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ABSTRACT

Deduplication on is rarely used on primary storage because
of the disk bottleneck problem, which results from the need
to keep an index mapping chunks of data to hash values
in memory in order to detect duplicate blocks. This index
grows with the number of unique data blocks, creating a
scalability problem, and at current prices the cost of addi-
tional RAM approaches the cost of the indexed disks. Thus,
previously, deduplication ratios had to be over 45% to see
any cost benefit.
The HANDS technique that we introduce in this paper

reduces the amount of in-memory index storage required by
up to 99% while still achieving between 30% and 90% of
the deduplication of a full memory-resident index, making
primary deduplication cost effective in workloads with a low
deduplication rate. We achieve this by dynamically pre-
fetching fingerprints from disk into memory cache according
to working sets derived from access patterns. We demon-
strate the effectiveness of our approach using a simple neigh-
borhood grouping that requires only timestamp and block
number, making it suitable for a wide range of storage sys-
tems without the need to modify host file systems.

1. INTRODUCTION
Though the price of storage is falling rapidly, recent data

from the IDC indicates that the rate of data growth is out-
pacing the rate of storage growth [11]. This divide is pro-
jected to increase in the near future, even before taking into
account the effect of localized natural disasters on the global
storage supply, which can price available storage above what
many organizations can afford at scale [9]. Analysts believe
that over half of the information we currently produce does
not have a permanent home [15].
To address the growing need for primary space savings,

researchers such as Constantinescu [6], Jones [13], the iD-
edup team [23], and the DBLK team [25] have examined
de-duplicating primary storage in addition to backups and
archival systems. At a high level, deduplication separates

data into units and then compares data against an index
of units to determine if the data unit in question is already
on the system. Maximizing the space savings for primary
storage requires the use of in-line deduplication, where ev-
ery unit is checked against the index before it is written. As
a result, the index must be stored on media with very fast
access time to avoid affecting the perceived performance of
the primary system.

Primary deduplication is rarely used because the cost of
storing this index is often prohibitive. The cost of the index
scales with the amount of unique data in the storage system.
Though we would like to store the entire index in memory
for access speed, in any system with much more disk than
memory the index cache will quickly grow too large to store
in memory, causing paging to and from disk; this is known
as the disk bottleneck problem [5].

For example, to de-duplicate a 100 TB system with a seg-
ment size of 4 KB, a deduplication system would have 2.7
billion segments. At an average of 32 bytes per segment, this
would result in a massive 800 GB of memory to store the
index. This is a low estimate since many systems require
a smaller segment size. At $100 per terabyte of disk and
$10 per gigabyte of DRAM, the $10,000 disk array requires
$8,000 of memory to store the entire deduplication index.
This means that if the deduplication rate for the workload
is under 45%, which is more than many primary dedupli-
cation systems achieve [23], we are actually paying extra to
store less data with primary deduplication.

To increase the simplicity and scalability of these systems
without greatly impacting the deduplication ratio, we in-
troduce HANDS, a scalable, in-line, chunk-based deduplica-
tion method for primary storage. HANDS derives correlated
sets of blocks, or working sets, based on usage patterns and
places the corresponding block hashes, or fingerprints, adja-
cently in the index cache so they can be accessed atomically
when an element is accessed. Though we propose a method
for determining working sets, our technique does not rely on
any particular method of generating groupings. Addition-
ally, the method we propose for working set identification
relies only on block I/O data, which is easy to collect and
interpret across manifold systems, allowing the same dedu-
plication system to be implemented across a heterogeneous
environment using minimal data.

