
ACME: Adaptive Caching
Using Multiple Experts

�

ISMAIL ARI
University of California, Santa Cruz

AHMED AMER
University of California, Santa Cruz

ROBERT GRAMACY
University of California, Santa Cruz

ETHAN L. MILLER
University of California, Santa Cruz

SCOTT A. BRANDT
University of California, Santa Cruz

DARRELL D. E. LONG
University of California, Santa Cruz

Abstract

The gap between CPU speeds and the speed of the technologies providing
the data is increasing. As a result, latency and bandwidth to needed data
is limited by the performance of the storage devices and the networks that
connect them to the CPU. Distributed caching techniques are often used to
reduce the penalties associated with such caching; however, such techniques
need further development to be truly integrated into the network. This pa-
per describes the preliminary design of an adaptive caching scheme using
multiple experts, called ACME. ACME is used to manage the replacement
policies within distributed caches to further improve the hit rates over static
caching techniques. We propose the use of machine learning algorithms to
rate and select the current best policies or mixtures of policies via weight
updates based on their recent success, allowing each adaptive cache node
to tune itself based on the workload it observes. Since no cache databases
or synchronization messages are exchanged for adaptivity, the clusters com-
posed of these nodes will be scalable and manageable. We show that static
techniques are suboptimal when combined in networks of caches, providing
potential for adaptivity to improve performance.

�
This work has been supported in part by Hewlett-Packard Laboratories Storage Technologies De-

partment, the National Science Foundation under award CCR-9972212, and the USENIX Association.

143



144 DISTRIBUTED DATA AND STRUCTURES 4

Keywords

caching, adaptive systems, clusters, adaptive caching, static caching

1 Introduction

The number of users connected to the Internet is growing exponentially. Satisfy-
ing so many users with fast response times while transparently saving network
bandwidth demands efficient distributed caching techniques. The data access la-
tency problem in a single host is related to the discrepancy between the processor
and disk I/O speeds [25, 26]. In remote data accesses, network latency is added to
the I/O latency at the servers [1] further reducing the performance of the applica-
tions.

Enormous research efforts have been put into characterizing Web [1] and file
system [25] workloads, and many static cache replacement policies have been
invented. Today, robust static policies that work well with a wide variety of work-
loads are embedded into systems [19, 5, 24]. Unfortunately, these policies cannot
adapt to changes in workload and network topology and become suboptimal when
the conditions become more complex than the characterized cases [30].

Many factors increase the complexity of today’s systems in which caching is
used. First, the characteristics of the workloads change over short and long periods
of time. Second, workloads mix when a system simultaneously serves multiple
workloads generated by heterogeneous applications. Third, the characteristics of
access to metadata and data are different. Finally, as the location of a cache node
in the network topology changes, the observed workload changes. This load is
different from the load seen at the edges. This is called the “filtering effect” [2].
Recent research shows that these filtering effects in a hierarchy of caches can
change the nature of an otherwise predictable workload such that the higher layers
are effectively useless [32, 7]. In these complex scenarios analytical modeling is
daunting, manual tuning is tedious [3] and making wrong decisions has extreme
monetary and performance costs.

Some researchers and businesses predict that all caching systems will be use-
less due to the immense customization of web content by both the clients and
the content providers. However, we believe that the dynamic part of the content
constitutes mostly the text portion of the documents composed of multimedia (au-
dio and video) as well as text. The bulk of the data that is transferred is still in
static text, images, audio and video. In their extensive Web proxy workload char-
acterization in 1999 spanning 5 months and 117 million requests Arlitt et al. [5]
reported that 92% of all the requests accounting for 96% of the data transferred
was cacheable and high hit rates were achieved by proxies. Surveys of WWW [29]
from 1997 to 1999 showed that the size of the static content on the web has grown
exponentially (approximately 15% per month). It is also known that web work-



Ari et al.: Adaptive Caching Using Multiple Experts 145

loads follow a Zipf popularity distribution [1, 7], which also indicates that there
will still be sharing in the future and we will continue to benefit from caching.
There are also proposed solutions for caching the dynamic content [10].

