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1. INTRODUCTION

MEMS-based storage, otherwise known as probe-based storage, is an emerging
nonvolatile secondary storage technology that promises seek times ten times
faster, storage densities ten times greater, and power consumption one to two
orders of magnitude lower than hard disks [Carley et al. 2000; Toigo 2000;
Vettiger et al. 2000]. Based on microelectromechanical positioning systems,
MEMS-based storage has architectural designs and manufacturing processes
that are fundamentally different from magnetic disks. It uses a nonrotating
storage device with storage media on one surface and a large array of read/write
probe tips on another surface, directly above the storage media. By moving
the surfaces relative to each other using MEMS actuators, each read/write
probe can access a region of the surface. MEMS-based storage can initially
provide two to ten gigabytes of storage in a single chip as small as a dime,
with high throughput, high resistance to shock, and low entry cost. For all
of these reasons, MEMS-based storage is an appealing next-generation storage
technology, particularly for mobile computing and high-end systems, where size
and power or performance are important. We focus on power management and
request scheduling in MEMS-based storage to take advantage of its low-level,
device-specific characteristics.

There has been strong research interest in the roles and corresponding man-
agement policies of MEMS-based storage in computer and database systems
since 1999 [Griffin et al. 2000a, 2000b; Schlosser et al. 2000; Uysal et al. 2003;
Yu et al. 2003]. By comparing the external behaviors and performance of MEMS
storage devices and a hypothetical “super” disk, Schlosser and Ganger [2004]
have concluded that MEMS devices are much like disks, and that today’s stor-
age interfaces and abstractions are also suitable for such devices, except for
their efficient accesses to two-dimensional data structures such as relational
database tables [Yu et al. 2003].

Treating MEMS devices as small, low-power, fast disk drives has an obvious
advantage in that systems can easily leverage the overall superior performance
of MEMS-based storage and promote such an emerging technology for quicker
and wider adoption when it is available. However, our research shows that
systems which take advantage of the unique properties of MEMS-based storage
can provide even better performance.

One of the fundamental tasks of operating systems is to efficiently man-
age resources. Of particular concern are secondary storage devices, which
are frequently a limiting factor in computer system performance. Beyond
the standard interfaces and abstractions, operating system researchers and
designers often resort to device-specific knowledge in order to more effi-
ciently utilize hard disks. Examples include FFS [McKusick et al. 1984],
LFS [Rosenblum and Ousterhout 1992], and track-aligned extents [Schindler
et al. 2002] on data layout, shortest positioning time first (SPTF) [Jacobson
and Wilkes 1992; Seltzer et al. 1990] and freeblock scheduling [Lumb
et al. 2002] on request scheduling, and various disk “spin-down” policies
[Helmbold et al. 1996; Li et al. 1994] on power management. This is also
true for MEMS-based storage devices. Our research demonstrates significant
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benefits from MEMS-specific management of both request scheduling and
power conservation.

As a result of its architectural designs, MEMS-based storage has unique non-
rotating, two-dimensional, independent positioning behaviors. Disk-analogous
request scheduling algorithms that only consider MEMS device movements in
one-dimension are therefore unlikely to be optimal. We developed zone-based
shortest positioning time first (ZSPTF), a new MEMS-specific scheduling algo-
rithm that partitions the MEMS device into a two-dimensional array of zones,
within which seek times are considered to be equivalent. ZSPTF traverses
zones in circular scan (C-SCAN) order and services requests within each zone
in shortest positioning time first (SPTF) order. This algorithm significantly
outperforms other disk-analogous algorithms, with average performance com-
parable to SPTF and service fairness similar to C-SCAN. ZSPTF also avoids
the computational complexity that plagues SPTF and its variants.

A single MEMS device is expected to consume much less power than a disk.
However, due to its limited capacity per device, the power consumption effi-
ciency index of MEMS-based storage, as defined by watt per gigabyte, is com-
parable to that of low power disks [Hitachi Global Storage Technologies 2004;
Seagate Technology, Inc. 2004]. As MEMS storage is likely to be used in small
portable devices, power management remains an important factor in its over-
all system performance. Unlike disks, MEMS devices can quickly switch from
low power modes to active mode with little energy overhead. They may also be
able to turn on or off hundreds to thousands of read/write tips, as needed. We
have developed three MEMS-specific power conservation strategies that take
advantage of these features—aggressive spin-down, sequential request merg-
ing, and subsector accesses. We show that by using these techniques, MEMS
storage device energy consumption can be reduced by up to 50%, with little or
no negative impact on I/O performance.

2. MEMS-BASED STORAGE

We base the physical parameters of our experimental MEMS device model on
the specification from Carnegie Mellon University (CMU) [Carley et al. 2000].
Although there are several designs of MEMS-based storage described in the
literature, we used the CMU model because all of these designs share many
similarities in both architectures and expected performance and the CMU de-
sign was disclosed in the greatest detail.

Figure 1 shows the details of a MEMS-based storage device. The device con-
sists of a surface coated with magnetic media, called a media sled, and a two-
dimensional array of stationary read/write probe tips, called a tip array, as
shown in Figure 1(a). The media sled is suspended above the tip substrate by
silicon beams that act as springs, and moved independently and in parallel in
the x and y directions by forces generated by lateral resonant microactuators,
as shown in Figure 1(b). Data is written and retrieved by moving the media sled
at a constant velocity in the y direction while the tip array remains stationary.
Sled velocity in the x direction needs damping to zero before data transfer to
avoid off-track interference, which leads to settling time. A MEMS device can
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Fig. 1. Components of a MEMS-based storage device.