We tested our system on data from a large, multi-user
enterprise grade storage system as well as a university re-
search server and found that loading sets of data into the
index cache significantly reduces the number of accesses to



the on-disk index cache that the system must make while
having minimal performance impact. We use HANDS to
prefetch future fingerprint lookups in memory with minimal
additional disk accesses, and demonstrate in-line deduplica-
tion over primary storage with an in-memory index cache of
1% or less of the total index has a deduplication rate up to
90% of the best possible rate. We also found that only 10%
of the total data blocks read by a trace need to be pulled
into the memory cache at all to achieve reasonable results.
Our work provides two major contributions. First, we

demonstrate a dynamic, scalable method to select a portion
of the deduplication index to store in memory, drastically
reducing the memory cost for primary deduplication. Sec-
ond, we provide an experimental evaluation of deduplication
with different methods of in-memory index management and
memory footprint size, demonstrating the generality and
adaptability of our technique.
The rest of this paper is laid out as follows. First, in Sec-

tion 2 we discuss the current state of primary deduplication
and the solutions other researchers have proposed for scal-
ability. In Sections 3 and 4, we present an overview of our
working set calculation methods and system design. Then,
in Section 5, we present our experimental results and an
analysis of our methodology. We conclude with a discussion
of how our work could be extended to different workloads
and storage systems.

2. BACKGROUND AND RELATED WORK
Much of the data in large systems, generated data in par-

ticular, has a high duplication rate [6, 19]. Some work-
loads, such as virtual machines, have obvious massive du-
plication, and these images do not get cleaned up the way
localized storage does [12]. Other workloads, such as scien-
tific computing, have little file level duplication since results
are unique but have a high degree of chunk level duplica-
tion as there may be very little difference in the results files
between experiments.
Scalable deduplication is known to be difficult in enter-

prise systems at the petabyte level and beyond [5, 10].
While some groups have presented solutions for backup
and archival workloads, primary storage remains relatively
unstudied. The main argument against deduplication on
primary storage is the performance impact on the system
caused by hash calculation and additional I/O requests [6].
Scalable primary storage has become more of a concern re-
cently as the concept of “stale data” evolves. While orga-
nizations used to be able to identify older data to store on
secondary or tertiary storage, many modern datasets are ac-
cessed haphazardly and unpredictably, creating an archival-
type workload where the write-once, read-maybe assump-
tion no longer holds [1]. Researchers such as Constanti-
nescu [6] and Storer [24] use deduplication on primary stor-
age in addition to backups and archival systems, but they
focus on compression and security, respectively, and do not
directly address the disk bottleneck problem.
There have, however, been a variety of prior attempts to

address the disk-bottleneck problem. These efforts have typ-
ically been limited to backup systems, though Mandagere et
al. demonstrate the type of trade-offs that are typically
made to limit a deduplication index to available memory,
mainly by increasing the chunk size [18]. Jones [13] and
Srinivasan et al. [23] propose to improve primary dedupli-
cation performance by only duplicating chunks with spa-

tial locality. They also use temporal locality to restrict
their in-memory cache to LRU. Essentially, they limit the
blocks they de-duplicate to blocks that are hot and sequen-
tial. While this may be necessary for workloads with ex-
tremely high IOPS, we show in this work that it is possible
to de-duplicate every block instead of restricting ourselves
to blocks which have a high probability of duplication in
certain workloads. Our technique is broadly applicable and
results in better space savings than iDedup.

The Extreme Binning project tackles the data bottleneck
problem by noting that file similarity can be determined by
comparing the IDs of a subset of chunks, allowing similar
files to be grouped together in backup workloads by sub-
sampling larger pieces of a stream [5]. Our approach aims
for the same ends with different means. First, we assume
we do not know about existing chunk to file relationships
when grouping our data. Our groups are purely based on
chunks. We believe this is beneficial because it allows us
to proceed with less system knowledge in an environment
where many accesses are not sequential. Adding groups to
the file similarity metric in Extreme Binning could improve
their results on primary workloads. A similar technique used
by Lillibridge et al. addresses the disk bottleneck problem
by breaking up the backup streams into very large chunks
and selectively de-duplicating them against similar chunks
stored in a sparse index [17]. Though their throughput is
very high, they rely on the large similar blocks of data that
are common in backup workloads but generally absent in
multi-user primary storage.

