulting set
of shares does not contain at least T sibling shares, the end
result would be the corruption of that reverse index due to its
inability to be reconstructed; thereby obfuscating the presence
of that search term in the datastore.



V. THREAT ANALYSIS

Percival’s main goal is to maintain information privacy in
a distributed, untrusted environment. Furthermore, since its
design is intended for long term storage, it is assumed that
even though an attacker may have reasonable computing power
and storage available, they have potentially unlimited time to
carry out an attack. Each of Percival’s potential attack vectors
are discussed in the following sections.

A. Client

The numerous side channel attacks in which a client may
be compromised range from cold boot attacks [17] to social
engineering [18] and everything in between. Client security
is a large open problem that Percival is not trying to solve.
Instead, we assume that one or more clients will be compro-
mised and have designed Percival to minimize the damage to
the system when that happens.

Compromising a client means that the attacker has access to
the user’s RBAC credential, and as a result, is able to perform
all actions to which that user has access, e.g. perform queries,
add/modify reverse indexes, and ultimately access the data
objects to which the user has access. They do not, however,
gain any insight into how the query servers are storing their
shares, have access to any salts, nor do they have any access
to any information not related to that specific user’s role.

In order to recover from a compromised client, the user’s
role credential must be changed. This can be accomplished by
performing an operation similar to salt rotation, in which each
HSM is given both the old and new credentials. It can then
iterate across its internal list of keywords, generating old and
new hash string pairs that the query server can use to update
its key-value store.

B. Query Server

Compromising a query server can take several forms,
including the system administrator who has an operational
need to have access to an entire query server, or even the
janitorial staff that needs physical access. It is common to
have a single insider at a site, but not for multiple insiders
to work in close coordination [19]. That said, it is possible
to have insiders unknowingly working in conjunction when
guided, or manipulated, by a large external entity, e.g. a foreign
government [20].

It is also more likely for an insider to control a single
query server as opposed to multiple servers [2]. However, we
relax this constraint somewhat by assuming that an attacker
never controls more than T − 1 query servers, where T is
the threshold number of shares required for reconstruction. If
T or more query servers are compromised, there is nothing
stopping an attacker from simply reconstructing all reverse
indexes, thereby gaining access to the identifiers for all data
objects in the datastore.

We assume that an attacker physically controls any com-
promised query server, and is able to run arbitrary code on
them. In general, an attacker is able to read all incoming
messages sent to the key-value store, but has no access to those

sent to or from the HSM. We also do not consider denial of
service attacks, since they can be mitigated at design time by
setting the correct reconstruction threshold. See the previous
Section III-C for a detailed discussion on the tradeoffs when
setting the reconstruction threshold.

One potential attack vector that Percival allows is targeted
theft: the ability to steal small blocks of data identified by some
characteristic. We assume that standard methods for tracking
user access patterns and detecting errant behavior are in place
on each query server. It is for that reason that we assume
that it is not possible to steal large amounts of information
from a query server without detection, but that it is possible
to steal a small amount of data. It is for this reason that steps
are taken to ensure that no identifying features of the secret-
split reverse indexes exist, e.g. ensuring hash strings in the
key-value stores differ across servers, all secret-split reverse
indexes are of equal size, no correlation exists between the
shares’ meta-data, etc.

1) Hardware Security Module (HSM): The security guaran-
tees made by hardware security module manufacturers provide
a high barrier for attackers to overcome. HSMs are not,
however, inviolate. As a result, we acknowledge the potential
for an attacker to possibly read the contents of an HSM [21].
If successful, this type of attack would reveal both the static
information contained within the HSM, i.e. the internal list
of keywords for the corpus and the salt for that query server,
as well as dynamic search request information, i.e. the search
terms and user credentials. This would obviously lead to a
loss of privacy since an attacker would be able to read the
incoming search terms as well as the hash strings in the key-
value store in plain text, i.e. as keywords. Despite this level
of information exposure, it does not expose any information
about the underlying data objects, or their potential correlation
to keywords because the reverse indexes are unable to be
reconstructed without obtaining the correct shares from the
other query servers. This is the primary way that Percival’s
design does not lead to a catastrophic release of information
upon compromise.

While the release of all keywords in the corpus is not
desirable, it is limited in regards to the amount of information
that is released. This can be quantified using the Shannon
entropy: the average unpredictability in a random variable,
which is equivalent to its information content [22]. Shannon
entropy, H , can be calculated using Equation (2), where pi
is the probability of character i appearing in the character
stream. As a concrete example, the book Moby Dick [23]
contains approximately 200,000 words and has a Shannon
entropy of 4.55 [24], [25]. In contrast, the book only has
approximately 6,800 unique stemmed words, which drops
the Shannon entropy to 3.15. This drop in Shannon entropy
indicates a significant loss of information, which illustrates
that the real data is indeed greater than the sum of its parts.