Fig. 2. Data layout on a MEMS device.

activate multiple tips at the same time. Data can then be striped across multi-
ple tips, providing a considerable amount of parallelism. However, power and
heat considerations limit the number of probe tips that can be active simulta-
neously. For instance, out of 6400 probe tips, 1280 tips can be active at once in
the CMU G2 model while 3200 tips can be active in the G3 model [Schlosser
et al. 2000].

Figure 2 illustrates the low-level data layout of a MEMS-based storage de-
vice. The media sled is logically broken into nonoverlapping tip regions, defined
by the area that is accessible by a single tip; approximately 2500 by 2500 bits
in size. It is limited by the maximum amount of sled movement. Each tip in the
MEMS device can only read data in its own tip region. The smallest unit of data
in a MEMS storage device is called a tip sector. Each tip sector, identified by
the tuple 〈x, y ,tip〉, has its own servo information for positioning and its own
error correction information. The set of bits accessible to simultaneously active
tips with the same x coordinate is called the tip track, and the set of all bits
(under all tips) with the same x coordinate is referred to as the cylinder. A set
of concurrently accessible tip sectors is grouped as a logical sector. For faster
access, logical blocks can be striped across logical sectors.
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Table I. Default MEMS-Based Storage Device
Parameters

Per sled capacity (GB) 3.2
Max. throughput (MB/s) 89.6
Number of tips 6400
Maximum concurrent tips 1280
Sled mobility in x and y (µm) 100
Sled acceleration in x and y (m/s2) 803.6
Sled access speed (mm/s) 28
Sled resonant frequency (Hz) 739.0
X settling time (ms) 0.215
Spring factor 75%
Media bit cell size (nm2) 40 × 40
Bits per tip region (M × N ) 2500 × 2500

Table I summarizes the physical parameters of the MEMS-based storage
used in our research, based on the predicted characteristics of the CMU G2
MEMS model. While the exact performance numbers depend upon the details
of that specification, the techniques themselves do not.

3. MODELING MEMS-BASED STORAGE

Because MEMS-based storage is still under development, our simulations are
based on the current proposed device architectures and specifications. Using
these specifications, we have developed models for MEMS storage device power
consumption characteristics and the positioning behaviors of MEMS-based
storage.

3.1 Modeling Power Consumption

As specified elsewhere [Carley et al. 2000; Schlosser et al. 2000], when a MEMS
device transfers data, the active probe tips and their signal processing elec-
tronics consume 1 mW each. Keeping the media sled in motion requires an
additional 100 mW. Thus, a data transfer using 1000 active tips would require
(1000 × 1) + 100 = 1100 mW. When idle, the media sled constantly seeks and
rereads the last sector accessed, consuming the same power as when transfer-
ring data. When placed in an inactive mode, the device consumes only 50 mW
(the sled is “spun-down”), but takes 0.5 ms to move from inactive to active; dur-
ing this time, the sled consumes only slightly more power than it does during
the active mode. The overall energy usage for MEMS-based storage is much
lower than for disk.

We derived a state transition diagram describing MEMS device power usage
from these specifications. A MEMS storage device can be in one of five states,
as shown in Figure 3: INACTIVE, in which the device remains stationary, with
perhaps a small power drain to hold it in place; IDLE, in which the sled is not
servicing requests but keeps seeking the last sector using a few tips to access
servo information; SEEK, in which the actuators move the sled and all tips are
inactive; ACCESS, in which the sled moves in the y direction and the necessary
tips are activated to access servo information and data; and STARTUP, in which
the device switches from INACTIVE to SEEK within 0.5 ms and the cost to
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Fig. 3. Power states in which a MEMS-based storage device can operate.

“spin-up” the sled is 5 × 10−5 J, assuming no active tip is required during this
switch. The duration of time before the device switches from IDLE to INACTIVE
is called the idle timeout, which can be adjusted either statically or dynamically.
In comparison, disk drives have four major power modes [Li et al. 1994]: OFF,
in which the device is completely inactive and consumes no energy; SLEEP, in
which the disk is powered up but the platter is not spinning; IDLE, in which
the disk is spinning but no data is being transferred; and ACTIVE, in which
the disk is spinning and either seeking or accessing data.

From the perspective of power state transitions, the key difference between
MEMS storage and disk technologies is that the transition from INACTIVE to
SEEK in MEMS-based storage is much more cost-effective, in terms of time
and power consumption, than the transition from SLEEP to IDLE in disk.
INACTIVE and SLEEP are the lowest power states for the two kinds of devices
before they are shut down, and SEEK and IDLE are the states that they need
to be in before servicing requests. In particular, MEMS only consumes slightly
more power during this transition than it does in IDLE because the MEMS
media sled is very light and only needs accelerating to a relatively low speed
(28 mm/s), requiring a tiny amount of extra kinetic energy (∼10−7 J). Disks,
on the other hand, may take several seconds to accelerate relatively large and
heavy rotating platters to speeds exceeding 3600 RPM. During this transition,
disks require power several times higher than in the IDLE mode.

