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Abstract—The ever-growing amount of data requires highly
scalable storage solutions. The most flexible approach is to use
storage pools that can be expanded and scaled down by adding
or removing storage devices. To make this approach usable,
it is necessary to provide a solution to locate data items in
such a dynamic environment. This paper presents and evaluates
the Random Slicing strategy, which incorporates lessons learned
from table-based, rule-based, and pseudo-randomized hashing
strategies and is able to provide a simple and efficient strategy
that scales up to handle exascale data. Random Slicing keeps a
small table with information about previous storage system insert
and remove operations, drastically reducing the required amount
of randomness while delivering a perfect load distribution.

I. INTRODUCTION

The ever-growing creation of and demand for massive
amounts of data requires highly scalable storage solutions.
The most flexible approach is to use a pool of storage devices
that can be expanded and scaled down as needed by adding
new storage devices or removing older ones; this approach
necessitates a scalable solution for locating data items in such
a dynamic environment.

Table-based strategies can provide an optimal mapping
between data blocks and storage systems, but obviously do
not scale to large systems because tables grow linearly in the
number of data blocks. Rule-based methods, on the other hand,
run into fragmentation problems, so defragmentation must be
performed periodically to preserve scalability.

Hashing-based strategies use a compact function h in order
to map balls with unique identifiers out of some large uni-
verse U into a set of bins called S so that the balls are evenly
distributed among the bins. In our case, balls are data items
and bins are storage devices. Given a static set of devices, it
is possible to construct a hash function so that every device
gets a fair share of the data load. However, standard hashing
techniques do not adapt well to a changing set of devices.

Consider, for example, the hash function h(x) = (a · x +
b) mod n, where S = {0, . . . , n − 1} represents the set of
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storage devices. If a new device is added, we are left with
two choices: either replace n by n + 1, which would require
virtually all the data to be relocated; or add additional rules to
h(x) to force a certain set of data blocks to be relocated on the
new device in order to get back to a fair distribution, which, in
the long run, destroys the compactness of the hashing scheme.

Pseudo-randomized hashing schemes that can adapt to a
changing set of devices have been proposed and theoretically
analyzed. The most popular is probably Consistent Hash-
ing [17], which is able to evenly distribute single copies of
each data block among a set of storage devices and to adapt
to a changing number of disks. We will show that these
pure randomized data distribution strategies have, despite their
theoretical perfectness, serious drawbacks when used in very
large systems.

Besides adaptivity and fairness, redundancy is important as
well. Storing just a single copy of a data item in real systems
is dangerous because, if a storage device fails, all of the blocks
stored in it are lost. It has been shown that simple extensions of
standard randomized data distribution strategies to store more
than a single data copy are not always capacity efficient [5].

The main contributions of this paper are:
• First comparison of different hashing-based data dis-

tribution strategies that are able to replicate data
in a heterogeneous and dynamic environment. This
comparison shows the strengths and drawbacks of the
different strategies as well as their constraints.
Such comparison is novel because hashing-based data
distribution strategies have been mostly analytically dis-
cussed, with only a few implementations available, and in
the context of peer-to-peer networks with limited concern
for the fairness of the data distribution [23]. Only a few
of these strategies have been implemented in storage
systems, where limited fairness immediately leads to a
strong increase in costs [6][24].

• The introduction of Random Slicing, which overcomes
the drawbacks of randomized data distribution strate-
gies by incorporating lessons learned from table-based,
rule-based and pseudo-randomized hashing strategies.
Random Slicing keeps a small table with information
about previous storage system insertions and removals.
This table helps to drastically reduce the required amount



of randomness in the system and thus reduces the amount
of necessary main memory by orders of magnitude.

It is important to note that all randomized strategies map
(virtual) addresses to a set of disks, but do not define the
placement of the corresponding block on the disk surface. This
placement on the block devices has to be resolved by addi-
tional software running on the disk itself. Therefore, we will
assume inside the remainder of the paper that the presented
strategies work in an environment that uses object-based
storage. Unlike conventional block-based hard drives, object-
based storage devices (OSDs) manage disk block allocation
internally, exposing an interface that allows others to read and
write to variably-sized, arbitrarily-named objects [2][12].

A. The Model

Our research is based on an extension of the standard “balls
into bins” model [16][19]. Let {0, . . . ,M − 1} be the set of
all identifiers for the balls and {0, . . . , N − 1} be the set of
all identifiers for the bins. Suppose that the current number of
balls in the system is m ≤ M and that the current number
of bins in the system is n ≤ N . We will often assume for
simplicity that the balls and bins are numbered in a consecutive
way starting with 0, but any numbering that gives unique
numbers to each ball and bin would work for our strategies.