H = −
∑
i

pilog2pi (2)

If it is suspected that a query server’s salt has been exposed,



rotating the salt will not regain any loss of privacy since the
attacker would be able to correlate between the old and new
hash strings. To recover from this type of event, the query
server would need to be rebuilt by first clearing the key-value
store and having the HSM generate a new salt, after which
the HSM iterates over its internal list of stored keywords,
requesting the appropriate sibling share from each of the other
query servers using a process similar to performing a query,
i.e. send a salted hash of the keyword and the specified RBAC
credential, hacl, to the other query servers. Once the HSM has
the set of sibling shares for a particular reverse index, it is able
to generate a new sibling share without affecting the existing
ones [6]. The final step is to generate the salted hash to be
stored with the newly created share in this query server’s key-
value store using the hacl and the new salt.

2) Key-Value Store: Compromising a query server’s key-
value store is the most basic, and probable attack vector
for an inside attacker since it requires no other part of the
system to be compromised; it also leads to the least amount
of information being leaked. Such an attacker would be able
to identify ‘hot’ shares, i.e. those shares that are the accessed
at a higher frequency than others. Without the relevant sibling
shares, however, this information is of little use. If an attacker
was able to identify the hot shares on at least T query
servers, this information could be used to perform a targeted
theft of those shares. However, this would violate our initial
assumption that at most T − 1 servers are ever compromised.

Since an attacker is able to read all incoming messages to
the key-value store, information about a user’s location and
search pattern can also be exposed, unless techniques are taken
to hide their origin IP address [26].

C. Communication Channels

Percival assumes that secure communication channels, e.g.
SSL, exist between clients and query servers. It is not that we
assume SSL is inviolate, but rather that secure communication,
and SSL attacks in particular, are part of a larger open problem
that is outside the scope of the project.

As a result, attackers are unable to read the contents of
the encrypted data stream, but we assume they are able to
perform attacks based on message size. This takes the form
of potentially revealing the quantity of search requests for a
client as well as whether a search request was successful or
not. Depending on where in the system the attacker is listening,
the former can likely be mitigated by masking the client’s IP
address and routing [26]. The latter is not a threat because the
query server responds with a meaningful ‘not found’ message
that is the same size as a reverse index share, thus making a
negative response indistinguishable from a positive one.

VI. PERFORMANCE

In order to test Percival’s performance, we implemented
and tested the system running on five query servers; each
server was running 64 bit Linux on four cores using 24 GB
of RAM. We ingested the Digital Corpora [5] consisting of
approximately one million files of varying types, e.g. text,

PDF, HTML. It is important to keep in mind that Percival’s
performance does not depend on the size of the data objects
ingested, since once ingested, Percival is only concerned with
the reverse indexes, and does not interact with the data layer
of the system. Keywords for each file were identified by per-
forming a term-frequency inverse-document-frequency [27],
TF-IDF, analysis of the word stems contained within each
file. The exact method of identifying keywords is not critical
since Percival’s design does not rely on it, only that they
are identified. Once the reverse indexes for the corpus were
generated using these keywords, the reverse indexes were
secret split using a (5 : 3) splitting scheme, i.e. five shares
were generated for each reverse index, any three of which were
required for reconstruction. These shares were then ingested
into a BerkeleyDB database [28] as the query server’s key-
value store. It took approximately 20 hours to secret split the
reverse indexes, and an additional 6 hours to ingest the shares
into each query server’s key-value store. While these durations
are both very corpus and platform specific, they provide the
reader with a general sense of the one time, ingestion costs
associated with getting Percival online, servicing a corpus of
roughly one million pieces of data.

In order to analyze the effect varying the number of key-
words per data object has upon both the size and quantity of
reverse indexes, we performed the previous steps choosing 10,
20, 30, 50 and 100 keywords per data object. Figure 7 depicts
a cumulative density graph for each experiment. As expected,
it can be seen that as the number of keywords per data object
increases, the total number of keywords present in the corpus
also increases. It is also worth noting that 2/3 of the reverse
indexes were found to contain a single data object identifier,
and almost all reverse indexes were found to contain fewer
than ten identifiers.