3.2 Modeling Positioning Time

An accurate and tractable positioning time model is important for understand-
ing the performance characteristics of MEMS-based storage. We developed an
analytical MEMS positioning model, taking into account the external force (con-
stant but bidirectional, ±F ), the spring force, and the initial and final access
velocities, which are opposite for odd- and even-indexed bit columns. The model
is similar to the positioning time model proposed by CMU [Griffin et al. 2000a].
In contrast, the CMU model assumes piece-wise constant spring forces and
is solved iteratively. As a result, its accuracy and computational complexity
depend on the granularity of the iteration. Our model has no such limitation.
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In MEMS-based storage, media sled positioning in the x- and y-dimensions
can proceed in parallel because the actuation mechanisms and control loops in
xand y are independent. Therefore,

tseek = max(tx , ty ), (1)

where tseek is the overall seek time and tx and ty are the seek times in x and
y , respectively. The sled seek in x consists of a base seek plus a settling time,
which is a function of the resonant frequency of the system. The sled seek in y
consists of a base seek plus any necessary turnaround time, which is a function
of the actuator and spring forces. Both the settling and turnaround time can be
calculated from the physical parameters of MEMS-based storage.

A base seek is a one-dimensional movement from x0 to x1, where the move-
ment and the access velocities are in the same direction. The seek consists of
two phases: acceleration and deceleration. The actuators accelerate the sled
toward the destination in the acceleration phase and reverse polarity and de-
celerate the sled to its final destination and velocity in the deceleration phase.
In addition to the actuator force, the sled springs constantly pull the sled toward
its centermost position. Because the kinetic energy of the sled is unchanged at
the beginning and end of the base seek, we know when and where to reverse
the polarity of the actuators:

xm = x0 + x1

2
+ k

4F
(
x2

1 − x2
0
)
, (2)

where xm is the position at which actuators reverse polarity from positive to
negative, k is the spring constant, and F is the actuator force.

The phases of acceleration and deceleration in the base seek are described
in Equations 3 and 4:

ẍ = a − kx
m

, (3)

ẍ = −a − kx
m

, (4)

where m is the sled mass, a is the acceleration by the actuators, and x is the sled
displacement. Given their marginal conditions, we can solve Equations 3 and 4
(complete solutions are available in a technical report [Hong and Brandt 2002]).
Using the physical parameters in Table I, we can very accurately estimate the
seek time between any two positions in the sled.

4. REQUEST SCHEDULING OF MEMS-BASED STORAGE

Researchers have been optimizing request scheduling to improve disk efficiency
for decades [Jacobson and Wilkes 1992; Seltzer et al. 1990; Worthington et al.
1994]. By mapping a disk-analogous data layout onto MEMS-based storage
(Section 2), Schlosser and Griffin et al. Griffin et al. 2000a, 2000b; Schlosser
and Ganger 2004; Schlosser et al. 2000] concluded that existing disk request
scheduling algorithms can be applied efficiently in MEMS, sometimes even bet-
ter than a MEMS-specific shortest (Euclidean) distance first algorithm. These
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Fig. 4. Seek time equivalence regions from the center to even-indexed bit columns.

algorithms implicitly assume that the seek cost in the x-dimension is either
infinite or equal to the cost in y .

These assumptions about the cost ratio of seeks in the x- and y-dimensions
are not true for MEMS-based storage. Figure 4 shows the seek times from the
center of a MEMS sled to its even-indexed bit columns, where the seek time
equivalence regions are rectangular with an x: y size ratio of, on average, about
1:10. This means that it is cheaper to move one unit of distance in the x direction
than to move more than ten units in the y direction. This is in direct contrast to
hard drives, where most algorithms implicitly assume that it is faster to access
any sector in the current track than to access any sector in any other track.
These results suggest that the scheduling algorithms which take advantage of
the knowledge of this ratio are likely to outperform disk-based models of tip
cylinders, which assume an implicit ratio of 1:∞.

4.1 The Zone-Based Shortest Positioning Time First Algorithm

It is known that shortest positioning time first (SPTF) scheduling generally pro-
vides the best performance, but suffers high response time variations [Jacobson
and Wilkes 1992; Seltzer et al. 1990; Worthington et al. 1994]. We developed
zone-based shortest positioning time first (ZSPTF), an algorithm that divides
MEMS storage media into a set of zones based on seek time equivalence regions.
Zones are serviced in an fixed order to guarantee fairness, for example, in a C-
SCAN (circular scan) order, which prevents a large number of new requests
in lower-numbered zones from indefinitely delaying the service of requests in
higher-numbered zones. Multiple requests within a zone are serviced in an
SPTF order, which reduces the average seek distance, and thus the average re-
sponse time, by grouping nearby requests together. Once all pending requests
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Fig. 5. An example of partitioning the MEMS storage area and the traversed order (the sled is
divided into 12 zones).

in the current zone have been serviced, the algorithm moves on to the next zone
with pending requests. Figure 5 shows an example of partitioning the MEMS
storage media into 12 zones and the order in which zones are traversed. Note
that each cell in Figure 5 contains two zones because ZSPTF divides even-
indexed and odd-indexed bit columns, which have opposite access directions,
into different zones.

ZSPTF is computationally simpler than SPTF and its variants. SPTF must
recompute the positioning time of each request in its queue after fulfilling one
request, and the time needed to do so is proportional to the queue length. With
longer queue lengths, this recomputation may not be practical. In ZSPTF, the
average queue length of each zone will generally be much less than that of
SPTF. Because zones are small and based on seek time equivalence regions,
this recalculation may not be necessary after each request.

