
1

Pagoda: A Hybrid Approach to Enable Efficient
Real-time Provenance Based Intrusion

Detection in Big Data Environments
Yulai Xie, Member, IEEE, Dan Feng, Member, IEEE, Yuchong Hu, Member, IEEE, Yan Li, Member, IEEE,

Staunton Sample, Darrell Long, Fellow, IEEE

Abstract—Efficient intrusion detection and analysis of the security landscape in big data environments present challenge for today’s
users. Intrusion behavior can be described by provenance graphs that record the dependency relationships between intrusion
processes and the infected files. Existing intrusion detection methods typically analyze and identify the anomaly either in a single
provenance path or the whole provenance graph, neither of which can achieve the benefit on both detection accuracy and detection
time. We propose Pagoda, a hybrid approach that takes into account the anomaly degree of both a single provenance path and the
whole provenance graph. It can identify intrusion quickly if a serious compromise has been found on one path, and can further improve
the detection rate by considering the behavior representation in the whole provenance graph. Pagoda uses a persistent memory
database to store provenance and aggregates multiple similar items into one provenance record to maximumly reduce unnecessary
I/O during the detection analysis. In addition, it encodes duplicate items in the rule database and filters noise that does not contain
intrusion information. The experimental results on a wide variety of real-world applications demonstrate its performance and efficiency.

Index Terms—Provenance, Intrusion Detection, Big Data, Real-time

F

1 INTRODUCTION

HOST-BASED intrusion detection has long been an im-
portant measure to enforce computer security. In to-

day’s world, the cyber attack has become a persistent,
aggressive and disruptive threat. For instance, the APT
(Advanced Persistent Threat) attack has gradually become a
main threat in enterprise’s environment [1, 2]. The “Wan-
naCry” virus has attacked nearly 100 countries in the
world [3] and resulted in huge economic losses in 2017 [4].

The traditional intrusion detection system typically uses
system calls to analyze and identify host-based intrusion [5–
10]. However, these methods are not widely used. Since they
do not disclose how the intrusion happens, and thus the
detection accuracy is not high. With the stealth and sophisti-
cation of modern attacks, it’s critical to identify the causality
relationships between the intruder and the damaged files.
The existing mainstream methods focus on offline forensic
analysis using provenance [11, 12] or audit logs [13–15].
However, typical attacks such as APT can remain stealthy
for half a year after getting into the enterprise [16]. It is too
late if sensitive data have been stolen before disclosing the
intrusion source.

However, it is a challenge to accurately acquire the
causality relationships of the intrusion behaviors and iden-
tify the intrusions in real time especially in today’s big data

• Yulai Xie, Dan Feng and Yuchong Hu are with the School of Computer,
Wuhan National Laboratory for Optoelectronics, Huazhong University of
Science and Technology, Wuhan 430074, P.R. China.
E-mail: ylxie@hust.edu.cn, dfeng@hust.edu.cn, yuchonghu@hust.edu.cn

• Yan Li is with TuneUp.ai in San Francisco Bay Area, CA, USA. Email:
yanli@tuneup.ai

• Staunton Sample and Darrell Long are with Jack Baskin School of En-
gineering, University of California, Santa Cruz, CA 95064 USA. Email:
sbsample@ucsc.edu, darrell@ucsc.edu

environments, where the intruders’ illegal behavior data
are buried in massive data of different users and different
applications. In previous work [17], we developed PIDAS,
a provenance path based intrusion detection and analysis
system. It uses provenance information but not traditional
syscall as the data source for online intrusion detection.
Provenance represents the history of an object, and records
the dependencies of infected files, intrusion processes and
network connections at the time of intrusion. By computing
the anomaly degree of a certain length of a path that consists
of a series of dependency relationships and comparing it
to a predefined threshold, PIDAS can judge whether the
intrusion has happened in real-time. The drawback of this
method lies in that using only one path to detect intrusions
cannot reflect the behavior of a whole provenance graph.
Typically, the system cannot easily identify an intrusion
where a virus stealthily infects all the paths with no serious
damage. Though the administrator can reduce false alarms
via analyzing the warning report, it is time-consuming and
the administrator may make a wrong judgement.

There are also emerging works that use the whole prove-
nance graph to detect intrusion. For instance, Lemay et
al. [18] proposed a series of rule grammars to mine and
judge the anomaly in the provenance graph of application
behavior. Han et al. [19] used the provenance graph of a
subset of a program’s provenance records to model the
application behavior in the PaaS cloud. Though these meth-
ods may have better detection accuracy than PIDAS, they
have not been demonstrated on a variety of security-critical
applications. In addition, analyzing the whole provenance
graph usually involves traversing and processing a large
number of provenance nodes and edges. This introduces a
large runtime overhead and thus may not be realistic in big

2

data environments.
To address the above problems, we propose Pagoda, a

provenance based intrusion detection system that analyzes
the anomaly degree of not only a single path, but also
the entire provenance graph. It first looks for the intrusion
path that may result in the intrusion. If the path has been
found, then it does not have to traverse the provenance
graph for further detection. Otherwise, it computes the
anomaly degree of the provenance graph in three steps.
First, it computes the anomaly degree of every path. Then
it multiplies the anomaly degree of a path it by its path
length to get the weight value of every path. Finally, it uses
the sum of all these weight values to divide by the sum of
the lengths of all the paths. This quickly identifies when an
intrusion process inflicts damage on only a sensitive file or
a small subset of files in the system. It also further improves
the detection accuracy when all the files in the system have
been stealthily damaged.

In addition, unlike the traditional approaches that em-
ploy GPU [20] or high performance CPU to improve the
detection performance, Pagoda utilizes the widely used key-
value memory database to speed up the detection process
without adding the hardware cost by reducing the disk IO
in detection process. On one hand, both the rule database
and the provenance to be processed reside in memory. So
the provenance acquirement and rule queries do not need
to redirect to the disk. On the other hand, Redis aggregates
multiple values with the same key into one value. This
significantly reduces the provenance query time. Especially
when we start with a process or file for ancestor queries in
a provenance graph, we can fetch all the ancestors at one
time.

Moreover, like many provenance systems (e.g., Cam-
Flow [21]), Pagoda filters unnecessary provenance data to
reduce the detection time. This also prevents noisy data
generating false alarms. Typical noisy data includes daemon
processes, pipe files and temporary files that are not likely
to contain intrusion information. As Pagoda mainly uses
the dependency relationships between different objects to
drive the intrusion detection algorithm, it also omits some
provenance data (e.g., environment variables and input
parameters) to save the memory space. In addition, as we
use an absolute path name to describe a file or a process,
files in the same directory have a common prefix in their
names. Pagoda uses dictionary encoding [22] technology
to compress these duplicates to further reduce the space
overhead.

The contributions of this paper are as follows:

• We propose Pagoda, a provenance-based intrusion
detection system that takes into account the anomaly
degree of both a single path and the whole prove-
nance graph to achieve both fast and accurate detec-
tion in big data environments.

• We incorporate a novel design into Pagoda that uses
a persistent memory database to store provenance
and aggregate multiple similar provenance records
into one record to maximumly reduce the unneces-
sary I/O and improve the provenance query efficien-
cy in both the online detection and forensic analysis
processes.

• To further save the memory space, we apply dictio-
nary encoding to reduce the replicated items in the
rule database. Moreover, we filter the noise prove-
nance that is not likely to contain intrusion informa-
tion or is not used for detecting intrusions in our
method. Thus we improve the detection accuracy
and reduce the detection time.

• We implement the system prototype and evaluate
it on a series of real-world normal and vulner-
able applications. The experimental results show
that Pagoda significantly outperforms the classical
syscall-based method [5] and the state-of-the-art (i.e.,
provenance path based method [17]) on a series of
critical axes, such as detection accuracy, detection
time, forensic analysis efficiency and space overhead.

Assumptions and Limitations: As the provenance col-
lection process is in the kernel, we assume the operating sys-
tem is trusted. In fact, there are some existing trusted com-
puting platform [23] and sophisticated security schemes [24]
that we can use to provide integrity, confidentiality and
privacy guarantees to prevent undetected provenance mod-
ification. As provenance mainly stores in memory, we also
assume the execution does not crash during detection. Even
in the worst case, the provenance in memory can be batch-
loaded to disk before the memory crashes.

Pagoda cannot track the intrusions that do not go
through syscall interface because the intrusion behaviors in
this case do not produce provenance. Almost all the user
behavior in the computer system can generate system calls,
such as reading or writing files, sending or receiving data
to/from the network. Only a very few cases, such as memo-
ry leak, do not generate system calls. Typically, the data leak
from the memory that results from the OpenSSL heartbleed
vulnerability (CVE-2014-0160) does not produce provenance
and thus cannot be captured. In addition, though Pagoda
prunes provenance (e.g., temporary files or pipe files) to
save space and speed up detection, there may still be a
possibility that some intrusions are propagated via these
noisy provenance.

2 BACKGROUND AND MOTIVATION

We first give an overview of provenance and PASS [25]
model, then introduce PIDAS [17].

2.1 Provenance

Provenance, also known as the origin of data, records how
data was generated and how it comes to be its current
state [26]. Provenance is commonly represented as a directed
acyclic graph (DAG) [27], where the nodes represent objects,
and the edges represent the dependency between the object-
s. For instance, a read system call on a file will construct a
directed edge indicating that this read process depends on
this file. In addition, each node has corresponding attributes
to describe its semantics. For instance, a file may have
attributes such as name and inode number, while a process
can have attributes such as process name and ID.

As provenance has been widely used in a variety of areas
(e.g., experimental document, search [28], and security [14]),
a number of provenance collection and tracking systems
have been built. The typical systems include SPADE [29],

3

Story Book [30], TREC [31], PASS [25], LinFS [32], Hi-Fi [33],
LPM [34], CamFlow [21], and Eidetic system [32]. These
systems collect provenance in different layers. For instance,
SPADE and Story Book collect provenance in the applica-
tion layer, whereas PASS and LinFS can track kernel-level
provenance. In addition, TREC is designed to collect prove-
nance locally, SPADE can collect provenance in a distributed
environment, whereas PASS can be extended to provide
back-end storage support in both network-attached [35] and
cloud [36] environments.

The intrusion detection system we develop in this pa-
per is built on PASS which is a storage system to collect
provenance information automatically. Provenance collec-
tion is transparent to the user layer and intruders do not
know whether the system is monitoring their behavior.
PASS intercepts the syscalls and transforms them to the
causality-based provenance graphs, then stores the prove-
nance graphs in key-value databases.

In the PASS model, the nodes in a provenance graph
mainly include files, processes, and pipes. Though PASS col-
lects provenance in the kernel, it also allows an application
to generate its own provenance information. That means,
the node can be an application-defined object. For each n-
ode, PASS assigns a unique pnode number to identity it, and
the pnode number is monotonically increasing whenever a
new node is created. Since an object may be written multiple
times, the system also assigns a version number to each
node to avoid the occurrence of the cycle in the provenance
graphs.

2.2 PIDAS
Unlike traditional host-based intrusion detection methods
that judge intrusion by finding the anomaly in the syscalls
or UNIX shell commands, PIDAS [17] is the first work that
identifies intrusion online by looking for provenance proof
to detect whether a certain behavior is anomalous.

PIDAS employs a file-level provenance tracking frame-
work (e.g., PASS) to collect provenance information gener-
ated by the normal behaviors of a program, filters the noisy
provenance data (e.g., the temporary files or pipe files) and
then divides the pruned provenance into a series of de-
pendency relationships between files, processes and sockets.
The frequently generated dependency relationships during
multiple runs of a program will be put into a BerkeleyDB
rule database called G.

Then, during the detection phase, PIDAS also filters
the noisy provenance data that is not likely to contain
intrusion information and then extracts all the dependency
relationships from the intrusion behavior. If a dependency
belongs to G, then the anomaly degree of this dependency is
regarded as 0, otherwise it is 1. We make a depth-first search
in the provenance graph of the intrusion behavior, and find
the path whose length is L.

We calculate the path decision value P as follows:

P =

∑L
i=1 anomaly degree of each edge

L

We set the decision threshold as T . If P > T , the
program behavior is judged as anomaly.

However, this method still has the following shortcom-
ings:

a) Though provenance data has been reduced to eliminate
the noisy data (e.g., the temporary files or pipe files),
there still exist a lot of duplicates in the rule database,
especially when a file or process is represented as an
absolute path and occurs frequently in the key or value
in the rule database.

b) Because the rule database and the provenance to be
detected are stored in the form of database files on the
hard disk, the disk I/O overhead will have a great impact
on the detection time.

c) Only using a single provenance path to detect intrusion
cannot reflect the behavior of a whole provenance graph,
and thus the detection precision can be further improved.
Typically, the intruders’ behaviors in many cases (e.g.,
APT attack) are complicated, such as browsing multiple
directories, tampering with the system files and sending
various sensitive data outside. The provenance graph for
describing these behaviors often involves many branches,
and thus a single path cannot completely represent the
behaviors of the intruder.

3 DESIGN AND IMPLEMENTATION

We will first describe the design goals of our provenance-
based intrusion detection system, then we elaborate the
details on design and implementation of this system.

3.1 Design goals
Our intuitive design objective mainly comes from the prac-
tical user requirements of host-based intrusion detection
system: detection accuracy, real time, and low overhead.

a) Detection accuracy
Obviously, the first and most important goal is to detect

with high accuracy. We will mainly consider two aspects:
detection rate and false alarm rate. The former shows the
percentage of intrusion behaviors that are correctly classi-
fied. The latter reveals the percentage of normal behaviors
that are reported as intrusions.

b) Real time
In today’s big data era, increasingly large data has been

generated and should be processed in time. Especially for
an intrusion detection system, finding intrusion or anomaly
from data flow with multi-source has become a great chal-
lenge. When using provenance or audit logs to record the
user or application behavior, it is important to process the
data in a timely and efficient manner.

c) Low overhead
The overhead includes three aspects in this paper: 1) disk

space overhead used to build various provenance databases;
2) memory overhead incurred by building memory databas-
es and storing and processing provenance data; 3) The
performance overhead brought by the running of intrusion
detection algorithm, i.e., the intrusion detection algorithm
should have a minor impact on the normal program run-
ning.

3.2 Overall architecture
Figure 1 shows the architecture of Pagoda. It consists of
six components, namely, Provenance collection, Provenance
pruning, Provenance storage and maintenance, Rule building
and deduplication, Detection process and Forensic analysis. The

4

PASS

Provenance

pruning

Intrusion/Normal

Application
User

space

Kernel

space

Provenance storage

and maintenance

Rule building

and deduplication

Detection process
Forensic

analysis

Fig. 1: Architecture of Pagoda

Provenance collection component is responsible for moni-
toring the behaviors of the normal/intrusion applications,
intercepting the system calls invoked by them and translate
these system calls to causality-based provenance records.
Then the provenance pruning module omits the provenance
records that are not related to intrusion detection to im-
prove the detection accuracy and save the storage space
simultaneously. The Provenance storage and maintenance com-
ponent uses key-value memory database (e.g., Redis [37])
to store rule database and run the provenance-based intru-
sion detection algorithm to make real-time detection. The
Rule building and deduplication module constructs the rule
sets for intrusion detection and removes the duplicated
strings to make the rule database as small as possible. The
Detection process component judges whether the intrusion
has happened according to the rule sets and also updates
the rule sets according to the detection results. At last, the
Forensic analysis module looks for the system vulnerability
and intrusion sources by making forward and backward
queries.

3.3 Provenance collection and pruning

Pagoda utilizes PASS to collect provenance of intru-
sion/normal applications. It can also use other provenance
tracking frameworks (e.g., SPADE, LinFS) which intercept
syscall and generate file-level provenance.

Pagoda prunes noisy provenance from two aspects. First,
similar to PIDAS, Pagoda does not preserve the prove-
nance of objects that only reside on disks for a short ter-
m. Typically, these objects include temporary files or pipe
that occur during program execution. They just bridge the
information transformation between different entities (e.g.,
files or processes), but are not likely to store the intrusion
information. Second, to further save storage space and
improve detection efficiency, Pagoda does not collect the
whole-system provenance, but only chooses the key data
that is used for detecting intrusions from the provenance
stream. For instance, both PASS and PIDAS collect a variety
of provenance items, e.g., attributes of an object, like NAME,
TYPE, ENV(i.e., environment variable), ARGV (i.e., argu-
ment input of a process), PID, EXECTIME; the dependency
relationships between objects, such as INPUT, GENERAT-
EDBY, FORKPARENT, RECV, SEND. But for Pagoda, only
the name of the objects and the dependencies between them

are required for detecting intrusions. Pagoda does not need
to preserve the type of object, the environment variables of
the system or any other information. For this, we add a filter
(i.e., Provenance pruning component) in the framework
to eliminate the noisy data and make the detection more
efficient.

3.4 Provenance storage and maintenance

To reduce detection time, Pagoda stores provenance in non-
volatile memory databases. Originally, PASS stores prove-
nance in many log files or BerkeleyDB databases that re-
side on disks. This will induce a large number of disk
Input/Output operations that slow down the provenance
query and intrusion detection process. Therefore, Pagoda
stores rule database in an emerging and widely used mem-
ory key-value database called Redis. Thus any updates in
the rule database will only be in memory.

Pagoda uses a series of Redis databases to store prove-
nance as shown in Table 1. Each node is uniquely identified
by a pnode number. NameDB builds the mappings from the
pnode number of a node to its name. RuleDB contains the
frequently generated relationships between the name of a
node and its parent node during the training process. In ad-
dition, ParentDB and ChildDB are used as index databases
to store the relationships between the pnode number of a
node and its parent nodes or child nodes respectively. Note
that we store multiple provenance dependency relationships
into one item in Redis to further reduce the provenance
graph query time. In a provenance graph that describes
intrusion behavior, there exist many edges that start from
the same nodes. For instance, an intrusion process may
access many files, and will form many edges from this
process to each file. The traditional key-value database (e.g.,
BerkeleyDB) will store each edge as a key-value item in the
database. It takes a long time to locate all of these items
in the graph query process. Pagoda stores these kinds of
dependency relationships into one item in Redis where the
key is the process and the value is a collection of files. This
will improve detection performance and reduce the number
of items in the rule database simultaneously.

As provenance is in Redis, it will not disappear in case
of power crash. The provenance in memory can be batch-
loaded to logs on disk periodically. This further enforces the
reliability of provenance.

5

TABLE 1
Provenance database

Database Key Value

NameDB Pnode number Pnode name
ChildDB Parent pnode Child pnodes
ParentDB Child pnode Parent pnodes
RuleDB Child name Parent name

3.5 Rule building and deduplication

The building of a rule database in Pagoda is similar to
PIDAS, i.e. the system obtains provenance information of
the normal user behavior, and extracts the dependency
relationships to create a rule database with the following
steps:

1. To accurately track and obtain provenance information of
the normal behaviors of a program, we run it M times.

2. For each time of running, the program behavior can be
described as a provenance graph which consists of a
series of dependency relationships which we denote as
Dep1,Dep2, ...,Depn. Depi represents a directed relation-
ship between two objects. Typical objects include files,
processes, and sockets. If object A depends on another
object B, we denote it as Depi = (A,B), of which A is the
child and B is the parent.

3. We set a threshold T1 and count the number of times
Ni that Depi appears in M times of program running. If
Ni > T1, we put one copy of the corresponding Depi into
the rule database G, G = {Depi|Ni > T1}.

We use an absolute path to describe the name of an object
in the rule database. The absolute path can provide exact
location to find a file, especially when we need to remove
a malicious file. However, this can also bring in a lot of
duplicate information. The first case is that some strings are
exactly the same. Typically, if we put both “A → B” and
“B → C” in the rule database, B needs to be stored twice.
When B is a long string, it takes a lot of space to store many
strings such as B. The second case is that a large number
of strings have only a few differences. Most of the different
parts of similar strings appear at the end of the path. This is
because intruders are likely to access different files in the
same folder. In this case, the intrusion process may rely
on these files from the same folder. The names of these
files have a common prefix. We use dictionary encoding to
compress these duplicate strings, which will be encoded as
integers.

3.6 Detection process

PIDAS detects intrusion by judging whether a fixed length
(i.e., L) of a path is abnormal. However, if L is much
smaller than the actual length of a path, the limited length
cannot actually reflect the whole intrusion behavior along
the complete path. Thus it cannot represent the intrusion
behavior that is described as a provenance graph. We can
propose PIDAS-Graph, a method that considers the en-
tire provenance graph to improve the detection accuracy.
Similar to PIDAS, PIDAS-Graph also filters the provenance
data (such as temporary files or pipe) that are not likely to
contain intrusion information, and then stores the pruned

provenance data into BerkeleyDB databases. The algorithm
of PIDAS-Graph is as follows:

1) Computing the anomaly degree (i.e., path decision
value) of each complete path using the algorithm in
Section 2.2.

2) As the anomaly degree of each provenance path
can have different impact on the anomaly degree
of the whole provenance graph, we assign each
provenance path a weight value W according to
the length of the path. Let the anomaly degree of
each path in a provenance graph be P1, P2, ..., Pn,
the lengths of these paths be L1, L2, ..., Ln, the
corresponding Wi (1 ≤ i ≤ n) is calculated as:
Wi = Li/(L1 + L2 + ...+ Ln), the anomaly degree
Q of the whole provenance graph is calculated as
follows: Q = P1 ×W1 +P2 ×W2 + ...+Pn ×Wn =
(P1×L1+P2×L2+...+Pn×Ln)/(L1+L2+...+Ln).

3) We set the graph threshold as T . If Q > T , then the
behavior that forms this provenance graph is judged
as intrusion.

The algorithm first computes the anomaly degree of
each path based on the anomaly degree of each edge on
this path, which has been outlined in Section 2.2. Then it
multiplies the length of each path by its anomaly degree to
get a weight value, and then calculates the anomaly degree
of the whole provenance graph by using the sum of all
these weight values to divide by the sum of the lengths
of all the paths. When the anomaly degree is bigger than
a predefined threshold, the system is judged to have been
attacked. However, it is time-consuming to calculate the
anomaly degree of the whole provenance graph every time.
Especially when the provenance graph is big enough to hold
hundreds or thousands of paths, detection time can be very
long.

Though counting the anomaly degree of only one path
can lead to low accuracy, we find that detection accuracy
can still be high if the anomaly degree of the path is high
enough. For example, if the length of a path is 4, and 3
or 4 edges (or dependencies) on this path are not in the
rule database, these edges are likely to be generated by the
intrusion behavior. We set the anomaly degree of each edge
that does not occur in the rule database as 1, otherwise
we set its anomaly degree as 0. The path in which the
anomaly degree of most of the edges is 1 can be identified
as the invasion path and the whole program behavior can
be judged as intrusion behavior. This can be very common
in today’s intrusion attack. For instance, in an APT attack,
the clever intruders can hide their behaviors in a bunch of
normal behaviors to evade the detection. If we compute the
anomaly degree of the entire provenance graph, as most of
the paths have very low anomaly degree, this kind of attack
may not be easily identified.

So this work develops Pagoda to detect intrusion by
taking into account the anomaly degree of both path and
graph. The basic idea behind Pagoda is to identify intrusion
in a large bunch of data in real time and accurately. The basic
approach is that we first quickly detect the intrusions by
analyzing and locating the path with high anomaly degree.
We can then calculate the anomaly degree of the whole
provenance graph based on the length and anomaly degree

6

of all the paths to further improve detection accuracy if
necessary.

header

len

anomaly

degree

next

len

anomaly

degree

next

len

anomaly

degree

Null

……

Fig. 2: Data structure of list path that stores the length and
anomaly degree of each path in a provenance graph

The whole workflow of the detection process is shown
in Algorithm 1. The algorithm first traverses all the head
nodes (i.e., all nodes in the graph that have no parent
nodes) which can be acquired by searching for the ParentDB
using Algorithm 2 and Algorithm 3. For each head node,
it searches for all the paths starting from itself, and then
stores the anomaly degree and length of each path to the
list path as shown in Figure 2. If the anomaly degree of
any path exceeds a predefined threshold, the algorithm will
be terminated and sound an alarm. The administrator can
further analyze whether the intrusion has really happened
and update the rule database when the false alarm happens.
If no alarm is sounded, the anomaly degree of the whole
provenance graph will be computed by first calculating the
whole length of all the paths and the sum of the anomaly
degree of all the paths based on their lengths, and then using
the latter to divide by the former. If the anomaly degree of
the graph exceeds a predefined threshold, then the alarm
will be sounded.

3.7 Forensic analysis

After judging intrusion online, the administrator can further
make forensic analysis to identify what has happened to a
system. She can use traditional tools such as Tripwire to
find a detection point (e.g., a damaged file or a suspicious
process), and then use this detection point as keyword to
query in the memory database to make forensic analysis.
The detection point can be also acquired by analyzing the
abnormal edges in a provenance path when the anomaly
degree of this path exceeds the predefined threshold. The
forensic analysis mainly includes two steps: backward query
and forward query. Backward query is used to query the
system vulnerability and the source of the intrusion. For-
ward query is used to query all the intrusion behaviors
of the attackers. The integration of backward query with
forward query can construct the provenance graph of an
intact invasion process.

As provenance data resides in memory, it is efficient to
make queries for forensic analysis. After the system vulnera-
bility or intrusion sources are ascertained, the administrator
can patch the defect on the system software or improve the
system security level.

4 EVALUATION

We first describe the testbed and data sets we use in the
experiment. Then we evaluate the system by comparing it

Algorithm 1 Pagoda: Provenance-based intrusion detection
that considers the anomaly degree of both path and graph
Input: list head node /// A list that stores all head nodes
Output: alarm
1: for each head node p in list head node do
2: for each path that starts from p do
3: set the anomaly degree of each edge in the path;
4: compute the anomaly degree of the path;
5: if anomaly degree path > path threshold then
6: call alarm;
7: return;
8: endif
9: store the length and the anomaly degree of the

path into list path;
10: endfor
11: endfor
12: for each ⟨len, anomaly degree⟩ in list path do
13: total len=total len+len;
14: anomaly degree graph = anomaly degree graph +

len*anomaly degree;
15: endfor
16: anomaly degree graph = anomaly degree graph/total len;
17: if anomaly degree graph > graph threshold then
18: call alarm;
19: return;
20: endif

Algorithm 2 Get head list
Input: ParentDB
Output: The list of head records
1: for each record ⟨cname, pname⟩ in ParentDB do
2: Get head node(pname);
3: endfor

Algorithm 3 Get head node(pname)
Input: pname
Output: The list of head nodes for pname
1: Using pname as keyword to search for parent in Parent-

DB;
2: if parent does not exist then
3: add pname into list head node;
4: return;
5: else
6: Get head node(the parent of pname);
7: endif

with other classical intrusion detection systems on a series of
critical axes such as detection rate, false alarm rate, detection
time, query time and storage overhead.

4.1 Experimental setup

The experimental host machine runs Windows 8.1 Pro 64-
bit operating system, with four Intel(R) Core(TM) i7-6700
CPU @3.40GHz and 32 GB memory. The virtual machine
on it runs Pagoda intrusion detection framework. It install-
s Ubuntu 16.04.1 operating system, with four processors,
16 GB memory, and 60 GB hard disk.

7

TABLE 2
Basic Descriptions for a Variety of Normal and Vulnerable Applications Used in Intrusion Detections.

Application Description # of
traces

of
nodes

of rela-
tionships

Training set Test set

of normal
traces

of normal
traces

of intrusion
traces

blast-lite A simple instance of the
Blast biological workload

1 350 628 1 1 0

postmark The PostMark file system
benchmark

1 7818 4777 1 1 0

elaine-oct25 A researcher developed
a python application and
wrote a conference paper

47 117575 292432 40 7 0

linux-apr13 Build of the Linux kernel 15 138285 1355651 7 5 0
am-utils Compilation of am-utils 1 83524 195579 1 1 0
patch-apr17 Patching the Linux kernel 2 131981 73387 1 1 0
NetBSD Build of several compo-

nents of NetBSD
616 10193304 17062049 49 50 0

firefox A web browser 200 183053 269658 100 100 0
vsftp
(CVE-2011-2523)

A secure FTP server 451 35094 41967 350 48 47

samba
(CVE-2007-2447)

A program that implements
the SMB (Server Messages
Block) protocol and pro-
vides file sharing services

180 25661 36283 90 50 40

distcc
(CVE-2004-2687)

A distributed, C++ compil-
er tool

130 465887 1029087 30 50 50

flash
(CVE-2008-5499)

Adobe flash player, a run-
time that executes and dis-
plays content from a pro-
vided SWF file

300 311874 581594 200 50 50

proftp
(N/A)

Highly configurable GPL-
licensed FTP server soft-
ware

204 22844 23648 78 24 102

ptrace
(CAN-2003-0127)

A tool that enables a process
to control another

250 18779 17373 100 50 100

sendmail
(CVE-2002-1337)

An email transfer agent pro-
gram

238 26339 32331 100 38 100

Web attack Web application stress
tool [38] for benchmarking
Apache HTTP server

577 36005184 18038787

phishing email A user clicks a web page
link in an email to open the
firefox browser that down-
loads a malicious backdoor
program. The user wrongly
executes it that automatical-
ly sends sensitive data out-
side.

400 340518 558958 100 100 200

In order to evaluate the performance and efficiency of the
system, a total of seventeen different kinds of applications
(see Table 2) were tested. The first eight applications are
normal applications, and most of the traces on them are
generated by Harvard PASS research group [39] with the
exception of the traces of firefox that are collected based
on the previous work [40]. The other nine applications are
vulnerable to local or remote attacks and the traces on them
simulate the normal use of programs and the intrusion
against them respectively. Some (e.g., vsftp and samba) are
already used in the previous work [17]. Others (e.g., web
attack and phishing email [11]) simulate the frequently oc-
curring network attack in today’s real world. All these traces
represent a wide variety of workloads and vary widely

in size and complexity. For instance, blast-lite records the
behavior of the biological workload, postmark simulates the
small file read/write workload and linux-apr13 and NetBSD
both compile the system files or components in differen-
t directories. For the vulnerable applications, except the
applications that have been identified with CVE numbers,
proftp has a backdoor command execution vulnerability in
its 1.3.3c version that allows the remote unauthenticated
user to access the system. Phishing email simulates a typical
APT attack by cheating users to download a malicious trojan
via clicking a browser link in the email and then send the
sensitive data to a remote host. Web attack simulates the
existing web server/application attack in different attack
frequencies using the web application stress tool [38]. We

8

mainly use it to measure the provenance growth overhead.
The third column in Table 2 shows the number of traces

in each application. The fourth and fifth columns show the
total number of nodes and edges (or relationships) in these
traces. Note that each node in the graphs is uniquely iden-
tified by the combination of a node number and a version
number. The sixth, seventh and eighth columns show the
number of traces in training sets and test sets respectively.
As some applications have only one trace, we use this trace
as both training and test set. For the traces in vulnerable
applications, both sets cover some common operations: file
creation, deletion, download/upload and modification.

4.2 Detection rate and false alarm rate
We evaluate the detection rate and false alarm rate by
comparing four intrusion detection methods: the classical
system call based method [5], PIDAS [17], PIDAS-Graph,
and Pagoda. The parameters of the different methods are
as follows: for system call method, the length of the system
call sequence is 6, and the threshold is used to compare with
the minimal ratio of system calls in a system call sequence
that do not occur in each sequence of the rule database; for
PIDAS, the path length to be judged is 3 for best result [17].
The detection rate shows the percentage of intrusions that
have been correctly classified. The false alarm rate indicates
the fraction of normal behaviors that have been judged as
anomaly.

We first roughly look at the detection performance of
normal traces. Compared to PIDAS, Pagoda has a compara-
ble or better performance (see Table 3). For the applications
(e.g., blast-lite, postmark and am-utils) that have only one
single trace, both Pagoda and PIDAS have no false alarm-
s. This is because all the test data have occurred in the
training data. For patch-apr17, NetBSD, and firefox, Pagoda
performs better than PIDAS. The main reason is that Pagoda
takes into account both long paths and the whole graph but
not a fixed length of a short path as in PIDAS, reducing
the potential false alarms. For instance, for patch-apr17, all
traces record the patching process of different kernel files.
The dependency relationship between a kernel file and the
patch process (e.g., /usr/bin/patch) in the test trace does
not appear in the training trace. Thus false alarm can easily
happen for PIDAS when this dependency relationship is in
a path of length 3 in case that the threshold is 0.3. As there is
only one test trace, so the false alarm rate is 100%. However,
Pagoda has a more strict judgement condition, especially it
sounds an alarm only when most of the edges in a complete
path do not occur in the rule database or the anomaly degree
of the whole provenance graph exceeds a predefined thresh-
old. Pagoda has a comparable performance with PIDAS on
linux-apr13 and elaine-oct25 traces. The reason that false
alarm happens in both of these two cases is that the anomaly
degree of a path exceeds the threshold. For instance, the
linux-apr13 trace compiles all the files in different directories
in a system. As there are no common edges or short paths
between the training set and test set, neither PIDAS nor
Pagoda correctly classifies the traces in the test set.

For intrusion data sets, we first present the overall results
for all intrusion methods and then discuss the performance
numbers on individual traces in more detail. To get a picture
of how well Pagoda performs on the data sets, we average

TABLE 3
Comparison Between Pagoda and PIDAS on False alarm

rate for all the normal traces.

Application False alarm rate

Pagoda PIDAS

blast-lite 0% 0%
postmark 0% 0%
am-utils 0% 0%
patch-apr17 0% 100%
elaine-oct25 33.3% 33.3%
linux-apr13 100% 100%
NetBSD 98% 100%
firefox 0% 1%

the performance numbers across all the data sets as shown
in Figure 3(a). Each point in the figure denotes the detection
performance at a threshold. The points in the top-left corner
achieve the best performance on both detection rate and
false alarm rate. Pagoda performs best in all the methods.
PIDAS and Syscall have big false alarm rate as they judge in-
trusion by considering only one abnormal provenance path
or one system call sequence that does not occur in the rule
database. PIDAS-Graph has a low detection rate especially
when the graph threshold is big. As the average numbers are
heavily influenced by the worst results especially when the
false alarms span several orders of magnitude, we also show
the median results as shown in Figure 3(b). The median false
alarm rates for all the methods have significantly decreased
to below 0.04. Pagoda achieves the best performance for
most of the cases. When the path threshold is small, the
false alarm rates of both Pagoda and PIDAS are slightly big
as the provenance paths in this case are easily to be judged
as anomaly. This indicates that we can choose a proper
threshold to work around it.

The performance for individual intrusion data sets is
shown in Figure 4. For each application, we show the
average value of each method. Each point in the upper left
corner of the figure has both a high detection rate and a
low false alarm rate, and thus shows the best performance.
Pagoda significantly outperforms other methods in most
of the applications. The average detection rates of Pagoda
for both distcc and ptrace are not high. This is because
intruders have performed a lot of normal behaviors to
interfere detection in an invasion. In this case, anomaly
degree of a path or a whole graph will both be very low.
When the path threshold and graph threshold are both big,
intrusion cannot be identified. We can choose proper thresh-
olds to achieve better performance for these applications.
The average detection rate of syscall method is even better
than that of Pagoda for distcc. The possible reason is that,
though there are many normal behaviors in an invasion,
the alarm can still be sounded for syscall method when
there is an anomalous syscall sequence generated by the
abnormal behavior in this attack. The average false alarm
rate of Pagoda for sendmail is a little high. This is because
its normal behavior that is a little different from the rule
database can be easily wrongly judged as anomalous when
the graph threshold is small (< 0.5). We can choose a proper

9

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
er
ag
e
d
et
ec
ti
o
n
 r
at
e

Average false alarm rate

Pagoda

PIDAS-Graph

PIDAS

Syscall

(a)

0 0.02 0.04 0.06 0.08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ed
ia
n
 d
et
ec
ti
o
n
 r
at
e

Median false alarm rate

Pagoda

PIDAS-Graph

PIDAS

Syscall

(b)

Fig. 3: Composite result for all the intrusion methods on all provenance intrusion data sets. Each point in the upper left
corner of the figure has both a high detection rate and a low false alarm rate, and thus shows the best performance.

0 0.1 0.2 0.3 0.4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average false alarm rate

A
v
er
ag
e
d
et
ec
ti
o
n
 r
at
e Pagoda

PIDAS-Graph

PIDAS

Syscall

(a) vsftp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average false alarm rate

A
v
er
ag
e
d
et
ec
ti
o
n
 r
at
e Pagoda

PIDAS-Graph

PIDAS

Syscall

(b) samba

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.7

0.8

0.9

1

Average false alarm rate

A
v
er
ag
e
d
et
ec
ti
o
n
 r
at
e Pagoda

PIDAS-Graph

PIDAS

Syscall

(c) distcc

0 0.005 0.01 0.015
0.4

0.5

0.6

0.7

0.8

0.9

Average false alarm rate

A
v
er
ag
e
d
et
ec
ti
o
n
 r
at
e Pagoda

PIDAS-Graph

PIDAS

Syscall

(d) flash

0 0.005 0.01 0.015 0.02 0.025
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average false alarm rate

A
v
er
ag
e
d
et
ec
ti
o
n
 r
at
e Pagoda

PIDAS-Graph

PIDAS

Syscall

(e) proftp

0 0.001 0.002 0.003 0.004 0.005
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Average false alarm rate

A
v
er

ag
e

d
et

ec
ti
o
n
 r
at

e Pagoda

PIDAS-Graph

PIDAS

Syscall

(f) ptrace

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average false alarm rate

A
v
er
ag
e
d
et
ec
ti
o
n
 r
at
e Pagoda

PIDAS-Graph

PIDAS

Syscall

(g) sendmail

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average false alarm rate
A
v
er
ag
e
d
et
ec
ti
o
n
 r
at
e Pagoda

PIDAS-Graph

PIDAS

(h) phishing email

Fig. 4: ROC curves of different applications for different intrusion detection methods. For each application, we show the
average value for each method. Each point in the upper left corner of the figure has both a high detection rate and a low
false alarm rate, and thus shows the best performance. For Pagoda, the path threshold is 0.7 for the best detection accuracy
(see Section 4.3)

graph threshold to achieve a better performance.
Note that we do not provide results on syscall for phish-

ing email. While the click action on the malicious link does
not invoke explicit system calls, the web page content can
generate a lot of syscalls during web browsing. However,
some of these syscalls do not accurately reflect the browser-
intrinsic behavior (e.g., navigating to a hyperlink and then
opening a tab) [41].

4.3 Threshold chosen
As the detection accuracy of Pagoda relies on both the path
threshold and graph threshold, we explore how different
path and graph thresholds impact detection accuracy for
our method by averaging the results across all the data sets
as shown in Figure 5. The false alarm rate can be very high
when path threshold does not exceed 0.3. This is because a
provenance path can be easier to be judged as abnormal in
this case when only a few edges in this path do not occur

in the rule database. Yet, the detection rate decreases with
the increase of the graph threshold when the path threshold
exceeds 0.3. This is due to the generation of a more strict
condition with the increase of the graph threshold. Howev-
er, the graph threshold must be non-trivial as a small value
(< 0.5) in the graph threshold can make a large number of
activities that behave only a little different from the rule
database wrongly judged as abnormal. Comprehensively,
Pagoda gets the best result when the path threshold exceeds
0.3 and graph threshold is around 0.5.

4.4 Detection time

Figure 6 shows the detection time of different intrusion de-
tection methods for a wide variety of intrusion applications.
The detection time is obtained by computing the means of
multiple tests. Pagoda outperforms PIDAS-Graph in all the
cases, reducing detection time from 21.18% to 74.48%. This
is because the former first computes the anomaly degree of

10

0

0.2

0.4

0.6

0.8

1

A
v
e
ra
g
e
 d
e
te
c
ti
o
n
 r
a
te

data1

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

Graph Threshold

A
v
e
ra
g
e
 f
a
ls
e
 a
la
rm

 r
a
te

0 0.2 0.4 0.6 0.8 1
Graph Threshold

0 0.2 0.4 0.6 0.8 1
Graph Threshold

0 0.2 0.4 0.6 0.8 1
Graph Threshold

0 0.2 0.4 0.6 0.8 1
Graph Threshold

Path threshold=0.1 Path threshold=0.3 Path threshold=0.5 Path threshold=0.7 Path threshold=0.9

Fig. 5: Average detection rate and average false alarm rate for Pagoda for all the data sets in different path thresholds and
graph thresholds.

path and judges whether an intrusion has happened. So it
sometimes does not need to traverse the whole graph. It
also outperforms PIDAS and PIDAS-Redis (i.e., provenance
are stored in Redis when using PIDAS for detection) in all
the data sets for two reasons. First, Pagoda filters more
data than PIDAS, so the data to be detected is less than
the latter. Second, Pagoda aggregates multiple provenance
records with the same key and different values into one
provenance record, so the provenance graph traverse in the
detection process is faster.

Fig. 6: Detection time of different intrusion detection meth-
ods for a wide variety of intrusion applications. PIDAS and
PIDAS-Graph both get data from BerkeleyDB databases,
while PIDAS-Redis and Pagoda get data from Redis when
judging intrusions.

4.5 Query time
Query performance reflects the efficiency of forensic analy-
sis. We issue the following queries on the vsftp application
to compare the query performance between different intru-
sion detection methods.

(Q.1) Backward query: Given a detection point (e.g., a
damaged file), retrieve all the objects on which it directly
depends.

(Q.2) Backward query: Find all the ancestry of a given
detection point.

(Q.3) Forward query: Given an intrusion process (e.g., a
socket IP), retrieve all the files it has accessed.

We choose these queries because they represent the most
common queries when system administrators make forensic
analysis after the intrusion has happened. In addition, these
queries represent different query complexity. The first two
queries aim to locate the system vulnerability or intrusion
sources using a detection point (e.g., a damaged file) as a
starting point. The third query involves a forward query to
find all the files that may have been accessed. For intrusion
detection methods that use BerkeleyDB, we run experiments
on both warm cache and cold cache (i.e., reboot machine
before each test).

TABLE 4
Query time (us) of different intrusion detection methods.

Category PIDAS/PIDAS-Graph PIDAS-Redis Pagoda

Cold-cache Warm-cache

Backward-
single level

9182 113 75 72

Backward-
all ancestor

105795 907 891 853

Forward 96791 5121 4105 3986

Table 4 shows the query performance of different in-
trusion detection methods. Pagoda performs slightly better
than PIDAS-Redis as Pagoda reduces more noisy data from
both the rule database and the intrusion data set. They both
perform better than PIDAS/PIDAS-Graph on warm or cold
cache cases. First, the query process in Pagoda or PIDAS-
Redis receives the data from memory, but not from the
BerkeleyDB database files in the disk as in PIDAS/PIDAS-
Graph. Thus their performance is better in the cold cache
case. Second, Pagoda or PIDAS-Redis aggregate the prove-
nance records that have the same key and different values
into one provenance record that uses a member set to in-
clude all the values. This can significantly reduce query time
especially when an object has a large number of ancestries.
Hence, the query performance of Pagoda also outperforms
PIDAS/PIDAS-Graph even on warm cache case.

4.6 Overhead analysis
(1) Size of rule database and intrusion data sets

11

TABLE 5
Size of rule database and intrusion data sets for PIDAS and Pagoda.

Application Size of rule database (MB) Size of intrusion data sets (MB)

PIDAS Pagoda Pagoda/PIDAS Original PIDAS Pagoda Pagoda/Original Pagoda/PIDAS

vsftp 40 8 20.00% 2.2 1.5 0.59 26.82% 39.33%
samba 16 6 37.50% 0.855 0.537 0.31 36.26% 57.73%
distcc 1536 236 15.36% 0.465 0.284 0.15 32.26% 52.82%
flash 56 20 35.71% 18.5 12.6 10.8 58.38% 85.71%
proftp 168 124 73.81% 1.36 0.878 0.525 38.60% 59.79%
ptrace 0.016 0.008 50.00% 1.97 1.33 0.553 28.07% 41.58%
sendmail 0.016 0.008 50.00% 2.86 1.95 0.98 34.27% 50.26%
phishing email 0.048 0.036 75.00% 17.18 10.52 8.68 50.52% 82.51%

Table 5 shows the size of rule database and intrusion
data sets for PIDAS/PIDAS-Graph and Pagoda respectively.
As PIDAS and PIDAS-Graph employ the same filtering
strategy, they have the same size of rule database and
intrusion data sets. The size of the compressed rule database
for Pagoda contains both the database that stores child-
parent relationships and also the dictionary database that
stores the mapping from the integers to the duplicate
strings. The size of rule database for Pagoda is only 15.36%–
75% of the ones for PIDAS/PIDAS-Graph. Pagoda has
also reduced the intrusion provenance store by 41.62%–
73.18% and 14.29%–60.67% when compared to the original
case and PIDAS/PIDAS-Graph respectively. This is because
PIDAS/PIDAS-Graph omits the temporary files or pipe
files but Pagoda further filters the attributes information
(e.g., arguments or environments) that is not related with
the intrusion. As shown in Table 6, attributes have taken
up a sizeable space in the provenance intrusion data sets.
Pruning them without affecting intrusion detection can be
an important way to reduce the storage overhead.

TABLE 6
Ratio of Attributes in Provenance Intrusion Data Sets.

Application Size of at-
tributes %

Size of oth-
ers %

vsftp 78.84% 21.16%
samba 51.27% 48.73%
distcc 55.57% 44.43%
flash 24.95% 75.05%
proftp 49.45% 50.55%
ptrace 77.42% 22.58%
sendmail 64.39% 35.61%
phishing email 28.02% 71.98%

To further investigate whether Pagoda has dropped in-
trusion information during the filtering, we make a break-
down analysis of the intrusion data set in the cases of origi-
nal, PIDAS and Pagoda as shown in Table 7. The number of
processes in the attack path, files affected, intrusion sockets
and the dependency relationships are the same for PIDAS
and Pagoda. The decrease in the number of nodes lies in
the discarded provenance records that contain the attributes
(e.g., argument input of a process or environment variable)
that are not used by Pagoda. This implies that Pagoda has

generated a more efficient and condensed data set used for
intrusion detection and analysis.

(2) Memory overhead
While the main purpose of Pagoda is to detect an intru-

sion with high accuracy and in real time, it is important to
keep the runtime memory overhead low. Figure 7 shows the
memory overhead for PIDAS and Pagoda on the 50 vsftp
intrusion events. The detection algorithm processes one
event every time. The memory overhead for PIDAS mainly
consists of two parts: the memory overhead of detection
process and the DB cache for BerkeleyDB to speed up the
detection. The memory overhead for Pagoda lies in the
memory overhead of both the detection process and the
Redis server process to support the provenance store and
process consistently in memory. Detection processes for both
Pagoda and PIDAS have comparable memory overhead.
This is because they both load the whole provenance data
for each intrusion event into the memory. Alternatively,
we set the DB cache size 16 MB for BerkeleyDB, while the
memory overhead for Redis server process is only 8 MB.
Thus PIDAS consumes more memory than Pagoda. The DB
cache size for BerkeleyDB can be decreased, however this
can have a significant impact on the detection and query
performance especially when a large number of provenance
data is frequently accessed in the cache.

0

5

10

15

20

25

1 6 11 16 21 26 31 36 41 46

Attack times

M
em

o
ry
 o
v
er
h
ea
d
 (
M
B
)

Detection process for PIDAS PIDAS

Detection process for Pagoda Pagoda

Fig. 7: Memory overhead for PIDAS and Pagoda.

(3) Provenance growth overhead
Provenance growth overhead refers to the space cost of

provenance information with the increase of system run-

12

TABLE 7
Breakdown of Data Sets (Original/PIDAS/Pagoda)

Application #file #process #socket #relations #nodes

vsftp 4587/4587/4587 279/279/279 981/981/981 11744/11744/11744 15895/15890/13474
samba 213/213/213 572/572/572 125/125/125 9946/9946/9946 7451/7362/7187
distcc 158/158/158 423/423/423 150/150/150 4923/4923/4923 3735/3635/3475
flash 3540/3540/3540 2251/1957/1957 706/706/706 327991/327242/327242 188221/179286/162919
proftp 250/250/250 1278/1278/1278 415/415/415 16648/16648/16648 11208/11004/10437
ptrace 4717/4717/4717 290/290/290 100/100/100 11289/11289/11289 14124/14070/12988
sendmail 4815/4815/4815 602/602/602 238/238/238 25346/25346/25346 21395/21290/20122
phishing email 601/601/601 7247/4558/4558 6380/6380/6380 289300/283290/283290 157465/149093/144966

0

1

2

3

4

5

2 4 6 8 10 12 14 16 18 20 22 24

Running time (hours)

P
ro
v
en
an
ce
 S
iz
e
(G
B
)

Original Provenance Pagoda Gzip Recorder

(a) no interval

0

100

200

300

400

500

600

700

2 4 6 8 10 12 14 16 18 20 22 24

Running time (hours)

P
ro
v
en
an
ce
 s
iz
e
(M
B
)

Original Provenance Pagoda Gzip Recorder

(b) 3-5 seconds intervals

0

5

10

15

20

25

30

35

2 4 6 8 10 12 14 16 18 20 22 24

Running time (hours)

P
ro

v
en

an
ce

 s
iz

e
(M

B
)

Original Provenance Pagoda Gzip Recorder

(c) 60-90 seconds intervals

Fig. 8: Variation of the provenance size

ning time. We utilize the Web Application Stress Tools to
simulate the attack under different loads. The experiment
simulates 100 clients to request three data files in the server
simultaneously. The file sizes are 5 KB, 20 KB, and 50 KB.
The request intervals are set to no interval, 3–5 seconds and
60–90 seconds respectively. Figure 8 shows the size growth
of provenance for original provenance case, provenance
after filtering (i.e., Pagoda), and provenance compression
using Gzip under different load conditions. The size of
provenance in Pagoda has been significantly reduced. Even
under the heaviest workload, the provenance information is
generated about 1.1 GB in one day. This can be accepted as
the price of hard disk becomes cheaper. Though provenance
size can become smaller using Gzip compressor, the resulted
provenance cannot be queried efficiently.

(4) Performance overhead

The provenance collection not only incurs storage space
overhead, but can also have an impact on the application
performance. Typically, we measure the data send rate un-
der the above three workloads of web server attack. The
impact is insignificant (0.69%–6.30%). This is because the
provenance collection and storage are in different IO path
from the data acquirement and send. To run a practical IO
bound heavy workload, we also run the postmark bench-
mark on the honeypot machine. We run 1500 transactions
to access 1500 files in 10 different subdirectories, with file
sizes ranging from 4 KB to 1 MB. However, the provenance
collection only brings 5.43% time overhead (the execution
time increases from 35.89 s to 37.84 s). This shows that even
under heavy load, the provenance collection scheme still has
a low overhead.

To investigate how hardware performance has an impact
on the overhead, we also measure the postmark perfor-

mance with a low-end CPU (Intel(R) Celeron(R) CPU 1007U
@1.50G Hz). The execution time has increased to 185.49 s
and 199.61 s respectively. This indicates that a more pow-
erful CPU probably exploits the parallelism and improves
the performance. It also reduces the performance overhead
(from 7.6% to 5.43%) incurred by provenance collection.

5 RELATED WORK

There are some existing works on provenance-based detec-
tion method. Lemay et al. [18] proposed to make an auto-
mated analysis of directed acyclic graph by using a series of
rule grammars, so as to mine and judge the anomaly in the
provenance graph of application behavior. Han et al. ana-
lyzed the opportunities and challenges of using provenance
for detecting intrusions [42] and used K-means clustering
to judge whether the application behavior represented by
a provenance graph is abnormal in the PaaS cloud [19].
In previous work, we proposed PIDAS [17], a provenance
path based intrusion detection system which can clearly
capture the dependencies across system activities, and easily
confirm why and how the intrusions happened. The key
difference of this work is that it judges intrusion not only by
whether a fixed length of a single path is abnormal, but also
by considering the weight factor of different lengths of paths
in a whole provenance graph. Thus the detection result can
be more accurate. In addition, this work filters unrelated da-
ta, compresses rule database and employs memory database
to further reduce the detection time.

Provenance has been also widely used for forensic anal-
ysis [14, 21, 29, 33, 34, 43–46]. These systems collect whole-
system provenance and are thus not applicable for online
detection requirement in big data environments due to
the dependence explosion problem [47, 48]. To alleviate

13

the problem, a large number of techniques (e.g., execu-
tion partitioning [12, 40], logging and tainting [11]) have
been proposed to reduce provenance graph size during the
forensic analysis. Pagoda may complement all these OS-
level provenance systems to further improve the detection
accuracy and query efficiency.

One of the mainstream methods in existing host-based
intrusion detection is to use a fixed length of system call
sequences as the data source for intrusion detection [6]. The
typical methods include system call patterns classification
and mining [7], statistical analysis of intrusion behavior [8],
finite-state automata [9], probabilistic approaches [49] and
exploration of the system call arguments [10]. The key
difference of our work is that we identify intrusions by
explicitly exploiting the information flow using dependency
relationships between files and processes.

The application of machine learning and artificial in-
telligence technology [50–52] has long been proposed to
improve the detection rate of IDS. For instance, Lin et al.
proposed an anomaly detection approach which combines
support vector machine (SVM), decision tree (DT) and simu-
lated annealing (SA) to extract the best selected feature and
generate optimal decision rules [50]. Ghosh et al. applied
Artificial Neural Networks to generate the rules through
autonomous learning, classify the simple data into training
data, and make an automatic response to system behavior
by constructing finite automata [51]. As a convolutional
neural network has been proposed to process arbitrary
graphs [53], it can be used to analyze the provenance graph
representations to accurately identify the unseen intrusions.

For the past few years, the increase in network speed
from Mbps to Gbps has posed a new challenge to existing
IDSs and being a main factor to restrict the real-time of
IDS. The main solutions include distributing the workload
among multiple devices [54] and improving single detec-
tion engine by exploiting the potential hardware perfor-
mance [20]. Our approach improves the processing speed
by providing a comprehensive solution that includes op-
timization of the detection algorithm, filtering the intrusion
data set, compressing rule database and employing memory
database to avoid disk I/O.

Recently, Gu et al. proposed to first eliminate useless
training data by analyzing the control flow graph generated
from the intrusion behavior and then applied the statistical
learning method to improve the detection accuracy [55].
This is similar to the filter method we use to reduce noisy
items in the intrusion data sets. However, our method can
be applied to both training data and the test data. There
are also other works to improve detection efficiency, such
as building intrusion detection model [56], investigating
how to evade the detection online [57], and estimating the
detection accuracy by sampling [58].

6 CONCLUSIONS

Efficient intrusion detection and analysis in big data en-
vironments have become a major challenge for today’s
personal and enterprise users. This paper proposes Pagoda,
a simple and hybrid approach to enable accurate and fast
detection by taking into account the anomaly degree of both
single provenance path and the whole provenance graph. It
employs non-volatile memory database to store and process

data during the detection process, and aggregates multiple
database items into one value to further improve prove-
nance query and detection speed. In addition, it filters out
irrelevant information in the provenance collecting process,
and removes the duplicates in the rule database to save
memory space and speed up the detection. Experimental
results demonstrated the performance and efficiency of this
system.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive
and detailed comments. This work was supported in part by
the National Science Foundation of China under Grant No.
U1705261 and 61821003, CCF-NSFOCUS KunPeng research
fund, Wuhan Application Basic Research Program under
Grant No. 2017010201010104, and Hubei Natural Science
and Technology Foundation under Grant No. 2017CFB304.
Corresponding author: Yulai Xie, ylxie@hust.edu.cn

REFERENCES
[1] “Security statistics for 2016,” https://securelist.com/kaspersky-s

ecurity-bulletin-2016-executive-summary/76858/.
[2] “APT attack analysis by DARPA transparnt computing pro-

gram,” http://www.darpa.mil/program/transparent-computi
ng.

[3] “Ransomware reported by the guardian,” https://www.thegua
rdian.com/technology/2017/may/12/global-cyber-attack-ranso
mware-nsa-uk-nhs.

[4] “Economic loss reported by security daily,” http:
//securitydaily.org/british-insurance-organizations-global-c
yber-attacks-spur-53-billion-losses/.

[5] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection
using sequences of system calls,” Journal of Computer Security,
vol. 6, no. 3, pp. 151–180, 1998.

[6] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions
using system calls: Alternative data models,” in Proceedings of the
IEEE Symposium on Security and Privacy, 1999, pp. 133–145.

[7] W. Lee and S. J. Stolfo, “Data mining approaches for intrusion
detection,” in Proceedings of the 7th USENIX Security Symposium,
1998, pp. 79–93.

[8] D. Wagner and R. Dean, “Intrusion detection via static analysis,”
in Proceedings of the IEEE Symposium on Security and Privacy, 2001,
pp. 156–168.

[9] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A fast
automaton-based method for detecting anomalous program be-
haviors,” in Proceedings of the IEEE Symposium on Security and
Privacy, 2001, pp. 144–155.

[10] G. Tandon and P. K. Chan, “On the learning of system call
attributes for host-based anomaly detection,” International Journal
on Artifical Intelligence Tools, vol. 15, no. 6, pp. 875–892, 2006.

[11] S. Ma, X. Zhang, and D. Xu, “Protracer: Towards practical prove-
nance tracing by alternating between logging and tainting,” in Pro-
ceedings of the Network and Distributed System Security Symposium,
2016.

[12] K. H. Lee, X. Zhang, and D. Xu, “High accuracy attack provenance
via binary-based execution partition,” in Proceedings of the Network
and Distributed System Security Symposium, 2013.

[13] Z. Xu, Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao, F. Xu, H. Wang,
and G. Jiang, “High fidelity data reduction for big data security
dependency analyses,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016.

[14] S. T. King and P. M. Chen, “Backtracking intrusions,” in Proceedings
of the 19th ACM Symposium on Operating Systems Principles, Oct
2003.

[15] K. H. Lee, X. Zhang, and D. Xu, “LogGC: garbage collecting audit
log,” in Proceedings of the 2013 ACM SIGSAC conference on Computer
and Communications Security, 2013.

[16] “Trustwave global security report, 2015,” https://www2.trustw
ave.com/rs/815-RFM-693/images/2015 TrustwaveGlobalSecuri
tyReport.pdf.

14

[17] Y. Xie, D. Feng, Z. Tan, and J. Zhou, “Unifying intrusion detection
and forensic analysis via provenance awareness,” Future Genera-
tion Computer Systems, vol. 61, pp. 26–36, 2016.

[18] M. Lemay, W. U. Hassan, and T. Moyer, “Automated provenance
analytics: A regular grammar based approach with applications in
security,” in Proceedings of the USENIX Workshop on the Theory and
Practice of Provenance, 2017.

[19] X. Han, T. Pasquier, T. Ranjan, M. Goldstein, and M. Seltzer, “Frap-
puccino: Fault-detection through runtime analysis of provenance,”
in Workshop on Hot Topics in Cloud Computing, 2017.

[20] M. A. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi,
and K. Park, “Kargus: a highly-scalable software-based intrusion
detection system,” in Proceedings of the 2012 ACM conference on
Computer and Communications Security, 2012, pp. 317–328.

[21] T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer,
and J. Bacon, “Practical whole-system provenance capture,” in
Proceedings of the 2017 Symposium on Cloud Computing, 2017.

[22] P. A. Boncz, “Monet: A next generation DBMS kernel for query-
intensive application,” Ph.D. dissertation, Universiteit van Ams-
terdam, Amsterdam, The Netherlands, May 2002.

[23] J. Lyle and A. Martin, “Trusted computing and provenance: Better
together,” in Proceedings of the 2nd Workshop on the Theory and
Practice of Provenance, 2010.

[24] R. Hasan, R. Sion, and M. Winslett, “The case of the fake picasso:
Preventing history forgery with secure provenance,” in USENIX
Conference on File and Storage Technologies, June 2009.

[25] K. K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I.
Seltzer, “Provenance-aware storage systems,” in Proceedings of the
2006 USENIX Annual Technical Conference, 2006, pp. 43–56.

[26] P. Buneman, S. Khanna, and W. C. Tan, “Why and where: A
characterization of data provenance,” in International conference on
database theory, vol. 1, 2001, pp. 316–330.

[27] T. Gibson, K. Schuchardt, and E. G. Stephan, “Application of
named graphs towards custom provenance views,” in Workshop
on the Theory and Practice of Provenance, 2009.

[28] S. Shah, C. A. N. Soules, G. R. Ganger, and B. D. Noble, “Using
provenance to aid in personal file search,” in Proceedings of the
USENIX Annual Technical Conference, June 2007.

[29] A. Gehani and D. Tariq, “SPADE: Support for provenance au-
diting in distributed environments,” in Proceedings of the 13th
International Middleware Conference, Dec 2012, pp. 101–120.

[30] R. P. Spillane, R. Sears, C. Yalamanchili, S. Gaikwad, M. Chinni,
and E. Zadok, “Story Book: An efficient extensible provenance
framework,” in Workshop on the Theory and Practice of Provenance,
2009.

[31] A. Vahdat and T. E. Anderson, “Transparent result caching,” in
Proceedings of the USENIX Annual Technical Conference, 1998.

[32] D. Devecsery, M. Chow, X. Dou, J. Flinn, and P. M. Chen, “Eidetic
systems,” in USENIX Symposium on Operating Systems Design and
Implementation, 2014.

[33] D. J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler, “Hi-Fi:
collecting high-fidelity whole-system provenance,” in Proceedings
of the 28th Annual Computer Security Applications Conference, 2012,
pp. 259–268.

[34] A. Bates, D. Tian, K. Butler, and T. Moyer, “Trustworthy whole-
system provenance for the linux kernel,” in Proceedings of the
USENIX Security Symposium, 2015.

[35] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland, P. Macko,
D. Maclean, D. Margo, M. Seltzer, and R. Smogor, “Layering
in provenance systems,” in Proceedings of the USENIX Annual
Technical Conference, June 2009.

[36] K.-K. Muniswamy-Reddy and D. A. Holland, “Provenance for the
cloud,” in Proceedings of the USENIX Conference on File and Storage
Technologies, Feb 2010.

[37] “Redis,” https://redis.io/.
[38] “Web application stress tool,” https://west-wind.com/presenta

tions/webstress/webstress.htm.
[39] Y. Xie, K.-K. Muniswamy-Reddy, D. Feng, Y. Li, and D. D. E.

Long, “Evaluation of a hybrid approach for efficient provenance
storage,” ACM Trans. on Storage, vol. 9, no. 4, pp. 1–29, 2013.

[40] S. Ma, J. Zhai, F. Wang, K. H. Lee, X. Zhang, and D. Xu, “MPI:
Multiple perspective attack investigation with semantics aware
execution partitioning,” in Proceedings of USENIX Security Sym-
posium, 2017.

[41] Y. Kwon, F. Wang, W. Wang, K. H. Lee, W. Lee, S. Ma, X. Zhang,
D. Xu, S. Jha, G. Ciocarlie, A. Gehani, and V. Yegneswaran, “MCI:
Modeling-based causality inference in audit logging for attack

investigation,” in Proceedings of the Network and Distributed Systems
Security (NDSS) Symposium, 2018.

[42] X. Han, T. Pasquier, and M. Seltzer, “Provenance-based intrusion
detection: Opportunities and challenges,” in Workshop on Theory
and Practice of Provenance, 2018.

[43] A. Bates, W. U. Hassan, K. Butler, A. Dobra, B. Reaves, P. Cable,
T. Moyer, and N. Schear, “Transparent web service auditing via
network provenance functions,” in WWW, 2017.

[44] G. Jenkinson, L. Carata, N. Balakrishnan, T. Bytheway, R. Sohan,
R. Watson, J. Anderson, B. Kidney, A. Strnad, and A. Thomas, “Ap-
plying provenance in APT monitoring and analysis,” in USENIX
Workshop on the Theory and Practice of Provenance, 2017.

[45] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr,
“Secure network provenance,” in Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, 2011.

[46] W. U. Hassan, M. Lemay, N. Aguse, A. Bates, and T. Moyer,
“Towards scalable cluster auditing through grammatical inference
over provenance graphs,” in NDSS, 2018.

[47] A. Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara, “The taser
intrusion recovery system,” in Proceedings of the SOSP, 2005.

[48] T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek, “Intrusion
recovery using selective re-execution,” in Proceedings of the OSDI,
2010.

[49] E. Eskin, “Anomaly detection over noisy data using learned prob-
ability distributions,” in Proceedings of the International Conference
on Machine Learning, 2000.

[50] S. Lin, K. Ying, C. Lee, and Z. Lee, “An intelligent algorithm with
feature selection and decision rules applied to anomaly intrusion
detection,” Applied Soft Computing, vol. 12, no. 10, pp. 3285–3290,
2012.

[51] A. Ghosh, C. Michael, and M. Schatz, “A real-time intrusion detec-
tion system based on learning program behavior,” in International
Workshop on Recent Advances in Intrusion Detection, 2000, pp. 93–
109.

[52] M. Salama, H. Eid, R. Ramadan, A. Darwish, and A. Hassanien,
“Hybrid intelligent intrusion detection scheme,” Soft computing in
industrial applications, pp. 293–303, 2011.

[53] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional
neural networks for graphs,” in Proceedings of the International
Conference on Machine Learning, June 2016.

[54] W. Jiang, H. Song, and Y. Dai, “Real-time intrusion detection for
high-speed networks,” Computers & security, vol. 24, no. 4, pp.
287–294, 2005.

[55] Z. Gu, K. Pei, Q. Wang, L. Si, X. Zhang, and D. Xu, “Leaps:
Detecting camouflaged attacks with statistical learning guided by
program analysis,” in 45th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN), 2015, pp. 57–68.

[56] X. Shu, D. Yao, and B. G. Ryder, “A formal framework for program
anomaly detection,” in International Workshop on Recent Advances in
Intrusion Detection, 2015, pp. 270–292.

[57] N. Srndic and P. Laskov, “Pratical evasion of a learning-based
classifier: A case study,” in Proceedings of the IEEE Symposium on
Security and Privacy, 2014.

[58] B. Juba, C. Musco, F. Long, S. Sidiroglou-Douskos, and M. C. Ri-
nard, “Principled sampling for anomaly detection,” in Proceedings
of the Network and Distributed System Security Symposium, 2015.

Yulai Xie received the B.E. and Ph.D. degrees in
computer science from Huazhong University of
Science and Technology (HUST), China, in 2007
and 2013, respectively. He was a visiting schol-
ar at the University of California, Santa Cruz
in 2010 and a visiting scholar at the Chinese
University of Hong Kong in 2015. He is now
an associate professor in School of Computer
Science and Technology in HUST, China. His
research interests mainly include digital prove-
nance, intrusion detection, network storage and

computer architecture.

15

Dan Feng received her B.E, M.E. and Ph.D.
degrees in Computer Science and Technology
from Huazhong University of Science and Tech-
nology (HUST), China, in 1991, 1994 and 1997
respectively. She is a professor and director of
Data Storage System Division, Wuhan National
Lab for Optoelectronics. She is also dean of the
School of Computer Science and Technology,
HUST. Her research interests include computer
architecture, massive storage systems, parallel
file systems, disk array and solid state disk. She

has over 100 publications in journals and international conferences,
including FAST, USENIX ATC, ICDCS, HPDC, SC, ICS and IPDPS. Dr.
Feng is a member of IEEE and a member of ACM.

Yuchong Hu received the B.S. degree in Com-
puter Science and Technology from the School
of the Gifted Young, University of Science and
Technology of China, Anhui, China, in 2005,
and the Ph.D. degree in Computer Science and
Technology from the School of Computer Sci-
ence, University of Science and Technology of
China, in 2010. He is currently an Associate
Professor with the School of Computer Science
and Technology, Huazhong University of Sci-
ence and Technology. His research interests fo-

cus on improving the fault tolerance, repair and read/write performance
of storage systems, which include cloud storage systems, distributed
storage systems and NVM-based systems.

Yan Li received his Ph.D. degree in Computer
Science from Jack Baskin School of Engineer-
ing, University of California, Santa Cruz, in 2017.
His Ph.D. advisor was Professor Darrell Long.
He is currently a systems and deep learning
researcher, inventor and founder. Yan focuses
on computer performance tuning using machine
learning and artificial intelligence.

Staunton Sample is an M.S. student in the
SSRC who started in Fall 2017. His research
interests lie in storage and systems security. He
is currently working under Prof. Darrell Long. S-
taunton has a B.A. in Linguistics from Louisiana
State University.

Darrell Long received his B.S. degree in Com-
puter Science from San Diego State University,
and his M.S. and Ph.D. from the University of
California, San Diego. Dr. Darrell D.E. Long is
Distinguished Professor of Computer Engineer-
ing at the University of California, Santa Cruz.
He holds the Kumar Malavalli Endowed Chair
of Storage Systems Research and is Director
of the Storage Systems Research Center. His
current research interests in the storage systems
area include high performance storage systems,

archival storage systems and energy-efficient storage systems. His
research also includes computer system reliability, video-on-demand,
applied machine learning, mobile computing and cyber security. Dr.
Long is Fellow of IEEE and Fellow of the American Association for the
Advancement of Science (AAAS).