Our machine learning-based adaptive caching scheme (ACME) is motivated
by these challenges of making caching decisions within complex systems in real-
time and under dynamic conditions. We treat existing cache replacement algo-
rithms as experts and register them into a pool with initially equal weights. When
a new algorithm is invented we add it to our expert pool and let it prove its success.
We do not propose any new cache replacement algorithms, but use the existing
ones more effectively. As the requests are made by the clients and the workload
proceeds, the weights of experts are automatically changed by the computation-
ally simple but powerful machine learning algorithms based on their success on
selected metrics such as hit rate, the fraction of requested items found in the
cache, or byte hit rate, the percentage of requested bytes that are found in the
cache. Each adaptive node is a self-governing, or “autonomous,” entity. Neither
cache content information nor synchronization messages are exchanged between
the peer caches; thus, the clusters composed of these autonomous cache nodes
will be scalable and manageable. In this way, we can use machine learning al-
gorithms [17] to improve caching just as they have been used in addressing non-
trivial operating systems problems such as the disk spin-down problem in mobile
computers [16].

2 Related Work

Caching is used on virtually all data access paths [31] and at all abstraction lev-
els (file/record, block) in modern storage architectures. However, most caches
still depend on robust static cache replacement algorithms such as Least Recently
Used (LRU) to decide on the objects to be ejected.

2.1 Existing Cache Replacement Algorithms

Table 1 lists some very popular and some recently proposed criteria and the poli-
cies that use these criteria to make local replacement decisions. Random, First-
In-First-Out (FIFO) and Last-In-First-Out (LIFO) do not require any information
about the objects to be replaced. Time, frequency and object size are the most
commonly used criteria for local replacement decisions. Least Recently Used
(LRU) uses recency of access as the sole criteria for replacement, while Least
Frequently Used (LFU) uses frequency or popularity of access. Most Recently
Used (MRU) and Most Frequently Used (MFU) are not successful when used
alone, but may be beneficial in mixtures of policies. SIZE replaces the largest
object and Greedy-Dual-Size (GDS) [19, 8] replaces the object with the small-
est key Ki � Ci

�
Si � L, where Ci is the retrieval cost, Si is the size and L is



146 DISTRIBUTED DATA AND STRUCTURES 4

criteria algorithm
– Random, FIFO, LIFO

time LRU, MRU, GDS, GDSF, LFUDA, LRV
freq LFU, MFU, GDSF, LRV, LFUDA
size SIZE, GDS, GDSF, LRV

retrieval cost GDS, GDSF, LFUDA, LRV
ID Hash, Bloom filter

hop-count –
QoS priority Stor-serv

Table 1: An extended taxonomy of some existing and proposed cache replacement
policies. Descriptions of the policies are in Section 2.1.

a running age factor. L is set to the key value of the objects that are replaced
from the cache. GDS with Frequency (GDSF) [5] adds the frequency of ac-
cess, Fi, into the same equation and replaces the object with the smallest key
Ki ��� Ci � Fi � � Si � L. LFU with Dynamic Aging (LFUDA) replaces the object
with minimum Ki �	� Ci � Fi �
� L [5]. Lowest Relative Value (LRV) [24] makes a
cost–benefit analysis using the access time, access frequency and size information
about objects.

Hashing or more complex Bloom filters [15] on object IDs are often preferred
for local decisions in the building blocks of a global system of caches. If the
ID hash implies that a peer node should be caching that object then it may be
replaced quickly. Hop-counts provide another set of criteria that can passively
provide an indication of the logical location of a cache without resorting to full
location-awareness. Up-stream hop counts are a loose measure of how far a cache
is from the closest source of an object, while down-stream hop counts indicate
logical distance from clients. Recent research [33] points to the benefits of keep-
ing a record of access latency history per object, providing yet another potential
caching criterion (e.g., it is wise to keep items items in the cache if they are very
costly to retrieve). Stor-serv [12] proposes Quality of Service (QoS) ideas used in
networking to be applied to storage systems for giving differentiated services to
users.

Table 1 does not intend to cover all the proposed algorithms; rather, our goal
is to show two things. First, the possible criteria and the ways to use them are
extremely varied and subject to change, requiring a flexible design for integrating
new criteria. Second, the trend in cache replacement algorithms is towards finding
the functions that unite all the criteria in a single key or value. However, a single
function cannot be successful at all times with different workloads and their mix-
tures. Other taxonomies of time, frequency and size based policies are presented
in prior work [19].



Ari et al.: Adaptive Caching Using Multiple Experts 147

2.2 Adaptivity in Systems

The term “adaptivity” has different meanings in different systems. For example
Linux has “dynamic” cache space management [6] that uses the primary memory
unused by the kernel and other processes. If the requirement for primary memory
increases, the space allowed for buffering is reduced down to a minimum of 16
pages. However, the cache replacement policies are static. The buffer cache, the
inode cache and the name (or directory) cache are managed by LRU algorithm.