Suppose that bin i can store up to bi (copies of) balls.
Then we define its relative capacity as ci = bi/

∑n−1
j=0 bj .

We require that, for every ball, k copies must be stored on
different bins for some fixed k. In this case, a trivial upper
bound for the number of balls the system can store while
preserving fairness and redundancy is

∑n−1
j=0 bj/k, but it can

be much less than that in certain cases. We term the k copies
of a ball a redundancy group.

Placement schemes for storing redundant information can
be compared based on the following criteria (see also [8]):
• Capacity Efficiency and Fairness: A scheme is called

capacity efficient if it allows us to store a near-maximum
number of data blocks. We will see in the following
that the fairness property is closely related to capacity
efficiency, where fairness describes the property that the
number of balls and requests received by a bin are
proportional to its capacity.

• Time Efficiency: A scheme is called time efficient if it
allows a fast computation of the position of any copy of a
data block without the need to refer to centralized tables.
Schemes often use smaller tables that are distributed to
each node that must locate blocks.

• Compactness: We call a scheme compact if the amount
of information the scheme requires to compute the posi-
tion of any copy of a data block is small (in particular,
it should only depend on n—the number of bins).

• Adaptivity: We call a scheme adaptive if it only redis-
tributes a near-minimum amount of copies when new
storage is added in order to get back into a state of
fairness. We therefore compare the different strategies
in Section V with the minimum amount of movements,
which is required to keep the fairness property.

Our goal is to find strategies that perform well under all of
these criteria.

B. Previous Results

Data reliability and support for scalability as well as the
dynamic addition and removal of storage systems is one of
the most important issues in designing storage environments.
Nevertheless, up to now only a limited number of strategies
has been published for which it has formally been shown that
they can perform well under these requirements.

Data reliability is achieved by using RAID encoding
schemes, which divide data blocks into specially encoded sub-
blocks that are placed on different disks to make sure that
a certain number of disk failures can be tolerated without
losing any information [20]. RAID encoding schemes are
normally implemented by striping data blocks according to
a pre-calculated pattern across all the available storage de-
vices. Even though deterministic extensions for the support of
heterogeneous disks have been developed [10][13], adapting
the placement to a changing number of disks is cumbersome
under RAID as all of the data may have to be reorganized.

In the following, we just focus on data placement strategies
that are able to cope with dynamic changes of the capacities or
the set of storage devices in the system. Karger, et al. present
an adaptive hashing strategy for homogeneous settings that
satisfies fairness and is 1-competitive w.r.t. adaptivity [17]. In
addition, the computation of the position of a ball takes only an
expected number of O(1) steps. However, their data structures
need at least n log2 n bits to ensure a good data distribution.

Brinkmann, et al. presented the cut-and-paste strategy as
alternative placement strategy for uniform capacities [7]. Their
scheme requires O(n log n) bits and O(log n) steps to evaluate
the position of a ball. Furthermore, it keeps the deviation
from a fair distribution of the balls extremely small with
high probability. Interestingly, the theoretical analysis of this
strategy has been experimentally re-evaluated in a recent paper
by Zheng et al. [26].

Sanders considers the case that bins fail and suggests to
use a set of forwarding hash functions h1, h2, . . . , hk, where
at the time hi is set up, only bins that are intact at that time
are included in its range [21].

Adaptive data placement schemes that are able to cope with
arbitrary heterogeneous capacities have been introduced in [8].
The presented strategies Share and Sieve are compact, fair, and
(amortized) (1+ε)-competitive for arbitrary changes from one
capacity distribution to another, where ε > 0 can be made arbi-
trarily small. Other data placement schemes for heterogeneous
capacities are based on geometrical constructions [22]; the
linear method used combines the standard consistent hashing
approach [17] with a linear weighted distance measure.

All previously mentioned work is only applicable for envi-
ronments where no replication is required. Certainly, it is easy
to come up with proper extensions of the schemes so that no
two copies of a ball are placed in the same bin. A simple
approach feasible for all randomized strategies to replicate
a ball k times is to perform the experiment k times and to



remove after each experiment the selected bin. Nevertheless,
it has been shown that the fairness condition cannot be
guaranteed for these simple strategies and that capacity will
be wasted [5]. This paper will also evaluate the influence of
this capacity wasting in realistic settings.

The first methods with dedicated support for replication
were proposed by Honicky and Miller [14][15]. RUSH (Repli-
cation Under Scalable Hashing) maps replicated objects to
a scalable collection of storage servers according to user-
specified server weighting. When the number of servers
changes, RUSH tries to redistribute as few objects as possible
to restore a balanced data distribution while ensuring that no
two replicas of an object are ever placed on the same server.

CRUSH is derived from RUSH, and supports different
hierarchy levels that provide the administrator finer control
over the data placement in the storage environment [25]. The
algorithm accommodates a wide variety of data replication and
reliability mechanisms and distributes data in terms of user-
defined policies.

Amazon’s Dynamo [11] uses a variant of Consistent Hash-
ing with support for replication where each node is assigned
multiple tokens chosen at random that are used to partition the
hash space. This variant has given good results concerning
performance and fairness, though the authors claim that it
might have problems scaling up to thousands of nodes.

Brinkmann et al. have shown that a huge class of placement
strategies cannot preserve fairness and redundancy at the same
time and have presented a placement strategy for an arbitrary
fixed number k of copies for each data block, which is able
to run in O(k). The strategies have a competitiveness of log n
for the number of replacements in case of a change of the
infrastructure [5]. This competitiveness has been reduced to
O(1) by breaking the heterogeneity of the storage systems [4].
Besides the strategies presented inside this paper, it is worth
mentioning the Spread strategy, which has similar properties
to those of Redundant Share [18].

II. RANDOMIZED DATA DISTRIBUTION

We present in this section a short description of the applied
data distribution strategies. We start with Consistent Hashing
and Share, which can, in their original form, only be applied
for k = 1 and therefore lack support for any redundancy
strategy. Both strategies are used as sub-strategies inside
some of the investigated data distribution strategies. Besides
their usage as sub-strategies, we will also present a simple
replication strategy, which can be based on any of these
simple strategies. Afterwards, we present Redundant Share and
RUSH, which directly support data replication.

A. Consistent Hashing

We start with the description of the Consistent Hashing
strategy, which solves the problem of (re-)distributing data
items in homogeneous systems [17]. In Consistent Hashing,
both data blocks and storage devices are hashed to random
points in a [0, 1)-interval, and the storage device closest
to a data block in this space is responsible for that data

block. Consistent Hashing ensures that adding or removing
a storage device only requires a near minimal amount of
data replacements to get back to an even distribution of the
load. However, the consistent hashing technique cannot be
applied well if the storage devices can have arbitrary non-
uniform capacities since in this case the load distribution has
to be adapted to the capacity distribution of the devices. The
memory consumption of Consistent Hashing heavily depends
on the required fairness. Using only a single point for each
storage devices leads to a load deviation of n · log n between
the least and heaviest loaded storage devices. Instead it is
necessary to use log n virtual devices to simulate each physical
device, respectively to throw log n points for each device to
achieve a constant load deviation.

B. Share-strategy
Share supports heterogeneous environments by introducing

a two stage process [8]. In the first stage, the strategy randomly
maps one interval for each storage system to the [0, 1)-
interval. The length of these intervals is proportional to the
size of the corresponding storage systems and some stretch
factor s and can cover the [0, 1)-interval many times. In this
case, the interval is represented by several virtual intervals.
The data items are also randomly mapped to a point in
the [0, 1)-interval. Share now uses an adaptive strategy for
homogeneous storage systems, like Consistent Hashing, to get
the responsible storage systems from all storage systems for
which the corresponding interval includes this point.

The analysis of the Share-strategy shows that it is sufficient
to have a stretch factor s = O(logN) to ensure correct
functioning and that Share can be implemented in expected
time O(1) using a space of O(s ·k · (n+1/δ)) words (without
considering the hash functions), where δ characterizes the
required fairness. Share has an amortized competitive ratio
of at most 1 + ε for any ε > 0. Nevertheless, we will show
that, similar to Consistent Hashing, the memory consumption
heavily depends on the expected fairness.

C. Trivial data replication
Consistent Hashing and Share are, in their original setting,

unable to support data replication or erasure codes, since
it is always possible that multiple strips belonging to the
same stripe set are mapped to the same storage system and
that data recovery in case of failures becomes impossible.
Nevertheless, it is easy to imagine strategies to overcome this
drawback and to support replication strategies by, e.g., simply
removing all previously selected storage systems for the next
random experiment for a stripe set. Another approach, used
inside the experiments in this paper, is to simply perform as
many experiments as are necessary to get enough independent
storage systems for the stripe set. It has been shown that this
trivial approach wastes some capacity [5], but we will show
in this paper that this amount can often be neglected.

D. Redundant Share
Redundant Share has been developed to support the repli-

cation of data in heterogeneous environments. The strategy



orders the bins according to their weights ci and sequentially
iterates over the bins [5]. The basic idea is that the weights are
calculated in a way that ensures perfect fairness for the first
copy and to use a recursive descent to select additional copies.
Therefore, the strategy needs O(n) rounds for each selection
process. The algorithm is log n-competitive concerning the
number of replacements if storage systems enter or leave
the system. The authors of the original strategy have also
presented extensions of Redundant Share, which are O(1)-
competitive concerning the number of replacements [4] as well
as strategies, which have O(k)-runtime. Both strategies rely on
Share and we will discuss in the evaluation section, why they
are therefore not feasible in realistic settings.

E. RUSH

The RUSH algorithms all proceed in two stages, first
identifying the appropriate cluster in which to place an object,
and then identifying the disk within a cluster. Within a
cluster, replicas assigned to the cluster are mapped to disks
using prime number arithmetic that guarantees that no two
replicas of a single object can be mapped to the same disk.
Selection of clusters is a bit more complex, and differs between
the three RUSH variants: RUSH P , RUSHR, and RUSH T .
RUSH P considers clusters in the reverse of the order they
were added, and determines whether an object would have
been moved to the cluster when it was added; if so, the search
terminates and the object is placed. RUSHR works in a similar
way, but it determines the number of objects in each cluster
simultaneously, rather than requiring a draw for each object.
RUSH T improves the scalability of the system by descending
a tree to assign objects to clusters; this reduces computation
time to log c, where c is the number of clusters added.

Given that RUSHR and RUSH T outperform RUSH P , and
that both showed similar properties during our analysis, we
will only include results for RUSHR for the sake of brevity.

III. RANDOM SLICING

Random Slicing is designed to be fair and efficient both in
homogeneous and heterogeneous environments and to adapt
gracefully to changes in the number of bins. Suppose that we
have a random function h : {1, . . . ,M} → [0, 1) that maps
balls uniformly at random to real numbers in the interval [0, 1).
Also, suppose that the relative capacities for the n given bins
are (c0, . . . , cn−1) ∈ [0, 1)n and that

∑n−1
i=0 ci = 1.

The strategy works by dividing the [0, 1) range into intervals
and assigning them to the bins currently in the system. Notice
that the intervals created do not overlap and completely cover
the [0, 1) range. Also note that bin i can be responsible for
several non-contiguous intervals Pi = (I0, . . . , Ik), where k <
n, which will form the partition of that bin. To ensure fairness,
Random Slicing will always enforce that

∑k−1
j=0 |Ij | = ci.

In an initial phase, i.e. when the first set of bins enters the
system, each bin i is given only one interval of length ci, since
this suffices to maintain fairness. Whenever new bins enter the
system, however, relative capacities for old bins change due to
the increased overall capacity. To maintain fairness, Random

c0=0.2 c1=0.3 c2=0.5

c0'=0.14 c1'=0.19 c2'=0.34

0.0
0.36

0.6 0.7 0.9 1.0
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c3=0.14 c4=0.19

new bins

(a) Initial configuration 

0.0 0.1 0.2 0.6 0.7 0.9 1.0
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Fig. 1. Random Slicing’s interval reorganization when adding new bins.

Slicing shrinks existing partitions by splitting the intervals that
compose them until their new relative capacities are reached.
The new intervals generated are used to create partitions for
the new bins.

Algorithm 1 shows the mechanism used to reduce the inter-
val length of partitions in detail. First, the algorithm computes
by how much partitions should be reduced in order to keep
the fairness of the distribution. Since the global capacity has
increased, each partition Pi must be reduced by ri = ci − c′i,
where c′i corresponds to the new relative capacity of bin i.

Partitions become smaller by releasing or splitting some
of their intervals, thus generating gaps, which can be used
for new intervals. Notice, however, that the strategy’s memory
consumption directly depends on the number of intervals used
and, therefore, the number of splits made in each addition
phase can affect scalability. For this reason, the algorithm tries
to collect as many complete intervals as possible and will only
split an existing interval as a last resort. Furthermore, when
splitting an interval is the only option, the algorithm tries to
expand any adjacent gap instead of creating a new one.

The partition lengths for the old bins already represent
the corresponding relative capacities. It is only necessary to
use these gaps to create new partitions for the newly added
bins. The strategy proceeds by greedily allocating the largest
partitions to the largest gaps available in order to reduce the
number of new intervals even more, which ends the process.

An example of this reorganization is shown in Figure 1,
where two new bins B3 and B4, representing a 50% capacity
increase, are added to the bins B0, B1, and B2. Figure 1(a)
shows the initial configuration and the relative capacities for
the initial bins. Figure 1(b) shows that the partition of B0

must be reduced by 0.06, the partition of B1 by 0.11, and



(a) Consistent Hashing (b) Share (c) Redundant Share in O(k)

(d) Redundant Share (e) RUSHR (f) RandSlice

Fig. 2. Fairness of the data distribution strategies for homogeneous disks.

the one of B2 by 0.16, whereas two new partitions with
a size of 0.14 and 0.19 must be created for B3 and B4.
The interval [0.1, 0.2) ∈ B1 can be completely cannibalized,
whereas the intervals [0.0, 0.1) ∈ B0, [0.2, 0.6) ∈ B2 and
[0.7, 0.9) ∈ B1 are split while trying to maximize gap lengths.
Figure 1(c) shows that the partition for B3 is composed of
intervals [0.23, 0.36) and [0.7, 0.71), while the partition for
B4 consists only of interval [0.04, 0.23).

When all partitions are created, the location of a ball b can
be determined by calculating x = h(b) and retrieving the bin
associated with it. Notice that some balls will change partition
after the reorganization, but as partitions always match their
ideal capacity, only a near minimal amount of balls will need
to be reallocated. Furthermore, if h(b) is uniform enough and
the number of balls in the system significantly larger than
the number of intervals (both conditions easily feasible), the
fairness of the strategy is guaranteed.

IV. METHODOLOGY

Most previous evaluations of data distribution strategies are
based on an analytical investigation of their properties. In
contrast, we will use a simulation environment to examine
the real-world properties of the investigated protocols. All
data distribution strategies will be evaluated in the same
environment, which scales from few storage systems up to
thousands of devices. The simulation environment has been
developed by the authors of this papers and has been made
available online1. The collection also include the parameter
settings for the individual experiments.

We distinguish between homogeneous and heterogeneous
settings and also between static and dynamic environments.

Typical storage systems do not work on the individual hard
disk level, but are handled based on a granularity of shelves.

1http://dadisi.sourceforge.net

We assume that each storage node (also called storage system
in the following) consists of 16 hard disks (plus potential disks
to add additional intra-shelf redundancy).

We assume that each storage systems in the homogeneous,
static setting can hold up to k · 500, 000 data items, where
k is the number of copies of each block. Assuming a hard
disk capacity of 1 TByte and putting 16 hard disks in each
shelf means that each data item has a size of 2 MByte. The
number of placed data items is k · 250, 000 times the number
of storage systems. In all cases, we compare the fairness,
the memory consumption, as well as the performance of the
different strategies for a different number of storage systems.

The heterogeneous setting assumes that we have 128 storage
systems in the beginning and we add in each step 128 systems,
which have 3/2 times the size of the previously added system.
We are placing again half the number of items, which saturates
all disks.

For each of the homogeneous and heterogeneous tests,
we also count the number of data items, which have to
be moved in case we are adding disks, so that the data
distribution delivers the correct location for a data item after
the redistribution phase. The number of moved items has to
be as small as possible to support dynamic environments, as
the systems typically tend to a slower performance during the
reconfiguration process.

The dynamic behavior can be different if the order of the
k copies is important, e.g. in case of parity RAID, Reed-
Solomon codes, or EvenOdd-Codes, or if this order can be
neglected in case of pure replication strategies [20][3][9].

V. EVALUATION

The following section evaluates the impact of the different
distribution strategies on the data distribution quality, the mem-
ory consumption of the different strategies, their adaptivity and
performance. All graphs presented in the section contain four



Algorithm 1 Gap Collection in Random Slicing
Input: {b0, . . . , bn−1}, {bn, . . . , bp−1}, {I0, . . . , Iq−1}
Output: gaps : {G0, . . . , Gm−1}
Require: (p > n) ∧ (q ≥ n)

1: ∀i ∈ {0, . . . , p− 1} : c′i ← bi/
∑p−1
j=1 bj

2: ∀i ∈ {0, . . . , n− 1} : ri ← ci − c′i
3: gaps← {}
4: for i← 0 to q − 1 do
5: j ← get bin assigned to Ii
6: G← get last gap from gaps
7: if rj > 0 then
8: if length(Ii) < rj then
9: if adjacent(G, Ii) then

10: G← G+ length(Ii)
11: else
12: gaps← gaps+ Ii
13: end if
14: ri ← ri − length(Ii)
15: if last interval was assimilated completely then
16: cut interval end← false
17: end if
18: else
19: if adjacent(G, Ii) then
20: G← G+ length(Ii)
21: else
22: if cut interval end then
23: gaps← gaps+ {Ii.end− rj , Ii.end}
24: else
25: gaps← gaps+ {Ii.start, Ii.start+ rj}
26: end if
27: end if
28: ri ← ri − rj
29: cut interval end← ¬cut interval end
30: end if
31: end if
32: end for
33: return gaps

bars for each number of storage systems, which represent the
experimental results for one, two, four, and eight copies (please
see Figure 2 for the color codes in the legend). The white
boxes in each bar represent the range of results, e.g., between
the minimum and the maximum usage. Also, the white boxes
include the standard deviation for the experiments. Small
or non-existing white boxes indicate a very small deviation
between the different experiments. Sometimes we print less
relevant or obvious results in smaller boxes to stay inside the
page limit.

A. Fairness

The first simulations evaluate the fairness of the strategies
for different sets of homogeneous disks, ranging from 8
storage systems up to 8192 storage systems (see Figure 2).

Consistent Hashing has been developed to evenly distribute
one copy over a set of homogeneous disks of the same

size. Figure 2(a) shows that the strategy is able to fulfill
these demands for the test case, in which all disks have
the same size. The difference between the maximum and
the average usage is always below 7% and the difference
between the minimum and average usage is always below
6%. The deviation is nearly independent from the number of
copies as well as from the number of disks in the system,
so that the strategy can be reasonably well applied. We have
thrown 400 · log n points for each storage system (please see
Section II-A for the meaning of points in Consistent Hashing).

The fairness of Consistent Hashing can be improved by
throwing more points for each storage system (see Figure 3
for an evaluation with 64 storage systems). The evaluation
shows that initial quality improvements can be achieved with
very few additional points, while further small improvements
require a high number of extra points per storage system.
400 · log n points are 2400 points for 64 storage systems,
meaning that we are already using a high number of points,
where further quality improvement becomes very costly.

Share has been developed to overcome the drawbacks of
Consistent Hashing for heterogeneous disks. Its main idea is
to (randomly) partition the disks into intervals and assign a
set of disks to each interval. Inside an interval, each disk is
treated as homogeneous and strategies like Consistent Hashing
can be applied to finally distribute the data items.

The basic idea implies that Share has to compute and
keep the data structures for each interval. 1,000 disks lead
to a maximum of 2,000 intervals, implying 2,000 times the
memory consumption of the applied uniform strategy. On the
other hand, the number of disks inside each interval is smaller
than n, which is the number of disks in the environment.
The analysis of Share shows that on average c · log n disks
participate in each interval (see Section II-B, without loss
of generality we will neglect the additional 1

δ to keep the
argumentation simple). Applying Consistent Hashing as ho-
mogeneous strategy therefore leads to a memory consumption,
which is in O(n · log2 n · log2(log n)) and therefore only by
a factor of log2(log n) bigger than the memory consumption
of Consistent Hashing.

Unfortunately, it is not possible to neglect the constants
in a real implementation. Figure 2(b) shows the fairness of
Share for a stretch factor of 3 · log n, which shows huge
deviations even for homogeneous disks. A deeper analysis of
the Chernoff-bounds used in [8] shows that it would have been
necessary to have a stretch factor of 2,146 to keep fairness

Fig. 3. Influence of point number on Consistent Hashing.



(a) Consistent Hashing (b) Consistent Hashing (adaptive points) (c) Redundant Share

(d) RUSHR (e) Random Slicing

Fig. 5. Fairness of the data distribution strategies for heterogeneous disks.

Fig. 4. Fairness of Share depending on stretch factor.

in the same order as the fairness achieved with Consistent
Hashing, which is infeasible in scale-out environments.

Simulations including different stretch factors for 64 storage
systems for Share are shown in Figure 4, where the x-axis
depicts the stretch factor divided by lnn. The fairness can
be significantly improved by increasing the stretch factor.
Unfortunately, a stretch factor of 32 already requires in our
simulation environment more than 50 GByte main memory
for 64 storage systems, making Share impractical in bigger
environments. In the following, we will therefore skip this
strategy in our evaluations.

Redundant Share uses precomputed intervals for each disk
and therefore does not rely too much on randomization prop-
erties. The intervals exactly represent the share of each disk on
the total disk capacity, leading to a very even distribution of the
data items (see Figure 2(d)). The drawback of this version of
Redundant Share is that it has linear runtime, possibly leading
to high delays in case of huge environments. Brinkmann et
al. have presented enhancements, which enable Redundant
Share to have a runtime in O(k), where k is the number of
copies [4]. Redundant Share in O(k) requires a huge number
of Share instances as sub-routines, making it impractical to
support a huge number of disks and a good fairness at the
same time. Figure 2(c) shows that it is even difficult to support

multiple copies for more than 64 disks, even if the required
fairness is low, as 64 GByte main memory have not been
sufficient to calculate these distributions. Therefore, we will
also neglect Redundant Share with runtime in O(k) in the
following measurements.

RUSHR places objects almost ideally according to the
appropriate weights, though it begins to degrade as the number
of disks grows (see Figure 2(e)). We believe this happens due
to small variations in the probabilistic distribution, which build
up for higher numbers of storage systems.

In Random Slicing, precomputed partitions are used to rep-
resent a disk’s share of the total system capacity, in a similar
way to Redundant Share’s use of intervals. This property, in
addition to the hash function used, enforces an almost optimal
distribution of the data items, as shown in Figure 2(f).

The fairness of the different strategies for a set of heteroge-
neous storage systems is depicted in Figure 5. As described in
Section IV, we start with 128 storage systems and add every
time 128 additional systems having 3/2-times the capacity of
the previously added.

The fairness of Consistent Hashing in its original version
is obviously very poor (see Figure 5(a)). Assigning the same
number of points in the [0, 1)-interval for each storage system,
independent of its size, leads to huge variations. Simply
adapting the number of points based on the capacities leads
to much better deviations (see Figure 5(b)). The difference
between the maximum, respectively minimum and the average
usage is around 10% and increases slightly with the number
of copies. In the following, we will always use Consistent
Hashing with an adaptive number of copies, depending on the
capacities of the storage systems.

Both Redundant Share and Random Slicing show again
a nearly perfect distribution of data items over the storage
systems, due to their precise modeling of disk capacities and
the uniformity of the distribution functions (see Figures 5(c)



and 5(e), respectively).
Figure 5(d) shows that RUSHR does a good distribution

job for 1, 2, and 4 copies but seems to degrade with 8 copies
showing important deviations from the optimal distribution.

B. Memory consumption and compute time

The memory consumption as well as the performance of
the different data distribution strategies have a strong impact
on the applicability of the different strategies. We assume
that scale-out storage systems mostly occur in combination
with huge cluster environments, where the different cores of a
cluster node can share the necessary data structures for storage
management. Assuming memory capacities of 192 GByte per
node in 2015 [1], we do not want to waste more than 10%
or approximately 20 GByte of this capacity for the metadata
information of the underlying storage system. Furthermore, we
assume access latencies of 5 ms for a magnetic storage system
and access latencies of 50 µs for a solid state disks. These
access latencies set an upper limit on the time allowed for
calculating the translation from a virtual address to a physical
storage system.

The bars in the graphs of Figure 6 represent the average
allocated memory, the white bars on top the peak consumption
of virtual memory over the different tests. The points in that
figure represent the average time required for a single request.
These latencies include confidence intervals.

The memory consumption of Consistent Hashing only de-
pends on the number and kind of disks in the system, while
the number of copies k has no influence on it (see Figure 6(a)).
We are throwing 400 · log n points for the smallest disk, the
number of points for bigger disks grows proportional to their
capacity, which is necessary to keep fairness in heterogeneous
environments. Using 1,280 heterogeneous storage systems
requires a memory capacity of nearly 9 GByte, which is still
below our limit of 20 GByte.

The time to calculate the location of data item only depends
on the number of copies, as Consistent Hashing is imple-
mented as a O(1)-strategy for a single copy. Therefore, it is
possible to use Consistent Hashing in scale-out environments,
which are based on solid state drives, as the average latency
for the calculation of a single data item stays below 10 µs.

Redundant Share has very good properties concerning mem-
ory usage, but the computation time grows linearly in the
number of storage systems. Even the calculation of a single
item for 128 storage systems takes 145 µs. Using 8 copies
increases the average access time for all copies to 258 µs,
which is 50 µs for each copy, making it suitable for mid
sized environments, which are based on SSDs. Increasing the
environment to 1280 storage systems raised the calculation
time almost linearly for a single copy to 669 µs, which is
reasonable in magnetic disk based environments.

RUSHR shows good results both in memory consumption
and in computation time (see Figure 6(c)). The reduced mem-
ory consumption is explained because the strategy does not
need a great deal of in-memory structures in order to maintain
the information about clusters and storage nodes. Lookup

times depend only on the number of clusters in the system,
which can be kept comparatively small for large systems.

Random Slicing shows very good behavior concerning
memory consumption and computation time, as both depend
only on the number of intervals I currently managed by the
algorithm (see Figure 6(d)). In order to compute the position
of a data item x, the strategy only needs to locate the interval
containing fB(x), which can be done in O(log I) using an
appropriate tree structure. Furthermore, the algorithm strives
to reduce the number of intervals created in each step in order
to minimize memory consumption as much as possible. In
practice, this yields an average access time of 5 µs for a single
data item and 13 µs for 8 copies, while keeping a memory
footprint similar to that of Redundant Share.

C. Adaptivity

Adaptivity to changing environments is an important re-
quirement for data distribution strategies and one of the main
drawbacks of standard RAID approaches. Adding a single disk
to a RAID system typically either requires the replacement of
all data items in the system or splitting the RAID environment
into multiple independent domains.

The theory behind randomized data distribution strategies
claims that these strategies are able to compete with a best
possible strategy in an adaptive setting. This means that the
number of data movements to keep the properties of the
strategy after a storage system has been inserted or deleted
can be bounded against the best possible strategy. We assume
in the following that a best possible algorithm just moves as
much data from old disks to new disks, respectively from
removed disks to remaining disks, as necessary to have the
same usage on all storage systems. All bars in Figure 7 have
been normalized to this definition of an optimal algorithm.

Furthermore, we distinguish between placements, where the
ordering of the data items is relevant and where it is not. The
first case occurs, e.g., for standard parity codes, where each
data item has a different meaning (labeled ”moved keeping
order” in Figure 7). If a client accesses the third block of a
parity set, then it is necessary to receive exactly that block. In
contrast, the second case occurs for RAID 1 sets, where each
copy has the same content and receiving any of this blocks
is sufficient (labeled ”moved changing order”). We will see
in the following that not having to keep the order strongly
simplifies the rebalancing process.

We start our tests in all cases with 128 storage systems and
increase the number of storage systems by 1, 2, 3, 5, 7, 11, or
13 storage systems. The new storage systems have 1,5-times
the capacity of the original system.

The original Consistent Hashing paper shows that the
number of replacements is optimal for Consistent Hashing
by showing that data is only moved from old disks to new
disks in case of the insertion of a storage system or from a
removed disk to old disks in the homogeneous setting [17].
Figure 7(a) shows a very different behavior, the number of
data movements is sometimes more than 20-times higher than
necessary. The reason is that we are placing 400·dlog ne points
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(c) RUSHR (d) Random Slicing

Fig. 6. Memory consumption and performance of the data distribution strategies in a heterogeneous setting.

(a) Consistent Hashing (adaptive points) (b) Consistent Hashing (fixed points) (c) Redundant Share

(d) RUSHR (e) Random Slicing

Fig. 7. Adaptivity of the data distribution strategies in a heterogeneous setting.

for each storage system and dlog ne increases from 7 to 8
when adding storage system number 129. This leads to a large
number of data movements between already existing storage
systems. Furthermore, the competitiveness strongly depends
on whether the ordering of the different copies has to be
maintained or not.

Figure 7(b) shows the adaptivity of Consistent Hashing in
case that the number of points is fixed for each individual
storage system and only depends on its own capacity. We
use 2, 400 points for the smallest storage system and use
a proportional higher number of points for bigger storage
systems. In this case the insertion of new storage systems
only leads to data movements from old systems to the new

ones and not between old ones and therefore the adaptivity is
very good in all cases. Figure 8 shows that the fairness in this
case is still acceptable even in a heterogeneous setting.

The adaptivity of Redundant Share for adding new storage
systems is nearly optimal, which is in line with the proofs
presented in [5]. Nevertheless, Redundant Share is only able
to achieve an optimal competitiveness if a new storage system
is inserted that is at least as big as the previous ones. Otherwise
it can happen that Redundant Share is only log n-competitive
(see Figure 7(c)).

Figure 7(d) shows that RUSHR performs nearly optimal
when storage nodes are added. Note, however, that we did
not evaluate the effect on replica ordering because the current



Fig. 8. Fairness of Consistent Hashing for fixed number of points in a
heterogeneous setting.

implementation does not support replicas as distinct entities.
Instead, RUSHR distributes all replicas within one cluster.

Figure 7(e) shows that the adaptivity of Random Slicing
is very good in all cases. This is explained because intervals
for new storage systems are always created from fragments of
old intervals, thus forcing data items to migrate only to new
storage systems.

VI. CONCLUSIONS

This paper shows that many randomized data distribution
strategies are unable to scale to exascale environments, as
either their memory consumption, their load deviation, or their
processing overhead is too high. Nevertheless, they are able
to easily adapt to changing environments, a property which
cannot be delivered by table- or rule-based approaches.

The proposed Random Slicing strategy combines the ad-
vantages of all these approaches by keeping a small table
and thereby reducing the amount of necessary random exper-
iments. The presented evaluation and comparison with well-
known strategies shows that Random Slicing is able to deliver
the best fairness in all the cases studied and to scale up to
exascale data centers.
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