Grouping in particular has been successfully used by some
projects to improve scalability in backup systems. Both Zhu
et al. and Efstathopoulos and Guo found that pulling in
data by group membership had a significant impact on the
memory requirement of the index cache [30, 10]. However,
their method of group detection, relying on the spatial lo-
cality of the data stream in a backup workload, does not
carry over to the random accesses of a primary deduplica-
tion workload.

Zhu et al. also provide a comprehensive look at data dedu-
plication on backup workloads in addition to introducing the
use of Bloom filters to improve the lookup speed for testing
whether a write is a duplicate [30]. While this method is
much faster than a linear search over the database, it is still
not fast enough to avoid affecting performance. DEBAR
improved the scalability and performance of deduplication
for backup systems by aggregating a set of small I/Os into
large sequential blocks after passing them through a prelim-
inary filter [29]. Our work captures this same sequentiality
through working set identification and thus does not need
to rely on the backup stream.

Power and reliability both become more manageable if
there is less data stored on the system [4]. In archival work-
loads, some data can be sent to a different, slower tier of
storage, leaving a smaller subset of data to be actively man-
aged. In archival-by-accident systems, on the other hand,
there is no good way to isolate large portions of data that
are unlikely enough to be accessed that they can safely be
sent to tape or other slower secondary storage. Data group-
ing has been put forward as a means to reduce the effective
data for a variety of applications [3, 27], though the grouping
usually relies on domain knowledge. We use a domain ag-
nostic grouping methodology designed for conditions when
a minimal amount of trace data is available [28]. There are



several extant methods for working set prediction such as C-
Miner [16], which uses frequent sequence matching on block
I/O data, or grouping using static, pre-labeled groups as
Dorimani et al. does [8]. There is also a large and varied
body of work on file access prediction which could be used
in place of working set selection [20, 26, 2].

3. WORKING SET IDENTIFICATION
Working sets are groups of block addresses or offsets that

are likely to be accessed together. Identifying working sets
efficiently is a key element of our deduplication system. A
good working set algorithm produces groups that are small,
making them less likely to churn the cache, and have high
predictive value. The algorithm must also avoid overfitting
to the training data. Finally, any technique used for group-
ing has to be fast and low impact and produce a grouping
lookup table that itself does not take too much room in
memory.
For our purposes, identifying working sets bears some sim-

ilarity to cache pre-fetching algorithms. Instead of trying to
predict the next access based on popularity, however, we
co-locate elements that are likely to be accessed together
regardless of whether the elements have a high probability
of being accessed at all. The important distinction between
working set identification and caching is that we are not lim-
ited in the size of what we can, essentially, “pre-pre-fetch.”
By grouping data regardless of how it is accessed, we hope to
capture associations caused by the long tail of rare accesses
that still occur in observable clusters.

3.1 Selecting a Grouping Technique
Our working sets need to reflect the changing workloads

of large scale systems without constant maintenance. As a
result, we cannot necessarily rely on semantic qualities of
the data such as directory hierarchy or filetype. We also do
not want to build a system that requires regular updating to
keep the groupings relevant. Instead, we apply a statistical
analysis to a training set to establish initial groupings and
then alter these groupings based on their observed predictive
capacity. Our work builds off of neighborhood partitioning,
a working set classification technique that looks at pairwise
comparisons of accesses within a window [28]. We modified
neighborhood partitioning to combine the results of several
overlapping windows to return a resultant grouping.