The in-zone (local) optimization of ZSPTF may become less efficient than the
global optimization of SPTF when there are too few requests in each zone. To
address this issue, we have developed a variable-sized zoning technique that
we call pyramiding. Instead of optimizing within fixed sized zones, pyramiding
merges nearby zones with too few requests and schedules all requests from the
merged zones together.

Figure 6 illustrates an example of pyramiding in ZSPTF. In this example,
ZSPTF can function as an 8×1, 16×2, or 32×4 grid, depending on the request
rate. Although the instantaneous request rate is difficult to measure, we can
use the request queue length to approximate this rate and to determine the
granularity of the grid. With aggressive pyramiding policies, ZSPTF tends to
behave like SPTF because it merges as many zones as possible into one larger
zone. Pyramiding improves the performance of ZSPTF at the cost of slightly
higher variability. In fact, pyramiding can provide a spectrum of performance,
variability, and computational complexity between ZSPTF and SPTF.

4.2 Experimental Analysis

We implemented our scheduling algorithms in DiskSim [Ganger et al. 1999],
which has been used in earlier studies on MEMS seek algorithms [Griffin et al.
2000b; Schlosser and Ganger 2004; Schlosser et al. 2000]. We used two one-hour
workloads to exercise the simulator. Cello is a news server workload and hplajw
is a user workload, both from Hewlett-Packard Laboratories. The average re-
quest arrival rate was 33.0 requests per second for cello and 20.9 requests per
second for hplajw. In general, cello and hplajw were characterized by random

ACM Transactions on Storage, Vol. 2, No. 2, May 2006.



148 • B. Hong et al.

Fig. 6. Fractal breakup of the MEMS device grid.

and highly sequential accesses, and hplajw was more bursty than cello. We
scaled the traced interarrival times to increase the request arrival rates and to
explore a range of workload intensities.

In addition to average response time, another important metric for request
scheduling algorithms is the squared coefficient of variation of response times
(σ 2/µ2), where σ is the standard deviation of response times and µ is the av-
erage response time. This metric measures the consistency of request response
times [Worthington et al. 1994], providing a measure of fairness and starvation
resistance.

4.2.1 Comparison of In-Zone Algorithms. The essence of zone-based al-
gorithms is to partition the MEMS storage media into a set of seek time-
constrained regions and to service these regions in a fixed order. One question
that arises is which scheduling algorithm to use within each zone. To deter-
mine this, we implemented several zone-based scheduling algorithms, includ-
ing zone-based FCFS (ZFCFS), ZSPTF, and an arrival time-constrained version
of ZSPTF (ZTSPTF), and evaluated their performance and fairness. ZTSPTF
improved the fairness of ZSPTF in a way similar to FCFS by only servicing
requests that arrive before the scheduler enters a zone.

We found that a good in-zone algorithm is still critical to avoid unnecessary
settling and turnaround times, even though the regions are considered to be
seek time-equivalent. ZSPTF performed much better than ZFCFS. It provided
7–13% higher throughput than ZTSPTF at the same response time level under
moderately- to heavily-scaled hplajw user workloads, but their overall star-
vation resistance was quite similar, as shown in Figure 7. Both of them had
very similar performance and fairness under random cello server workloads.
In short, ZSPTF had the best performance, with reasonable variability, among
these algorithms.
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Fig. 7. Different in-zone scheduling algorithms on the user trace.

4.2.2 Comparison of Different Zone Sizes. The number of zones into which
the device is divided will affect the performance of ZSPTF. Fewer zones leads to
longer average queue lengths for each zone, allowing SPTF to perform better,
but causing higher variability of queueing times. A larger number of zones
leads to lower variability, that is, greater fairness and starvation resistance,
but higher average seek times.

As illustrated in Figure 4, seek time-equivalence regions, that is, zones, are
rectangular, with an x: y size ratio of around 1:10. By choosing an in-zone seek
time threshold from 0.3 ms, 0.4 ms, or no constraint, ZSPTF divides a MEMS
storage device into 320, 80, or 20 zones, respectively. Simulations showed that
ZSPTF exhibits similar performance and fairness under different zone sizes
for the randomly-accessed cello server workload. For the sequentially-accessed
hplajw user workload, the smallest zone size marginally improves the star-
vation resistance of ZSPTF, but significantly degrades its performance. ZSPTF
performs better under the largest zone size than under the medium zone size by,
on average, 5% when the workload intensity is scaled up; however, the squared
coefficient of variation of ZSPTF is also increased by up to 142%. Therefore,
we empirically chose the medium zone size, which partitions the media into 80
zones, because it provides a good trade-off between efficiency and fairness.

4.3 Comparison of ZSPTF with Existing Algorithms

Disk request scheduling algorithms can be adapted to MEMS-based storage
once MEMS devices are mapped onto a disk-like interface. Our comparisons
focus on six of them: FCFS, C-SCAN, shortest seek time first (SSTF), SPTF,
aged SPTF (ASPTF) [Jacobson and Wilkes 1992], and grouped SPTF (GSPTF)
[Seltzer et al. 1990]. FCFS has good performance only under light workloads,
but we include it here as a baseline for comparison. C-SCAN services requests
in ascending logical block number (LBN) order. SSTF uses the number of tracks
between the last accessed LBN and the desired LBN as an estimate of the seek
time. SPTF always services the request with the smallest positioning delay
from the current position, explicitly considering seek times in both the x- and
y-dimensions for MEMS. Besides positioning times, ASPTF also considers
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request queueing delays. The aging factor, w, of ASPTF can be varied from
zero (pure SPTF) to infinity (pure FCFS). As the request queue builds up, the
queueing delay becomes a dominant factor in ASPTF so the algorithm tends to
behave like FCFS. Experimentally, we chose w = 5 because ASPTF(5) exhibits
good performance and fairness across a range of request rates.