Hybrid Adaptive Caching (HAC) [11] combines the virtues of page and object
caching by adaptively mixing them, while avoiding their disadvantages. Object
caching discards objects in a page that are cold (i.e. not used) while keeping the
hot objects. HAC compacts the hot objects to free memory pages, thus reducing
the high bookkeeping overhead of object caching. HAC was shown to outperform
object caching.

The file caches of the Sprite distributed file system [22] change dynamically in
response to the changes in virtual memory requirements. The Andrew File Sys-
tem (AFS) [18] has two separate caches for status and data and both are gov-
erned by the Least Recently Used (LRU) algorithm. In the Serverless File System
(xFS) [4] any machine can store, cache or control any block of data. Adaptive web
caching [21] proposes that nearby caches self-configure themselves into a mesh of
overlapping multicast groups and exchange messages to locate the nearby copies
of requested data and to find out about topology changes. These systems do not
mention about adaptively changing their caching policy to track the changes in
workloads.

In this paper, we confine our design to the use of adaptive replacement poli-
cies for objects with static content. Detailed research on consistency issues in file
systems [4, 18, 28] and web caching can be found in related previous work [9, 34].
Many of these efforts conclude that write-sharing is rare enough that it is reason-
able to pick the simplest consistency mechanism.

2.3 Static Heterogeneous Caching

Figure 1 shows a simple 2-level cache that can be extended to any N levels. If
caches are of the same size and if they hold exactly the same elements then a miss
in one of them will also result a miss in the other ones. This is called inclusive
caching [32] and makes upper levels useless. This situation often occurs when the
same cache replacement policy is used at all levels. We would like to achieve as
much exclusive caching [32] as possible between the collaborating caches, so that
the cluster has the effect of a one big unified cache to the users. Using heteroge-
neous policies has been demonstrated to improve exclusivity in multi-level caches
by Busari and Williamson [7] and Wong et al. [32]. Our analysis in Section 4 con-
firms and extends these results. It is crucial to note that the unified cache effect is
achieved without any communication between the peers. However, choosing good



148 DISTRIBUTED DATA AND STRUCTURES 4

Miss Hit

L2L1 LN SC

Figure 1: A simple N level cache. The object request of client resulted in a hit in
the second level and was satisfied there.

policy pairs manually can be complicated even in a simple 2-level cache topology.
This motivates our goal of making these decisions in an automated fashion.

Wong et al. [32] also demonstrated the benefits of using demotions in a 2-level
cache that represented client caches and a disk array cache. A demote operation
moves ejected objects one hop further from the client instead of discarding them,
thus resulting in different objects to be cached in different but topologically close
caches. They also tried using different policies at different levels and found that
LRU-MRU-Demotes was the most successful. However, demotions cause extra
network overhead and are feasible in LAN or Storage Area Networks (SAN) with
high-speed connections.

3 Design of an Adaptive Caching Scheme

Adaptivity to a variety of and possibly changing conditions requires multiple al-
gorithms to be embedded in one system. This is also true for an adaptive caching
system. Therefore, our design uses a pool of static cache replacement algorithms
with different characteristics to decide how to behave based on the observed work-
load. The challenge is to join the relatively weak predictions of many different
policies into one highly-accurate prediction [27], deciding which objects to keep
in the cache. Expert systems, specifically machine learning algorithms [17] have
been successfully used for this purpose in the past to solve non-trivial operating
systems problems [16].

Figure 2 illustrates the major components of our initial weighted voting–based
adaptive design. We define a pool of virtual caches, each of which simulates a
single static cache replacement policy by maintaining an object ordering as if it
owned the entire physical cache. To save space, each virtual cache only keeps
object header information, not the actual data for the object. On each request,
each virtual cache reports whether it would have gotten a hit (scored as 1) or
miss (scored as 0) if it were the real cache. This information is used to adjust the
weights of the policies by increasing the weight of policies that would have kept
the object and decreasing the weight of those policies that would have discarded
the object. Future implementations may use more sophisticated mechanisms to
“reward” and “punish” policies; for example, they might consider how highly an



Ari et al.: Adaptive Caching Using Multiple Experts 149

Votes for

objects

Hit / miss

resultsIncoming

request

stream

A.C.M.E.

(Machine Learning)

Physical cache

Policy Pool

(LRU, LFU, GDSF, etc.)

Object

selection

Criteria Pool

(time, freq, size, etc.)

Weight

updates

j ea

e

1

d

c j

g

d

Physical

cache

a

FIFO

LFU

4

a

7

d e

Virtual

caches

3

b

bc h

c

5 8

f i

g

LRU

2

g

j

e

6

h

d

c

h

(a) Design of Adaptive Caching using Multiple
Experts (ACME).

(b) Virtual caches and physical
caches.

Figure 2: Virtual caches in the policy pool assign values to each object they
“cache.” A weighted average of these predictions defines the master policy that
manages the real cache. The real outcomes are compared to the predictions and
used for weight updates of the virtual policies.

object was valued in calculating the weight change rather than simply using binary
value.

Both caching and replacement are done based on votes. Each virtual cache
votes on the objects it wants to keep, assigning higher values to objects that it
believes are most worth keeping. The objects with the highest weighted vote total
stay in the cache. Over time, the real cache ordering will probably resemble the
ordering of virtual caches with the highest weights, but will still be a mixture of
multiple policies.

One potential limitation in this design is the limitation that virtual caches only
keep as many objects as will fit in the physical cache. If this is the case, a vir-
tual cache with space for n objects will be penalized equally for not containing
the objects ranked n � 1 and n � 100, where a rank of 1 is assigned to the most
“valuable” object. We believe it is better to reward caches that rank reused objects
highly even if the objects could not be kept in the cache. Thus, we use virtual
caches that are larger than the physical cache, as shown in Figure 2b. Using this
strategy, an object X1 ranked n � 1 in all virtual caches might be chosen over an
object X2 ranked n � 1 in one cache and unranked in every other cache. If virtual
caches were the same size as physical caches, X1 would be totally unknown and
thus ineligible for ranking. However, it is likely that X1 is more desirable than X2

and would receive a higher vote because so many policies rank it relatively highly.
We expect that keeping track of more objects than the physical cache has

space for will not present an overly large burden on an ACME cache. Objects can
be tracked with relatively few bytes, and we believe the improved performance



150 DISTRIBUTED DATA AND STRUCTURES 4

will justify the little incremental space required.

4 Preliminary Analysis and Results

In this section we present performance results and comparisons of static policies
and a simple adaptive policy using real Web proxy and file system traces. We sim-
ulated the performance of two-level hierarchies using all combinations of policies
at each of the two nodes, showing that heterogeneous policies outperform homo-
geneous policies. We next found that the loss due to using a static policy on even a
single node could approach 20% or more of the potential hits. We then simulated
the behavior of a simple adaptive algorithm that chooses between two algorithms
based on either recent history or overall performance, showing that adaptivity can
be used to improve caching performance.

Our experiments use a cache simulator, written in C++, that implements 12 dif-
ferent cache replacement policies: RAND, LRU, MRU, FIFO, LIFO, LFU, MFU,
SIZE, GDS, GDSF, LFUDA [5], and GD* [19]. We implemented all of these poli-
cies for completeness—though some of these policies are never used in modern
systems, inferior policies may be useful in mixtures. These policies are summa-
rized in Table 1.

4.1 Static Heterogeneous

We extended the work of Busari and Williamson [7] and tested all permutations of
12 different policies in our expert pool in a simple 2–level cache each 4 MBytes
in size as shown in Figure 1. We used their ProWGen workload for compatibility.
ProWGen workload is a synthetic Web proxy workload generated by the ProW-
Gen program developed by Busari and Williamson [7] and used in their previous
web caching research. We used this tool to generate a workload including 200,000
requests using Zipf slope of 0.75 and Pareto tail index of 1.3 [7].

Table 2 shows the results for 5 of these policies. The first column gives the hit
rate for the first level caches. GDSF has the highest first level hit rate (54.41%)
with the ProWGen workload described above. Note that when the same policy
is used at the second level (e.g. LRU-LRU), the hit rates are very low. The third
column shows the policy that matched well with the policy at the first level and
performed the best at the second level. Our results agree with the previous results
and the best policy at the second level is always different than the policy in the first
level. For example, with this workload using GD* at the second level of a 2-level
cache with LRU at the first level improves overall hit rate by 7.76%. Also note
that as the hit rate of the policy in the first level approaches to maximum possible
hit rates (HR∞) the hit rates at the second level drop drastically. A 12 � 12 matrix
of all combinations and the total hit rate results in the fourth column revealed that
there are many good and bad combinations and manual tuning or guessing these



Ari et al.: Adaptive Caching Using Multiple Experts 151

Policy HR-Level1 HR-Level2 HR-Level2 Best Total
Same Policy Best Other

LRU 42.70 0.37 7.76 (GD*) 50.46
LFU 36.79 5.25 19.36 (GDSF) 56.15

GDSF 54.41 1.72 1.75 (GDS) 56.16
LFUDA 46.75 2.49 8.47 (GD*) 55.22

GD* 52.98 0.63 2.36 (GDSF) 55.34

Table 2: Hit rate results in a 2-level cache using a ProWGen workload with
200,000 requests. The hit rate (HR) of policies at the first level cache is given
in column 2. Column 3 lists the second level HR when the same policy is used.
Column 4 shows the benefit of using a different policy at the second level by giv-
ing the results of the best other policy. The best other policy is always different
than the first level policy and provides considerable improvements over the usage
of same policy in both levels.

pairs is hard even in a simple 2–level cache. The success of pairs is also workload
dependent. Therefore, we are motivated to use automated processes employing
machine learning algorithms.

4.2 Rationale for Adaptive Caching

As the characteristics of the workload change over time, performance of the static
policies become suboptimal. In caching research, the performance of different
static replacement policies are usually measured by keeping a cumulative running
average for hit rate or byte hit rate. These values are reported after the “warmup”
period as the performance of that static policy for a given cache size and work-
load. However, if we measure the hit rates of these policies in subregions of the
request stream we see that the best policy for different subregions may be differ-
ent, as shown in Figure 3. We term this behavior switching. Choosing the “best
current” policy is preferable over choosing the “best overall” policy if the costs
of achieving the former can be justified with its benefits. We define the difference
between the hit rates of the best current policy and a particular static policy as
“the loss” of that static policy. The cumulative results hide the recent successes or
losses of static policies.

Figure 3 shows the existence of switching in real workloads using a web
proxy trace gathered at Digital Equipment Corporation (DEC) [14]. This proxy
served 14,000 workstations, and was taken on September 16, 1996. The trace con-
tains 1,245,260 requests for 524,616 unique items, consisting of approximately
6 GBytes of unique data, for a HR∞ of 57.9%. We tested twelve policies on this
trace, giving each 64 MBytes of cache space. Only a few policies dominated for



152 DISTRIBUTED DATA AND STRUCTURES 4

Request number
50000 55000 60000 65000 70000 75000 80000

H
it 

ra
te

 (
%

)

0

5

10

15

20

25

30

35

40
RAND GDSF LFUDA LRU

(a) This graph shows the existence of switching of the best current policy in the DEC trace
for a segment of the trace; different shadings correspond to different policies doing best in
each 500 request interval.

Request number
50000 55000 60000 65000 70000 75000 80000

H
it 

ra
te

 (
%

)

0

5

10

15

20

25

30

35

40
RAND GDSF LFUDA LRU

(b) This graph shows the loss due to the use of a static algorithm—LRU—during each
interval. The shaded area above the LRU bar shows the improvement that could have been
obtained by using a different algorithm. LRU was chosen for the baseline because its cu-
mulative loss was around around 3%. For LFUDA and GDSF, the average cumulative loss
was around 5%.

Figure 3: These graphs show the byte hit rate of various policies on a Web cache
trace over 500 request intervals using a 64 MByte cache. The top graph shows
only the best policy for each interval, and the bottom graph plots the same data
showing both LRU and whichever algorithm performed best for the interval.



Ari et al.: Adaptive Caching Using Multiple Experts 153

more than 1–2 intervals; these are the policies shown in Figure 3. The byte hit
rates are measured in intervals of 500 requests; Figure 3a shows the policy that
“won” for each interval. The graph shows that the best policy keeps changing
for different time slots even after warmup period of a single well-characterized
workload.

Figure 3b shows the same data, but also plots the performance of the best
overall static policy, LRU, for each interval. The shaded bars on the top of the
LRU byte hit rates indicate that, for many intervals, other policies were better than
LRU. The cumulative average of the difference between the byte hit rate of best
policy and particular static policies, i.e. the loss due to using static policies, was
around 3% absolute for LRU and 5% absolute for both LFUDA and GDSF. Since
average byte hit rate was under 20%, using adaptive policies could increase the
number of bytes provided by the cache by 15%-25% or more, with corresponding
reductions in bandwidth and response time.

Different static policies may be more successful with different workloads,
therefore choosing a single static policy will result in different losses with dif-
ferent workloads. Our goal is to develop an automated scheme that will be able
to either select the current best static policy or create a more successful hybrid
policy by mixing the available static policies.

It is vital that the opinion of each expert is heard and considered at all times. If
a highly opinionated group or decision-maker ignores the decisions of the experts
that have made weak or unsuccessful predictions in the past, then group may
run into the danger of only following one strong static expert (i.e. monopoly).
When the conditions change to favor the previously weak experts this “so-called
adaptive” system is bound to collapse since the alternatives have been starved
during the course of events.

To illustrate this concept we wrote a simple synthetic request stream that fa-
vors LRU algorithm until 500 seconds and then changes characteristic to favor
SIZE algorithm as seen in Figure 4. Figure 4b shows that an implementation that
only looks at overall past performance cannot switch to the other good policies
when the conditions change and is bound to be as good as the overall best fixed
policy. SIZE policy has to exceed the overall maximum hit rate of the LRU policy
for this switch to happen. However, a good adaptive algorithm implementation,
shown in Fig. 4b, can look at recent success to quickly switch to using the SIZE
policy maintaining a continuous high hit rate.

Another concern is the amount of information in the workload. An adaptive
algorithm based on learning will have its limits when the workload is completely
random, since learning works whenever there is at least some information in the
form of repetitive patterns. However, even with request streams that appear ran-
dom, there is hope for improvement. Workloads in which references made to
randomly-chosen objects will likely favor algorithms that cache smaller objects
because they can cache more of them, perhaps gaining additional hits from keep-
ing more objects. Similarly, algorithms that cache distant objects may do better on



154 DISTRIBUTED DATA AND STRUCTURES 4

0

0.2

0.4

0.6

0.8

1

0 400 800 1200

H
it 

ra
te

Time (seconds)

LRU
SIZE

Adaptive

0

0.2

0.4

0.6

0.8

1

0 400 800 1200
H

it 
ra

te
Time (seconds)

LRU
SIZE

Adaptive

(a) Schemes that look at cumulative suc-
cess will stick with the overall best pol-
icy, causing performance to suffer when
the workload changes.

(b) Adaptive schemes that look at recent
success can quickly switch to currently
successful policies and provide continu-
ous high performance.

Figure 4: Hit rate for a synthetic workload that changes after 500 seconds.

such workloads because they provide the highest benefit when a hit does occur.

5 Future Work

Our current design and implementation constitute only proofs of concepts. In or-
der to make adaptive caching an effective technique, we must discover which
machine learning algorithms best adapt to Web and file system workloads. Sim-
ply choosing the best algorithms is not enough, however, unless caching can be
embedded in networks with little performance penalty.

Real implementations will enforce us to minimize space and computational
overheads and make performance trade-offs. Actual implementations will also
require the use of more efficient data structures, such as B-trees [13] and B+-
trees [23] used in file systems and databases. For example, a Unified Buffer Man-
agement (UBM) scheme for the FreeBSD file system was implemented and tested
by Kim et al. [20] and user response times were improved by 67.2% (with an av-
erage of 28.7%). Adaptive caching must use similar optimizations or suffer from
unacceptably high costs to make good predictions.

6 Conclusions

We presented adaptive caching schemes applicable to single and multiple proces-
sor systems. Adaptive caching helps with the management of distributed caches
when complex dynamic workloads are serviced. Our autonomous caches use ma-
chine learning algorithms to collaborate with a pool of caching experts to tune
themselves to the observed workload. Since no cache databases or synchroniza-



Ari et al.: Adaptive Caching Using Multiple Experts 155

tion messages are exchanged, the clusters composed of these autonomous cache
nodes will be scalable and manageable. Our methods will be useful for all dis-
tributed Web, file system, database and content delivery services.

Acknowledgments

Ismail Ari was supported by a grant from Hewlett-Packard Laboratories. We thank
Dick Henze, Terril Hurst, Rich Elder, Ran-Fun Chiu and Scott Marovich in the
Storage Technologies Department of Hewlett-Packard Laboratories for support-
ing our research and providing helpful comments. We are also grateful to mem-
bers of the Storage Systems Research Center as well as Manfred Warmuth and
the members of the Machine Learning Group at UC Santa Cruz. Finally, we thank
the participants of WDAS for helping us refine the ideas in this paper.

References
[1] ALMEIDA, V., BESTAVROS, A., CROVELLA, M., AND DE OLIVEIRA, A. Char-

acterizing reference locality in the WWW. In Proceedings of the 1996 International
Conference on Parallel and Distributed Information Systems (PDIS ’96) (Dec. 1996).

[2] AMER, A., AND LONG, D. D. E. Adverse filtering effects and the resilience of
aggregating caches. In Proceedings of the Workshop on Caching, Coherence and
Consistency (WC3 ’01) (Sorrento, Italy, June 2001), ACM.

[3] ANDERSON, E., HOBBS, M., KEETON, K., SPENCE, S., UYSAL, M., AND

VEITCH, A. Hippodrome: running circles around storage administration. In Pro-
ceedings of the 2002 Conference on File and Storage Technologies (FAST) (Monterey,
CA, Jan. 2002).

[4] ANDERSON, T., DAHLIN, M., NEEFE, J., PATTERSON, D., ROSELLI, D., AND

WANG, R. Y. Serverless network file systems. ACM Transactions on Computer
Systems 14, 1 (Feb. 1996), 41–79.

[5] ARLITT, M., CHERKASOVA, L., DILLEY, J., FRIEDRICH, R., AND JIN, T. Evalu-
ating content management techniques for web proxy caches. In Proceedings of the
2nd Workshop on Internet Server Performance (WISP ’99) (Atlanta, Georgia, May
1999).

[6] BECK, M., BOHME, H., DZIADZKA, M., KUNITZ, U., MAGNUS, R., AND VER-
WORNER, D. Linux Kernel Internals, 2nd ed. Addison–Wesley, 1998.

[7] BUSARI, M., AND WILLIAMSON, C. Simulation evaluation of a heterogeneous
web proxy caching hierarchy. In Proceedings of the 9th International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS ’01) (Cincinnati, OH, Aug. 2001), IEEE, pp. 379–388.

[8] CAO, P., AND IRANI, S. Cost-aware WWW proxy caching algorithms. In Proceed-
ings of the USENIX Symposium on Internet Technologies and Systems (USITS ’97)
(Dec. 1997), pp. 193–206.



156 DISTRIBUTED DATA AND STRUCTURES 4

[9] CAO, P., AND LIU, C. Maintaining strong cache consistency in the World Wide
Web. In Proceedings of the 17th International Conference on Distributed Computing
Systems (ICDCS ’97) (1997).

[10] CAO, P., ZHANG, J., AND BEACH, K. Active cache: Caching dynamic contents on
the web. In Proceedings of the 1998 Middleware Conference (1998).

[11] CASTRO, M., ADYA, A., LISKOV, B., AND MYERS, A. C. HAC: Hybrid adaptive
caching for distributed storage systems. In Proceedings of the 16th ACM Symposium
on Operating Systems Principles (SOSP ’97) (1997), pp. 102–115.

[12] CHUANG, J., AND SIRBU, M. Stor-serv: Adding quality-of-service to network stor-
age. In Proceedings of Workshop on Internet Service Quality Economics (Cambridge
MA, Dec. 1999).

[13] COMER, D. The ubiquitous B-tree. ACM Computing Surveys 11, 2 (June 1979),
121–137.

[14] DIGITAL EQUIPMENT CORPORATION (DEC). Digital’s web proxy traces. Available
from ftp://ftp.digital.com/pub/DEC/traces, Sept. 1996.

[15] FAN, L., CAO, P., ALMEIDA, J., AND BRODER, A. Z. Summary Cache: A scalable
wide-area web cache sharing protocol. IEEE/ACM Transactions on Networking 8, 3
(2000), 281–293.

[16] HELMBOLD, D. P., LONG, D. D. E., AND SHERROD, B. A dynamic disk spin-down
technique for mobile computing. In Proceedings of the 2nd Annual International
Conference on Mobile Computing and Networking 1996 (MOBICOM ’96) (Rye, New
York, Nov. 1996), ACM, pp. 130–142.

[17] HERBSTER, M., AND WARMUTH, M. K. Tracking the best expert. In Proceedings
of the 12th International Conference on Machine Learning (Tahoe City, CA, 1995),
Morgan Kaufmann, pp. 286–294.

[18] HOWARD, J. H., KAZAR, M. L., MENEES, S. G., NICHOLS, D. A., SATYA-
NARAYANAN, M., SIDEBOTHAM, R. N., AND WES, M. J. Scale and performance
in a distributed file system. ACM Transactions on Computer Systems 6, 1 (Feb. 1988),
51–81.

[19] JIN, S., AND BESTAVROS, A. GreedyDual* web caching algorithm: Exploiting the
two sources of temporal locality in web request streams. In Proceedings of the 5th
International Web Caching and Content Delivery Workshop (Lisbon, Portugal, May
2000).

[20] KIM, J. M., CHOI, J., KIM, J., NOH, S. H., MIN, S. L., CHO, Y., AND KIM,
C. S. A low-overhead high-performance unified buffer management scheme that
exploits sequential and looping references. In Proceedings of the 4th Symposium on
Operating Systems Design and Implementation (OSDI) (San Diego, CA, Oct. 2000),
pp. 119–134.

[21] MICHEL, S., NGUYEN, K., ROSENSTEIN, A., ZHANG, L., FLOYD, S., AND JA-
COBSON, V. Adaptive Web caching: towards a new global caching architecture.
Computer Networks and ISDN Systems 30, 22-23 (1998), 2169–2177.

[22] NELSON, M. N., WELCH, B. B., AND OUSTERHOUT, J. K. Caching in the Sprite
network file system. ACM Transactions on Computer Systems 6, 1 (1988), 134–154.



Ari et al.: Adaptive Caching Using Multiple Experts 157

[23] RAO, J., AND ROSS, K. A. Making B+-trees cache conscious in main memory. In
Proceedings of the 2000 ACM SIGMOD International Conference on Management
of Data (Dallas, TX, May 2000), pp. 475–486.

[24] RIZZO, L., AND VICISANO, L. Replacement policies for a proxy cache. IEEE/ACM
Transactions on Networking 8, 2 (2000), 158–170.

[25] ROSELLI, D., LORCH, J., AND ANDERSON, T. A comparison of file system work-
loads. In Proceedings of the 2000 USENIX Annual Technical Conference (June 2000).

[26] RUEMMLER, C., AND WILKES, J. An introduction to disk drive modeling. IEEE
Computer 27, 3 (Mar. 1994), 17–29.

[27] SCHAPIRE, R. E. A brief introduction to boosting. In Proceedings of International
Joint Conference on Artificial Intelligence (IJCAI) (1999), pp. 1401–1406.

[28] THEKKATH, C. A., MANN, T., AND LEE, E. K. Frangipani: A scalable distributed
file system. In Proceedings of the 16th ACM Symposium on Operating Systems Prin-
ciples (SOSP ’97) (1997), pp. 224–237.

[29] WANG, J. A survey of web caching schemes for the Internet. ACM Computer Com-
munication Review 29, 5 (Oct. 1999), 36–46.

[30] WEIKUM, G., KONIG, A. C., KRAISS, A., AND SINNWEL, M. Towards self-tuning
memory management for data server. Data Engineering Bulletin 22, 2 (1999), 3–11.

[31] WILKES, J., RICKARD, W., GIBSON, G., ANDERSON, D., AND BLACK, D. Shared
storage model. a framework for describing storage architectures. Technical Council
Proposal Document draft-june5, SNIA, June 2001.

[32] WONG, T. M., GANGER, G. R., AND WILKES, J. My cache or yours? Making
storage more exclusive. Tech. rep., CMU-CS-00-157 Carnegie Mellon University,
Nov. 2000.

[33] WOOSTER, R., AND ABRAM, M. Proxy caching that estimates page load delays. In
Proceedings of the 6th International World Wide Web Conference (Santa Clara, CA,
Apr. 1997), pp. 325–334.

[34] YU, H., BRESLAU, L., AND SHENKER, S. A scalable web cache consistency archi-
tecture. In Proceedings of SIGCOMM99 (1999), pp. 163–174.

Ismail Ari is a Ph.D. student in the Computer Science Department at the University of Cal-
ifornia, Santa Cruz, where he does research as a member of the Storage Systems Research
Center. E-mail: ari@cs.ucsc.edu.

Ahmed Amer will receive his Ph.D. in Computer Science from the University of Califor-
nia, Santa Cruz in Summer, 2002. He will join the Computer Science Department at the
University of Pittsburgh in Fall, 2002. E-mail: amer4@cs.ucsc.edu.

Robert Gramacy is a Ph.D. student in the Computer Science Department at the University
of California, Santa Cruz, where he is a member of the Machine Learning Group. E-mail:
rbgramacy@cs.ucsc.edu.

Ethan Miller is an Assistant Professor in the Computer Science Department at the Uni-
versity of California, Santa Cruz, where he is a member of the Storage Systems Research
Center. E-mail: elm@acm.org.



158 DISTRIBUTED DATA AND STRUCTURES 4

Scott Brandt is an Assistant Professor in the Computer Science Department at the Uni-
versity of California, Santa Cruz, where he is a member of the Storage Systems Research
Center. E-mail: sbrandt@cs.ucsc.edu.

Darrell D. E. Long is a Professor in the Computer Science Department at the University of
California, Santa Cruz, where he is the Director of the Storage Systems Research Center.
E-mail: darrell@cs.ucsc.edu.