3.2 Neighborhood Partitioning
Neighborhood partitioning is a statistical method to com-

pare data across multiple dimensions with a definable dis-
tance metric. Since primary deduplication requires that
grouping can be calculated quickly without using onerous
amounts of memory, we modified neighborhood partitioning
to accommodate very large enterprise storage traces with
limited. By aggregating incoming accesses into neighbor-
hoods of fixed size, neighborhood partitioning is highly scal-
able and able to perform in real time even in systems with
high IOPS. The size of neighborhoods is determined by the
memory capabilities of the system calculating the working
sets, though increasing the size of the neighborhood quickly
meets diminishing returns [28]. The neighborhoods in our
implementation also overlap by a small number of accesses to
account for small groups that straddle the arbitrary break-
points in our neighborhood selection. The choice of overlap
is based on desired group size and is independent of the data.

For each neighborhood, the partitioning steps are:

1. Collect data
2. Calculate the pairwise distance matrix
3. Detect working sets in I/O stream
4. Combine new working sets with any prior working sets

3.2.1 Data Collection
Neighborhood partitioning requires a minimum of two di-

mensions of data. For storage systems, this is always pos-
sible to collect without impacting system performance be-
cause of the ability to directly monitor the storage bus to
get block I/O access data [22]. Block I/O tracing can also
easily be done in a driver or on a block device, making this
method suitable for deduplication on block devices. From
block I/O traces, we can extract temporal and spatial local-
ity data. For maximum generality, we designed this imple-
mentation to only use these two axes. Though we use only
spatio-temporal locality, the algorithm is trivially extendible
to other dimensions such as source file, LUN, PID, etc.

3.2.2 Calculating the Distance Matrix
Neighborhood partitioning depends on a pre-calculated

list of distances between every pair of points, where points
each represent single accesses, i.e., reads or writes in a block
I/O trace, and are of the form 〈time, offset〉. Though we
know the amount of data accessed, adding size as a feature
decreased the signal to noise ratio as most fingerprints are of
similar size. For n accesses, we represent pairwise distance
between every pair of accesses (pi, pj), as an n × n matrix
with d(pi, pi) = 0. We calculate the distances in this matrix
using weighted Euclidean distance, defined as

d(pi, pj) = d(pj , pi) =
√

(ti − tj)2 + oscale× (oi − oj)2

where a point pi = (ti, oi) and the variables are t = time,
o = block offset, and oscale is a scaling factor.

We were most interested in recurring block offset pairs
that were accessed in short succession. As a result, we
also calculated an m × m matrix, where m is the number
of unique block offsets in our data set. This matrix was
calculated by identifying all the differences in timestamps
T = [T1 = ti1 − tj1, T2 = ti1 − tj2, T3 = ti2 − tj1, . . .] be-
tween the two offsets oi and oj . Weighting timestamps led
to overfitting, so we decided to treat the unweighted aver-
age of these timestamp distances as the time element in our
distance calculation. Thus, the distance between two offsets
is:

d(oi, oj) =

√

√

√

√

(

∑|T |
i=1

Ti

|T |

)2

+ oscale× (oi − oj)2

We generally found this to be a more accurate matrix for
our test data.

3.2.3 Identifying Working Sets
Once the distance matrix is calculated, we calculate a

value for the neighborhood threshold, Ň. In the online case,
Ň must be selected a priori and then re-calculated once
enough data has entered the system to smooth out any cyclic
spikes. The amount of data that constitutes “enough” de-
pends on what is considered a normal span of activity for the
workload. In the absence of workload knowledge, we found
the recalculating working sets once per day was sufficient,
though in section 6 we discuss more empirical techniques for
determining when to re-calculate in the absence of domain





Figure 1: Each incoming access is compared to the
preceding access to determine whether it falls within
the threshold (Ň ) to be in the same group. If it does
not, a new group is formed with the incoming access.

knowledge. Once the threshold is calculated, the algorithm
looks at every access in turn. The first access starts as a
member of group g1. If the next access occurs within Ň, the
next access is placed into group g1, otherwise, it is placed
into a group g2, and so on. Figure 1 illustrates a simple case.

3.2.4 Combining Neighborhoods
Once all of these neighborhood groupings are calculated

we need to combine them. We do this through fuzzy set in-
tersection between groupings and symmetric difference be-
tween groups within the groupings. So, for groupings
G1, G2, . . . Gk, the total grouping G is :

G = (Gi ∩Gj) ∪ (Gi∆gGj) ∀i, j 1 ≤ i, j ≤ k

where the groupwise symmetric difference, ∆g, is defined
as every group that is not in Gi ∩ Gj and also shares no
members with a group in Gi ∩ Gj . For example, for two
group lists G1 = [(x1, x4, x7), (x1, x5), (x8, x7)] and G2 =
[(x1, x3, x7), (x1, x5), (x2, x9)], the resulting grouping would
be G1 ∩ G2 = (x1, x5) ∪ G1∆g G2 = (x2, x9), yielding a
grouping of [(x1, x5), (x2, x9)]. (x1, x4, x7), (x1, x3, x7), and
(x8, x7) were excluded because they share some members
but not all. We choose this aggregation technique because
it has a natural bias against larger groups; this in turn limits
the amount of churn in our cache.
This group calculation happens in the background during

periods of low activity. As accesses come in, we need to
update groups to reflect a changing reality. We do this by
storing a likelihood value for every group. This numerical
value starts as the median intergroup distance value. If a
requested fingerprint appears in multiple groups, only the
group with the highest likelihood is returned. This serves
to further augment the bias towards small groupings, which
we have found to have a higher average likelihood. This
is expected because with fewer group members, there is less
chance of a group member being only loosely, or accidentally
correlated with the remainder of the group, bringing the en-
tire group likelihood down. We re-calculate the groupings
and the associated likelihood values once per day, though
in a system with real-time data the groups should be re-
calculated when the workload shifts. For the workloads we
considered, these shifts occurred about every 500,000 ac-
cesses.
Our workloads showed a working set distribution that was

heavily biased towards small working sets. Figure 2 shows
the working set size distributions for both data sets. Ad-
ditionally, when calculating likelihood values over working
sets, small sets had higher average likelihood. Given this, we

arrange our working set data structure as a tiered hashtable
(Figure 4). The upper tier maps working set sizes to a group
of working sets while the second tier maps fingerprints to the
appropriate working set.

3.3 Runtime
Neighborhood partitioning is especially well suited to

rapidly changing usage patterns because it operates on ac-
cesses instead of offsets. When an offset occurs again in the
trace, it is evaluated again, with no memory of the previous
occurrence. This is also the largest disadvantage of this tech-
nique: most of the valuable information in block I/O traces
lies in repeated correlations between accesses. The groups
that result from neighborhood partitioning are by design
myopic and will ignore long-term trend data, alleviating the
problem of updated fingerprints. Neighborhood partitioning
runs in O(n) since it only needs to pass through each neigh-
borhood twice: once to calculate the neighborhood thresh-
old and again to collect the working sets. This makes it
an attractive grouping mechanism for workloads with high
IOPS (for example, the enterprise system we worked with
can support 200,000 IOPS, though we saw far fewer in our
trace), where a full O(n2) comparison is prohibitive. Addi-
tionally, we can capture groups in real time and quickly take
advantage of correlations. We also can easily influence the
average group size by weighting the threshold value. A main
concern for us was cache churn, so we biased our grouping
parameters towards smaller groups. While larger groups im-
prove prediction immediately after groupings are calculated,
over time larger groups need more re-calculation to prevent
false negatives as the workload shifts. This negates their
short term predictive benefit.

3.4 Validity
96% of group elements shared a process ID with an arbi-

trarily selected “first” group element in our grouped research
dataset. We refer to this number as the group purity of this
grouping. The high group purity on the research dataset
indicates that this grouping does a very good job of catch-
ing interleaved groups, which prior work supports [28]. On
small subsets of this data, the result is closer to 80%, likely
because the groupings do not have enough occurrences to
obtain high likelihood. For the enterprise data set we used,
the equivalent metric showed a group purity of 100%, though
the groups were generally so small that this reflects the size
more than the grouping algorithm.

4. DESIGN
HANDS is a set of algorithms for content addressed in-

line deduplication that incorporate working sets to manage
the memory footprint of the fingerprint cache. These al-
gorithms can be interchanged modularly so, for example,
another grouping technique could easily be substituted to
make HANDS a better fit for a particular environment. Our
high-level framework consists of three elements: the finger-
print index mapping fingerprints to chunks, the index cache,
which is a subset of the fingerprint index that is kept in
memory, and the working set table that maps fingerprints
to working sets of fingerprints. The index cache is managed
using LRU or LFU caching in this work, but other cache
replacement algorithms can be used.
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Figure 2: Group size distributions for neighborhood partitioned data sets. Both data sets have a median
group size of about 3; the y axis is on a log scale.

4.1 Initialization
The first step towards deduplication is creating the work-

ing set table. Our method of compiling this table is covered
in Section 3, but any grouping mechanism that results in
groups that are small and likely to be co-accessed can be
substituted. The next step is to allocate the two indices.
The index cache is fixed size, allocated in memory, and starts
out empty. We explored bootstrapping the index cache with
the most frequently accessed or highest likelihood working
sets, but found that neither improved our results. The work-
ing sets are then written into the on-disk fingerprint index
such that every fingerprint is written adjacent to other fin-
gerprints in its working sets.

4.2 Deduplication
Once the working set table is established, we can begin de-

duplicating subsequent I/O requests. We expected most of
our benefit to come from having the fingerprints for incom-
ing write requests in cache instead of the main fingerprint
index on disk. While there is some conceivable benefit to
also calculating fingerprints for chunks read, that benefit is
highly dependent on the underlying data retrieval mecha-
nisms, and thus we limit the scope of this paper to write
requests. We assume that all the accesses we get are post
disk cache.
Figure 3 outlines the interactions of the components of

our deduplication system. Our first step on receiving a write
request is to calculate a hash value for the write. Any low-
collision hash method works equally well; we recommend
SHA-1, which for an exabyte scale system has under a 1 in 10
billion chance of hash collision in non-adversarial situations
while still having a fast runtime [12, 7].

4.2.1 Duplicate Data
After the hash is computed, the next step is to compare

the hash to the fingerprints in the index cache. If the hash is
found in the index cache, the request is identified as a dupli-
cate and the index cache is updated according the caching
algorithm in use. We refer to this as a “cache hit.”
Otherwise, on a cache miss, the request is sent to the on-

disk fingerprint cache, which is arranged in tiers as shown




























Figure 3: Deduplication framework. A duplicate
chunk is either in the index cache (path A) or must
be recovered from disk (path B). When a fingerprint
enters path B, the working set for that fingerprint
is pulled into the index cache from the fingerprint
index, which is laid out in working set order.

in Figure 4. There is a Bloom filter across the entire index
to quickly detect new data. Each tier represents groups of
a given size, and they are searched from smallest to largest
until a group is found. The bias towards small groups here
is intentional and designed to limit cache churn.

If the fingerprint is found in the fingerprint index, in ad-
dition to serving the content the system also queries the
working set table to see if the fingerprint has any known
working sets. We accept the first working set match for a
hash where the likelihood value is above a threshold value.
This threshold is currently mean likelihood minus one stan-
dard deviation. Smaller working sets are more likely to have
high likelihood, so this method should reduce the search time
in very large on-disk indices. The working set returned by













 

Figure 4: The fingerprint index is tiered so groups
of size n− 1 are searched before groups of size n

the working set cache is then copied into the index cache;
previous cache contents are removed based on the caching
algorithm replacement policy. The hope is that this working
set is a good predictor of future writes. While this results in
some CPU overhead, we accept this because it is negligible
compared to the penalty for the I/O.