Grouped SPTF divides the device logical address space into a set of regions,
each containing consecutive logical blocks. It groups outstanding requests in a
region and schedules them together in an SPTF order. GSPTF is conceptually
similar to zone-based SPTF, both of which address the fairness and scheduling
efficiency problems of SPTF by partitioning the request queue based on the spa-
tial locality of the requests. ZSPTF measures the spatial locality by the actual
physical request locations, as illustrated by two-dimensional zones; in contrast,
GSPTF measures it by the linear logical block number of the request. Under
the current disk-analogous MEMS data layout, a zone in ZSPTF contains a
set of nonconsecutive logical blocks, however, a group in GSPTF always con-
tains consecutive logical blocks. This difference has performance and fairness
implications for ZSPTF and GSPTF, as we will show in Figures 9(b) and 9(d).
For fair comparison, we also partitioned the MEMS device into 80 regions in
GSPTF.

Pyramiding improves the performance of ZSPTF by dynamically merging
nearby zones that have too few requests. The performance, variability, and com-
putational complexity of ZSPTF depend upon the aggressiveness of pyramiding,
that is, the queue length threshold selection. We empirically chose small queue
lengths of 4–8 requests for good trade-offs between performance and fairness.

Figure 8 shows the average response times and squared coefficients of vari-
ation of response times for FCFS, C-SCAN, SSTF, and ZSPTF under a range of
scaled workload intensities for the cello server and hplajw user traces. As ex-
pected, all the algorithms had similar response times and fairness under light
workloads. ZSPTF significantly outperformed C-SCAN and SSTF, providing
13–32% higher throughput under moderately- and heavily-scaled workloads. In
general, ZSPTF and C-SCAN had similar service fairness because they traverse
the media area in a similar order. Both of them had lower service variability
than SSTF.

Figure 9 shows the performance and fairness of SPTF-based scheduling al-
gorithms under the scaled server and user workloads, including SPTF, ASPTF,
GSPTF, ZSPTF, and pyramiding. SPTF always had the best performance but
suffered high variability. GSPTF provided a slightly higher throughput than
ZSPTF under the cello server workload. SPTF and ASPTF performed better
than ZSPTF by a 7–10% higher throughput under moderately-scaled work-
loads, in which the queues of SPTF and ASPTF are long enough for effective
optimization but the average in-zone queue length of ZSPTF is not. Pyramid-
ing alleviates this problem and achieved better performance than ZSPTF for all
request arrival rates. Under heavy cello server workloads, ZSPTF provided a 6–
9% higher throughput than ASPTF. This is due to the fact that ASPTF degrades
to FCFS as the queueing delay increases. However, SPTF, ASPTF, and GSPTF
performed better than ZSPTF by 7–12% under moderate and heavy hplajw
user workloads because ZSPTF cannot take advantage of the sequentiality of
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Fig. 8. Performance comparison of ZSPTF and nonSPTF-based scheduling algorithms.

the user workload as much as SPTF, ASPTF, and GSPTF. The reason is that
the data layout was done assuming a disk-based rather than a MEMS-based
model. This inherently punished algorithms that employ a MEMS-based model.
MEMS-specific data layouts should further enhance the benefit of MEMS-
specific request scheduling algorithms; in the future we plan to examine such
layout schemes.

SPTF suffered high response time variability. ASPTF usually provided the
best service fairness among the five SPTF-based scheduling algorithms, which
was often better than C-SCAN. ZSPTF had 8–42% higher squared coefficients
of variation than ASPTF. GSPTF had up to 7% higher variability than ZSPTF
under the cello server workload. It exhibited large response time variations
under the moderately-scaled, highly sequential hplajw user workloads. Al-
though GSPTF intends to improve the variability of SPTF by partitioning
the request queue and only servicing requests within one region at a time,
a steady request stream to the region can prevent the scheduler from mov-
ing to other regions, resulting in potential starvation. This effect is illus-
trated in the highly sequential user workload. Instead of containing consec-
utive logical blocks, a zone in ZSPTF consists of a set of nonconsecutive logical
blocks that are physically mapped closely to the device. Therefore, the poten-
tial of starvation under sequential workloads is greatly reduced. The variabil-
ity of pyramiding ranged between the variability of ZSPTF to SPTF, as did its
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Fig. 9. Performance comparison of ZSPTF and other SPTF-based scheduling algorithms.

average response time. Essentially, both ZSPTF and pyramiding constrain the
scheduling scope based on request locations to guarantee service fairness, and
pyramiding has looser geographical restrictions than ZSPTF. Thus, pyramid-
ing can provide better performance than ZSPTF, but with the cost of higher
variability.

Although ASPTF had the overall best performance, its high computational
cost prevents its use in real systems. To quantify this, we ran some experiments
on a Linux machine (Pentium IV 2.6 GHz) and found that SPTF and ASPTF
take 1.8 µs for each entry when reordering the request queue. This means that
for a queue length of 300 requests, SPTF and ASPTF took more than 0.5 ms
to determine which request to service next, which is equal to the average seek
time of MEMS devices. Therefore, it is impractical to apply SPTF and ASPTF
in real systems. By contrast, the queue length of each zone in ZSPTF is, on
average, 10–100 times smaller and the computational cost of computing SPTF
within each zone is consequently limited and tolerable.

By leveraging MEMS-specific seek time equivalence regions, ZSPTF signifi-
cantly outperformed other disk-analogous scheduling algorithms. Based on its
superior average response time, low coefficient of variation, and low computa-
tional cost, we believe that ZSPTF is an ideal algorithm for use with MEMS-
based storage devices.
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Fig. 10. Power consumption distributions in the Seagate and Snake workloads.

5. POWER CONSERVATION OF MEMS-BASED STORAGE

Storage devices account for a major portion of the total energy consumption in
many mobile computing systems [Douglis et al. 1994; Li et al. 1994]. In such
systems, energy efficiency largely determines the amount of time that they can
operate autonomously. A MEMS storage device is expected to consume only a
small fraction of the power that a disk requires. However, the power efficiency
index of MEMS-based storage, as defined by watt per gigabyte, is still about
tens of milliwatts per gigabyte of storage because of its limited capacity per
device. This is comparable to the index of low power disks [Hitachi Global Stor-
age Technologies 2004; Seagate Technology, Inc. 2004]. Consequently, effective
power management is still important for MEMS-based storage.

5.1 Distribution of Power Consumption

As with disk drives, the energy consumption of MEMS storage devices depends
on the workloads they serve. We empirically examined the power consumption
distributions of MEMS-based storage under two workloads using a detailed
storage subsystem simulator, DiskSim [Ganger et al. 1999]. The idle time-
out was set to be one second. Seagate is a validation workload of a Seagate
ST41601N disk drive and Snake is a one-day HP-UX file server trace [Ruemm-
ler and Wilkes 1993]. We replayed the Snake trace ten times faster than it was
collected to increase the workload intensity.

Figure 10 shows that MEMS devices consume 55–91% of the total energy in
IDLE under these workloads. In the IDLE state, the sled keeps moving and ac-
tive tips keep accessing servo information even though there are no outstanding
requests in the queue, wasting a significant amount of energy. Energy consumed
in SEEK and ACCESS accounts for 3–9% of total energy consumption. The en-
ergy consumed in INACTIVE cannot be further reduced without changing the
device itself because there is no lower power state.

5.2 Power Conservation Strategies

MEMS storage devices have a very efficient transition between INACTIVE
and SEEK, making it feasible to aggressively spin-down such devices. Ac-
cesses in MEMS devices are more flexible because different read/write heads
may be turned on or off, as needed, to allow for variable-sized accesses.
Thus, a smart scheduler can rearrange request streams for better power uti-
lization. These device-specific features motivate three simple and effective
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power conservation strategies for MEMS-based storage, mainly addressing en-
ergy consumption in IDLE, SEEK, and ACCESS, which is not applicable to
disks.

5.2.1 Aggressive Spin-Down. Aggressive spin-down deactivates the
MEMS device to its lowest power state, INACTIVE, when there are no requests
in the queue, completely avoiding the IDLE state and reducing the overall power
consumption accordingly. The trade-off is increased I/O latencies for requests
that arrive when the device is in INACTIVE.

Aggressive spin-down is usually not the best solution for disk drives because
of the high cost, in terms of both time and energy, associated with spinning-
up a disk to over 3600 RPM before it can service new requests. Spinning-up
a disk from its low power to its active state may require more energy than
if the disk is always in the active state [Li et al. 1994]. Therefore, fixed or
adaptive heuristics are used to decide when to spin-down the disk [Golding
et al. 1995; Helmbold et al. 1996; Li et al. 1994]. This motivation, however, is not
as applicable to MEMS-based storage. Unlike disks, MEMS-based storage has
fast and energy-efficient state transitions, as described in Section 3.1. By fully
exploiting device idle periods, aggressive spin-down can potentially achieve the
best power conservation.

5.2.2 Request Merging. MEMS storage devices spend a considerable
amount of energy seeking and accessing data. Any reduction in seek and access
energy is likely to carry with it corresponding reductions in request response
times, which can mitigate the performance penalty of aggressive spin-down.

Many workloads, including mobile computing workloads, exhibit strong se-
quential data access patterns. In MEMS devices, logical sectors are mapped
to physical tip sectors in a way that allows logically sequential sectors to be
accessed together. Unlike disk, MEMS-based storage can turn on hundreds to
thousands of read/write tips at one time. It may be feasible for MEMS devices
to merge sequential requests in the queue by simultaneously activating more
tips to fulfill the combined larger request. In addition, servicing separate re-
quests together can reduce seek and data transfer overheads. By leveraging
the increased parallelism and bandwidth, this method can reduce both energy
consumption and request response times.

5.2.3 Subsector Accesses. In MEMS storage devices, a 512 byte logical
sector consists of a group of 64 tip sectors from the same position of separate
tip regions, each of which contains 10 bits of servo information and 80 bits
of ECC-encoded data [Schlosser et al. 2000]. Accessing subsectors in MEMS
is feasible because error correcting codes can be computed over data striped
across multiple tips. Active tips dissipate considerably more power than the
moving sled during data transfers and MEMS devices can possibly adjust their
power consumption by only reading or writing necessary subsectors, instead of
the standard 512 byte sectors. In contrast, disks cannot access regions of data
smaller than 512 bytes, due in part to a need to read the ECC data associated
with each sector. Subsector accesses cannot improve response times, how-
ever, they can reduce the number of active tips required for individual requests,
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Fig. 11. Effect of idle timeout.

providing more available tips that may be used for request merging, and
thereby enhancing its effectiveness.

5.3 Experimental Results

We implemented all three power conservation strategies in DiskSim [Ganger
et al. 1999]. The default MEMS physical parameters are shown in Table I. We
used the Seagate and Snake traces, as described in Section 5.1, to exercise the
simulator.

To explore a range of workload intensities, we scaled the traced interarrival
times to produce a range of average interarrival times. A scaling factor of one
corresponds to replaying the trace at its original speed, a scaling factor of two
corresponds to halving the traced interarrival times and replaying the trace
twice as fast, and so on.

5.3.1 Aggressive Spin-Down. We studied the effects of spin-down thresh-
olds by using different delays before switching MEMS-based storage devices
from IDLE to INACTIVE. By decreasing the idle timeout from 40 to 0 ms,
energy consumption was reduced by more than 50% under the Seagate work-
load, as shown in Figure 11(a). In contrast to disks, for which the longest and
shortest timeouts consume more energy than the intermediate timeout val-
ues [Helmbold et al. 1996], aggressive spin-down with zero delay achieves the
lowest energy consumption. This is because the energy cost associated with
spinning-up a MEMS sled is very low, thanks to its light mass and relatively
slow motion.

Aggressive spin-down inevitably adds extra device spin-up latencies of about
0.5 ms to requests that arrive when the device is in INACTIVE. This perfor-
mance penalty is insignificant when the workload is intensive because the re-
quest queue is unlikely to be empty, as shown in Figure 11(b). During light
loads, we believe that this added response time of 0.5 ms will not be noticed
by users. Thus, aggressive spin-down with no delay is simple and probably the
best choice for MEMS-based storage.

5.3.2 Request Merging. A general request merging mechanism is a chal-
lenging problem. We adopted a straightforward strategy of combining queued
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Fig. 12. Combined effect of all power conservation strategies.

read requests with sequential logical sectors. To avoid unnecessary performance
penalties, an idle MEMS device is activated immediately as soon as there are
outstanding requests in the queue. This technique can be easily implemented
in the controller logic. For the purpose of research, we increased the number
of concurrently active tips from 1280 to 3200 without changing other physical
parameters of the CMU G2 MEMS model. Consequently, the MEMS device was
able to service requests with sizes up to 25 KB, instead of 10 KB, at one time.

This simple merging method was quite effective for the sequential Snake
workload in terms of both energy saving and performance improvement because
request merging results in fewer MEMS sled motions and faster data transfers.
It saves about 10–18% of the seek and access energy, and reduces the average
response time by up to 43% when the request queue builds up as the trace
scaling factor increases, as shown in Figure 12(b).

5.3.3 Subsector Accesses. Accessing subsectors to save power can be use-
ful for workloads with small I/Os, such as metadata-intensive workloads and
parallel I/Os. Besides the ability of MEMS-based storage to activate only a few
necessary tips for data transfers, this technique also relies upon the cooperation
of operating systems to provide detailed location and size information about the
desired data; otherwise, a naive system will access an entire (large) sector even
if it would be possible to access a small amount.

Metadata accesses are typically small: A UNIX-like i-node consists of
128 bytes, only one fourth of the standard 512 byte logical sector; the most
frequently accessed fields in the i-node can even be as small as four bytes. Due
to the lack of detailed information on metadata accesses in current block-level
disk traces, we varied the amount of requested data in each i-node access from
four to 128 bytes (full i-node access) and evaluated the power consumptions
accordingly. Subsector accesses can save 29–45% of the access energy in the
Snake workload, in which 72% of I/O accesses are to metadata. Because ac-
cess energy only accounts for a small fraction of total energy consumption, the
overall energy saving of this technique is marginal for Snake.

Power becomes one of the most critical resources in the increasingly im-
portant mobile and embedded computing environments, where data is often
accessed in much smaller pieces than in a general-purpose computing environ-
ment. Subsector access demonstrates an additional energy saving potential of
MEMS storage devices for these environments. It is worthwhile for operating
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systems designers and application developers to fully exploit this feature of
MEMS storage, as it will make the system more power-friendly.

5.3.4 Combining the Three Strategies. We evaluated the overall effect of
the three power conservation strategies using Snake under different workload
intensities. By applying all three methods, the total energy consumption can
be reduced by half, as shown in Figure 12(a). The reduction is mostly due to ag-
gressive spin-down, which in turn increases average request response times by
up to 0.5 ms due to extra spin-up overheads, especially when the workload in-
tensity is low. As the workload intensity increases, this effect is less significant
because the request queue is unlikely to be empty. Request merging reduces re-
quest delays by servicing seperately-issued sequential requests all at one time,
and provides 43% better performance under heavily-scaled Snake workloads,
as shown in Figure 12(b). In short, using these three strategies, we can obtain
more than a 50% reduction in power consumption with an acceptable perfor-
mance penalty under light workloads, and with even better performance under
heavy workloads.

6. RELATED WORK

MEMS-based storage is an alternative secondary storage technology currently
still being developed. Besides CMU [Carley et al. 2000], IBM has developed a
prototype device called Millipede [Vettiger et al. 2000] that, unlike the magnetic
recording of CMU design, writes data by moving probe tips in the z direction and
making tiny physical marks on the media. Additional hardware research is also
being done at Hewlett-Packard Laboratories [Toigo 2000]. Recently, there has
been interest in modeling MEMS storage device behavior [Griffin et al. 2000a;
Madhyastha and Yang 2001]. Parameterized MEMS performance prediction
models [Dramaliev and Madhyastha 2003; Sivan-Zimet and Madhyastha 2002]
have also been proposed to narrow the design space of MEMS-based storage.

Schlosser and Ganger [2004] have suggested that the roles and policies pro-
posed for MEMS-based storage should be examined under two objective tests,
specificity and merit, focusing on the use of MEMS-specific features and po-
tential performance benefits, respectively. By comparing the performance of
MEMS devices to that of hypothetical “super” disks, they concluded that MEMS
storage devices are much like disks, except for their efficient accesses for two-
dimensional data structures. Our research demonstrates that significant bene-
fits can be obtained on power management and request scheduling by leverag-
ing MEMS-specific low-level device details such as fast power state transitions
and unique two-dimensional seeks.

6.1 Request Scheduling

Although MEMS-based storage has unique two-dimensional seek behaviors,
Schlosser et al. Griffin et al. 2000a, 2000b; Schlosser et al. 2000] showed
that disk-analogous one-dimensional scheduling, such as SSTF and C-LOOK,
can be applied efficiently, and even better than shortest (Euclidean) distance
first (SDF) scheduling, by placing data on MEMS devices in longitudinally
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sequential tracks, similar to tracks on disks. These algorithms assume that
the seek cost in the x-dimension is either infinite (for SSTF and C-LOOK)
or equal to the cost in the y-dimension (for SDF). Our detailed modeling and
analyses of MEMS seek times provides a more accurate x: y cost ratio. By lever-
aging this more detailed device-specific knowledge, ZSPTF achieves even better
performance.

6.2 Power Management for Storage Subsystems

MEMS-based storage is expected to consume much less power than disks. Grif-
fin and Schlosser et al. [Griffin et al. 2000b; Schlosser et al. 2000] compared the
energy consumption of both MEMS and disks. They also suggested powering
down the sled and using fewer tips when possible; however, they did not eval-
uate the effects of these techniques. Our research illustrates that the fast and
energy-efficient transition from standby to active in MEMS makes aggressive
spin-down a simple and probably the best spin-down policy for MEMS devices.
In contrast, the spin-down threshold for disks requires dynamic changes to
adapt user behaviors and priorities so as to achieve better performance and
energy savings [Douglis et al. 1995; Golding et al. 1995; Helmbold et al. 1996;
Li et al. 1994].

7. FUTURE WORK

Aggressive spin-down can be combined with delayed spin-up to further reduce
energy consumption by lengthening device inactive periods. This may lead to
longer queue lengths, and thus longer queuing delays. However, smarter re-
quest merging schemes can alleviate this problem and even further improve
power efficiency by coalescing more requests, increasing the sequentiality of
interleaved request streams by queue reordering, and exploiting the high de-
gree of parallelism in data accesses of MEMS storage. Subsector accesses on
MEMS devices can dramatically reduce power consumption during data trans-
fers. It is feasible in many parallel file systems in which the average request size
is quite small (less than 512 bytes) [Nieuwejaar et al. 1996]. Similarly, personal
digital assistants and other hand-held devices may routinely manage smaller
chunks of data, providing greater opportunities for both request merging and
subsector accesses.

Data layout is one of the central considerations in system design. File sys-
tems have long clustered related data together, for example, the Berkeley fast
file system [McKusick et al. 1984] lays out data in cylinder groups. We be-
lieve that grouping related data within zones, similar to a method suggested by
Griffin et al. [2000b], and using a zone-based scheduling algorithm will pro-
vide considerable performance improvement over mechanisms based on disk-
analogous logical block numbers.

8. CONCLUSIONS

As an emerging secondary storage technology, MEMS-based storage promises
high storage density and bandwidth, as well as low access latency and power
consumption. As a result of its architectural design, MEMS-based storage has
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two-dimensional positioning mechanisms, low cost power state transitions,
and variable-sized data accesses. Existing request scheduling algorithms and
power management policies designed for disk are unaware of these device-
specific characteristics, and thus cannot exploit the full potential of MEMS-
based storage. We have shown that device management policies which take ad-
vantage of the unique features of MEMS-based storage can provide even better
performance.

We developed an analytical positioning time model for MEMS-based storage
and identified seek time equivalence regions on MEMS devices. This informa-
tion allows the MEMS-specific request scheduling algorithm ZSPTF to achieve
efficient request reordering locally while keeping good fairness as a whole. We
also found that aggressively switching a MEMS device to its lowest power state
can obtain the best power savings without significant performance penalties
because power state transitions in MEMS devices are very efficient. The perfor-
mance degradation can be largely mitigated by having MEMS service multiple
requests simultaneously, thanks to its variable-sized data accesses.
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