While these results are very corpus specific, they illustrate
the potential space overhead required to secret split the reverse
indexes since all shares must be the same size, i.e. the majority
of shares must be padded in order to be the size of the largest
shares in the corpus. If they are not, then their size becomes
a distinguishing characteristic, which would enable targeted
theft. For example, if shares are not padded to be of equal
size, and there exists only a few shares that are X bytes,
then an attacker would be able to identify and steal those
shares, simply based upon their size, from non-compromised
key-value stores.

With regards to search performance, search requests were
found to complete in less than one second; the only variance
in performance being due to random network issues causing
a small number of resend operations. We measure Percival’s
search performance using the completion time since standard
metrics, i.e. precision and recall, are dependent solely upon
the number and accuracy of the keywords chosen during
ingestion, which are at the implementer’s discretion. Percival’s
search performance is based on both the number of keywords
and the size of the corpus. The number of keywords can
potentially impact the hash table look up time, i.e. from the
query server’s key-value store, and the size of the corpus



Fig. 7: CDF of Reverse Index Size. For each number of
keywords selected per data object, 2/3 were found to contain
a single data object identifier, and almost all reverse indexes
were found to contain fewer than ten identifiers. Since all
shares must be the same size, these would-be small shares
need to be padded in order to make them the same size as
the largest shares, otherwise it enables targeted theft of those
shares.

affects the reconstruction time since it impacts the size of the
query shares.

The bandwidth required to perform a search request is
quite low and fundamentally based on the size of the data
object identifiers. It can be determined by multiplying the
identifier size by the number of keywords per data object
times the average number of search terms per search request.
For example, assuming an identifier size of 32 bytes and 100
keywords chosen per data object, a search request containing
three search terms would require roughly 10 KB, with the
majority of that traffic bypassing the low bandwidth HSM.

Since a single HSM is known to be the performance
bottleneck, we also tested how long it took to perform the
critical, HSM intensive operations in Percival. To complete a
salt rotation, it took a single Intel 4764 HSM roughly two
minutes to update the entries for approximately three million
reverse indexes using a 256 bit salt. By contrast, it took 53
minutes for the same HSM to perform a complete query server
rebuild. Both of these benchmark tests were performed for
a single credential, or role. Recall that Percival minimizes
the impact of an access control credential being compromised
by creating an independent set of reverse indexes for each
credential. Continuing the previous example, a single set of
reverse index shares would require 9.6 GB, which is not
trivial, but since it has been shown that most organizations
have approximately 20 access control roles defined, the space
requirement has a reasonable upper bound, and most would
require less than a TB per query server for most applications.

VII. RELATED WORK

Our work on Percival builds on two ares of related work:
secret-split datastores and searching encrypted data sets while
maintaining information privacy.

Secret-split storage was first developed practically in the
PASIS project [29], which also contains a good overview of
p-m-n threshold encoding schemes suitable for use in secret-
split datastores. In response to several calls for providing long-
term storage that can operate through system compromises and
provide resilience to insider threat [30], [31], this approach
was later adapted for long-term storage by Storer et al. in the
POTSHARDS system [2].

An alternative to secret-split datastores was developed by
Zage et al. [32]. In this approach, an algebraic-based encoding
solution, Matrix Block Chaining (MBC), is used to “maintain
data security and protocol performance when encoding large
files. The design of MBC allows for encoding multiple parti-
tions of the original data in parallel as subsequent encoding
operations are not dependent on the output of previous encod-
ing steps” [32]. Their technique was developed specifically
for cloud storage, however, and as such does not maintain
data availability in a compromised environment.

The main threat for Percival is an attacker performing a
targeted theft of shares from a repository, thereby being able
to reconstruct the original data. There has been a significant
amount of work done in recent years regarding encrypted
searching [33]–[43], but these works are all based on a single
repository storing all of the user’s encrypted data. Since they
run on a single repository, they do not need to address the
vulnerability of search result correlation, particularly across
multiple repositories. Our approach on the other hand starts
with a fundamental premise that by splitting your data across
multiple sites you gain a significant protection that is far
stronger that any computationally bound encryption method.

Furthermore, these works rely on the inherent security of
the encryption method itself since both the data and the search
terms simply use fixed key encryption. However, given enough
time and computing power, as well as deliberately poor design,
it is possible that fixed key encryption methods will be broken
due to the discovery of algorithm short cuts and side channel
attacks; thus, these approaches are essentially delayed release.
As a result, they are not well suited for applications when data
lifetime is measured in decades.

By way of comparison, Octopus [44], does not rely on
encryption. It is an anonymous way for P2P nodes to commu-
nicate via a distributed hash table that provides a mechanism
for individual queries to be sent along “multiple anonymous
paths, [while introducing] dummy queries to make it difficult
for an adversary to learn the eventual target of a lookup.” [44]
In contrast to using dummy queries as a means of obfuscation,
Percival fundamentally changes the paradigm by ensuring this
information does not lead to further information leakage.

Chang et al. [41] developed an approach using bit masked
dictionaries to enable searching of encrypted remote data
without revealing information to the data’s custodian. The



outcome is similar to using a Bloom filter based system where
a single bit is used to represent a term stored in the filter.
The main difference is that it does not address conjunctive
or disjunctive searches, nor does it address mapping multiple
terms to the same bit in the dictionary.

VIII. FUTURE WORK

Percival has several open areas of research. The first is to
expand its support for additional access control systems. The
current design only supports access control for situations in
which there are a relatively low number of separate access
credentials, i.e. less than 100. It would be ideal to expand the
current design to fully support a user based access control
system, one in which there may be several thousand access
credentials. Furthermore, the current design does not support
hierarchical access control. Reverse indexes are specific to
the access credential under which they were ingested and/or
updated. As a result, if multiple roles are authorized to perform
a search for the same data object, that object’s identifier must
be placed in the reverse index for each applicable access
credential.

Our next enhancement to Percival’s design is to support
not only the presence of a keyword within a data object,
but its locality as well. This will enhance Percival’s search
capability beyond conjunctive searches by enabling exact
phrase matching. It is theorized this can be accomplished by
adding word locality information to each data object’s entry
within a reverse index, thus allowing the client to test for
adjacent locality in addition to taking a simply union of the
available reverse indexes. The cost of such functionality is the
increased size of each reverse index, which obviously impacts
the space overhead of each query server, but also potentially
increases a client’s reconstruction time due to larger indexes.
The danger being that the increase in reconstruction time
results in a loss of responsiveness during search operations;
therefore extensive testing must be performed to ensure this
does not occur.

Another open area of research is to improve query server
recovery time in the event a salt is compromised. The time
required to do so is not prohibitive, but it would require taking
that query server offline for several days, which may impact
data availability depending on the secret splitting scheme
chosen.

While our performance testing shows that Percival is able to
meet the needs of its user base in a timely fashion, it is by no
means exhaustive. We look forward to testing Percival using
a real world search workload and evaluating its performance.

Our final area of future research in this area is slightly tan-
gential to Percival, and involves improving performance when
identifying the correct set of sibling shares is combinatorial
prohibitive. This situation does not apply to Percival directly
since clients are provided the correct set, or sets, of sibling
shares by the query servers. When faced with an extremely
large number of shares, e.g. millions or more, and no discern-
ing order or association among them, it could potentially result
in data loss due to it being an insurmountable combinatorial

problem. POTSHARDS made the first steps to address this
issue via approximate pointers, but we would like to continue
Storer et al.’s work [2] by decreasing reconstruction time and
improving resilience in the event of missing shares while not
enabling targeted theft.

IX. CONCLUSION

Maintaining information privacy is difficult when sharing
data across a distributed, long-term datastore operating in
an untrusted environment. To address this need, we have
presented Percival, a system that is designed to be applied
to new or existing secret-split datastores, operates while com-
promised, minimizes insider threat, localizes data release upon
compromise of an access control credential, and still provides
accurate and timely search results; this is all achieved with a
space overhead of a few terabytes per query server.

During the course of developing Percival, we made several
discoveries, the first being that natural language processing
can be quite nebulous as well as time consuming. This
discovery reinforced our initial belief that pre-ingestion corpus
processing should be left up to, and tailored for, the particular
instance to which Percival is being applied.

Another lesson learned was that nothing is inviolate. Ev-
ery aspect of a system must be assumed to be able to be
compromised, regardless of the security guarantees associ-
ated with that subsystem. The natural extension of Percival’s
management of query shares, specifically the distribution of
information such that there is a high barrier to cross prior
to information release, was to apply the same concept to its
handling of the private aspects of the design, i.e. the salts. The
breakthrough in Percival’s design came when we realized that
is possible to keep even the salts isolated from each other; this
design change converts full data release into a localized loss
of privacy, and is what truly sets Percival apart from previous
works.

As society needs to store an ever-increasing volume of
potentially sensitive data for a long time, we will need to find
methods that can maintain data privacy and integrity in spite
of security events; this will necessitate distributed approaches
such as Percival. The techniques for secure searches developed
for this work will help to make such datastores much more
usable, ensuring that the long-term data in them will not be
simply stored, but rather be available for effective access and
use via search queries. By increasing the utility and value of
long-term data storage, this approach can make it cost-effective
to maintain secure long-term archives.
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