4.2.2 New Data
If a fingerprint is not in the fingerprint index, the data

is written and the hash is stored to the fingerprint index.
New writes are not members of any working sets, so they
can safely be placed in a temporary area without being
accidently pulled into memory as a working set member.
When working sets are next computed, the fingerprints will
be added to working sets as appropriate. Fingerprints on
disk are co-located based on group membership. Since fin-
gerprints can be members of several groups, this could lead
to duplication within the on-disk fingerprint index. We ac-
cept this because the small amount of extra disk required is
inexpensive compared to the memory savings.

4.3 Design Considerations
Figure 5 shows how HANDS noticeably improves the

cache hit rate. The rectangles are fingerprints, uniquely
identified by color and pattern. There are three groups,
identified by the letters underneath the fingerprints. An
LRU cache without HANDS (Fig. 5(a)) catches most quickly
repeated fingerprints and must go to disk for everything else.
With HANDS (Fig. 5(b)), the cache predicts future finger-
print accesses and thus achieves considerably better cache
hit rate. There is a concern that large working sets could fill
the cache quickly, causing a high amount of cache churn that
would push out relevant data. With the working set calcula-
tion methodology we propose, however, it is highly probable
that the likelihood of a working set decreases with every ad-
ditional member. This inherent bias towards smaller work-
ing sets led to less cache churn in our experimental results.
Fingerprints and blocks do not share a fixed mapping. In

fact, for one of our workloads we found that over 78% of the
time, consecutive accesses of the same block had different
fingerprints. Thus, we group using block address but need
data with actual fingerprints in order to estimate index cache
performance. We found experimentally that groups tend to
stay the same over time even as the fingerprints associated
with blocks change [28]. Therefore, we hypothesize that our

block addresses are often “unique under mutation,” meaning
that the usage of the data stays similar even as the actual
data is modified. We discuss this shift more in Section 5.3.

5. EXPERIMENTS
To test the HANDS design, we simulated a deduplica-

tion environment where a portion of the fingerprint index
is stored in memory both with and without the addition of
working sets. We pass real traces with fingerprint hashes
through the simulator to determine the efficacy of the work-
ing set based cache.

We measured the effect of working set grouping us-
ing three cache replacement algorithms: LRU, näıve LFU
(LFU), and working set aware LFU (LFU-ws). Our imple-
mentation of LRU is straightforward; the oldest elements
are dropped successively until there is enough room for the
new element. Elements of the same age (e.g., members of
a working set that were pulled in together) are dropped in
the order in which they appear on disk, which is preserved
in the cache. Näıve LFU is an approximation of LFU that
drops the least frequently used elements in the cache and
is unaware of out-of-band relationships between data once
the data is in the index cache. As a result, after a cache hit
only the accessed element has its frequency value updated.
Alternatively, when the LFU-ws algorithm records a hit to
the index cache, the access frequency for every member of
the accessed fingerprint’s working set currently in cache is
updated by .5, while the frequency of the accessed finger-
print is updated by 1 as usual. This biases the algorithm
towards keeping working sets together in cache and quickly
throwing out “singleton” accesses that have no working set
and are not rapidly accessed.

5.1 Data
We tested our design using data sets from two real sys-

tems. Our first dataset was collected from an enterprise
grade storage server at a technology company. This stor-
age server has 120 TB of disk along with a 60 GB cache.
The traces from this server are labeled ent-storage. Our
second trace, fiu, is from Florida International University
and traces local researchers’ storage [14]. For both of these
traces, we used timestamp and logical block address (LBA)
to create working sets. We provide statistics about these
two data sets in Table 1. For our purposes, the most im-
portant difference between these two data sets was average
IOPS, meaning that over time it was harder to get predictive
groups for ent-storage than fiu.

5.2 Results
We present graphs as percent of ideal cache versus percent

of total fingerprint size. We measure ideal cache as the best a
cache could do if it could always recall an element it has seen
before, i.e., if the cache always corresponded to the entire
fingerprint index. