
Efficient Storage Management for Object-based Flash Memory

Yangwook Kang Jingpei Yang Ethan L. Miller
Storage Systems Research Center, University of California, Santa Cruz

Abstract

Flash memory has become increasingly popular
in today’s storage systems. However, replacing hard
drives with flash memory in current systems often ei-
ther requires major file system changes or causes per-
formance degradation due to the limitations of block-
based interface and out-of-place updates required by
flash. To alleviate this problem, we propose an object-
based model for flash memory that gives the hardware
and firmware the ability to optimize performance for
the underlying implementation. Based on this model,
we propose two new data placement policies that ex-
ploit richer information from an object-based interface.
Using simulation, we show that cleaning overhead
can be reduced by up to 9% by separating data and
metadata. Segregating the access time from metadata
can further reduce the cleaning overhead by up to
23%.

1. Introduction

Storage class memories (SCMs) are playing an in-
creasingly important role in the storage hierarchy.Their
low power consumption, fast random I/O performance
and shock resistance make them attractive for use in
desktops and servers as well as in embedded systems.
Recently, deployment of Solid State Disks (SSDs)
using NAND flash memory has rapidly accelerated,
allowing SCMs to replace disks by providing an inter-
face compatible with current hard drives.

However, these new memory technologies often
require intelligent algorithms to handle their unique
characteristics, such as out-of-place update and wear
leveling. Thus, use of flash memory on current systems
falls into two categories: flash-aware file systems and
Flash Translation Layer (FTL)-based systems. Flash-
aware file systems are designed to be generic and not
tuned for specific hardware, and thus are relatively
inflexible and cannot easily optimize performance for a
range of underlying hardware. An FTL-based approach
enables flash memory to be used as a block-based disk
with no further modification of current file systems;

however, the existence of two translation tables, one in
the file system and one in the embedded FTL, reduces
performance and wastes computing resources.

To alleviate these problems, we propose an object-
based model for flash. In this model, files are main-
tained in terms of objects with variable sizes. The
object-based storage model offloads the storage man-
agement layer from file system to the device firmware
while not sacrificing efficiency. Thus, object-based
storage devices can have intelligent data management
mechanisms and can be optimized for dedicated hard-
ware like SSDs.

We simulate an object-based flash memory and pro-
pose two new data placement policies based on a typi-
cal log structure policy. Our first approach separates
data and metadata, assuming that metadata changes
more frequently than data. The second approach seg-
regates access time from metadata to avoid frequent
metadata changes when a file is read, but not written.
We compare the cleaning overhead of these approaches
to identify the optimal placement policies for an object-
based flash memory.

The rest of the paper is organized as follows. In
Section 2, we discuss some popular object-based file
systems, and the current interfaces for flash. Section 3
explains the design of flash-based OSDs and data
placement policies. Section 4 describes our simulation
and the experiment results, and Section 5 concludes.

2. Background

2.1. Current Flash Memory Interfaces

Much research has explored the use of flash memory
as a secondary storage system to replace disk. These
systems use either a flash-aware file system or an FTL.
Figure 1 illustrates two existing ways to access flash
memory and the object-based storage model for flash
memory proposed in this paper.

When flash-aware file systems are used as depicted
in Figure 1(a) [1, 4, 9], flash memory is directly ac-
cessed via a device driver, requiring a file system to
have intimate knowledge of the flash device. Moreover,



(a) Flash-aware file systems. (b) Flash using FTL. (c) Object-based flash storage.

Figure 1. Three approaches to accessing flash memory from a file system

these general-purpose flash file systems might not be
able to fully utilize the specific attached devices, e. g.,
when multiple data buses to multiple flash chips exist,
they can not optimize the performance by parallelizing
independent requests.

Today most flash-based systems use an FTL between
the raw flash and the legacy file system [3]. This
approach enables file systems to use flash memory as
a block-based device without any modification. Design
issues such as out-of-place update, wear-leveling and
cleaning are handled in the flash device itself. The
fundamental problem of this approach is the existence
of multiple translation layers, as shown in Figure 1(b).
The file system maps file blocks to disk blocks, and
the embedded FTL remaps blocks to their physical
locations on flash, causing performance degradation.

2.2. Object-based Storage Devices

In a system built on object-based storage devices
(OSDs) [2, 8], the file system offloads the storage
management layer to the OSDs, giving the storage
device more flexibility on data allocation and space
management. Recently, Rajimwale et al. proposed the
use of an object-based model for SSDs [7]. The richer
object-based interface has great potential to improve
performance not only for SSDs but also for other new
technologies in SCMs.

3. Object-based Flash Translation Layer

3.1. Object-based Storage Model

Our object-based model on flash can be divided into
two main components: an object-based file system and
one or more OSDs.

The object-based file system maintains a mapping
table between the file name and the unique object iden-
tifier for name resolution. A flash-based OSD consists
of an object-based FTL and flash hardware. The object-
based FTL also contains two parts: a data placement
engine that stores data into available flash segments,

and an index structure that maintains the hierarchy
of physical data locations. A cleaning mechanism is
embedded to reclaim obsolete space and manage wear
leveling. The status of each object is maintained in
a data structure called an onode, which is managed
internally in the OSD.

There is only one translation layer in the data path,
as Figure 1(c) shows; thus, the richer interface can
provide more file system semantics to the underlying
hardware for performance optimization.

3.2. Data Allocation Policies

One optimization with object-based model is the
exploration of intelligent data placement policies to
reduce cleaning overhead. In a typical log-structured
policy, data and metadata are written sequentially to a
segment to avoid erase-before-write, an approach we
term a combined policy. The problem is that different
data types are stored together; since metadata is usually
updated more frequently than user data, this approach
causes the cleaner to move a large amount of live user
data out before erasing the victim segment.

We introduce two new data placement policies to
reduce the cleaning overhead. Our first approach, split
policy, separates metadata and data into different seg-
ments, as was done in systems like DualFS [6] and
hFS [10]. Unlike those systems that do not manage file
metadata internally, this could be easily accomplished
in OSDs with sufficient information from the file
system.

Our second approach, split+atime, further separates
access times from metadata and stores them in separate
segments, avoiding frequent onode updates due to
access time changes caused only by a read operation.
The access time records are journaled in an access
time segment and merged back to the corresponding
onodes after a certain number of entries. OSD will first
search those entries that have not been merged when
retrieving the object’s access time.



combined split split+atime
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
cl

e
a
n
in

g
 o

v
e
rh

e
a
d

data segments cleaned
metadata segments cleaned
atime segments cleaned

bytes of data
bytes of metadata

(a) Read heavy workload.

combined split split+atime
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

cl
e
a
n
in

g
 o

v
e
rh

e
a
d

data segments cleaned
metadata segments cleaned
atime segments cleaned

bytes of data
bytes of metadata

(b) Write heavy workload.

Figure 2. Cleaning overhead of three placement
policies.

4. Implementation

We developed an object storage model simulator
in Java. This simulator has two main components:
a workload generator and an object-based FTL. The
workload generator converts file system call-level
traces to object-based requests and passes them to
OSDs. The FTL contains an index structure, data
placement policies and a cleaner. We pick two traces
from [5], one with a read-intensive workload and one
with a write-intensive workload. The evaluation mainly
focuses on the cleaning overhead in terms of number of
segments cleaned and number of bytes copied during
cleaning under three data placement policies.

For each policy in Figures 2, the left bar indicates
the total number of segments cleaned and the right bar
indicates the number of bytes copied during garbage
collection. Each bar is normalized to the combined
policy. split can reduce cleaning overhead by up to
9%, and split+atime can further reduce the overhead
by up to 23%.

The amount of live data copied in the split policy
under the read-heavy workload is reduced by 28%
because dirty metadata segments have less live data
than data segments, thus fewer pages are copied out
from victim segments. By segregating access time from
metadata, the cleaning overhead is further significantly
reduced since frequent onode updates are avoided by
journaling access time separately.

Our two policies do not get much benefit on write-
heavy traces, since data segments tend to be invalidated
as quickly as metadata segments and access times can
be updated without introducing extra costs, as shown
in Figure 2(b). In this case, the cost of cleaning a data
segment will be lower. However, we can still get ben-
efit from the split+atime policy with no performance
degradation.

5. Conclusions

The performance of flash memory is limited by
the standard block-based interface. To address this
problem, we have proposed the use of an object-
based storage model for flash memory that eliminates
multiple translation layers and does not have to be
custom-written about the underlying hardware.

We have explored three possible data allocation
policies for OSDs. We show, via simulation, that by
separating frequently updated metadata and access
time, our split and split+atime placement policies were
able to reduce cleaning overhead over the typical log-
structured scheme.

References

[1] Aleph One Ltd. YAFFS: Yet another flash file system.
http://www.yaffs.net.

[2] G. A. Gibson and R. Van Meter. Network attached
storage architecture. Communications of the ACM,
43(11):37–45, 2000.

[3] Intel Corporation. Understanding the flash translation
layer (FTL) specification. http://developer.intel.com/.

[4] Y. Kang and E. L. Miller. Adding aggressive error
correction to a high-performance compressing flash file
system. In EMSOFT ’09, Oct. 2009.

[5] LASR system call trace. http://iotta.snia.org/traces?
cookies enabled=testing.

[6] J. Piernas, T. Cortes, and J. M. Garcı́a. DualFS: a new
journaling file system without meta-data duplication. In
Proceedings of the 16th International Conference on
Supercomputing, pages 84–95, 2002.

[7] A. Rajimwale, V. Prabhakaran, and J. D. Davis. Block
management in solid-state devices. In 2009 USENIX
Annual Technical Conference, June 2009.

[8] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In OSDI. USENIX, 2006.

[9] D. Woodhouse. The journalling flash file system. In
Ottawa Linux Symposium, Ottawa, ON, Canada, July
2001.

[10] Z. Zhang and K. Ghose. hFS: A hybrid file system
prototype for improving small file and metadata per-
formance. In Proceedings of EuroSys 2007, Mar. 2007.


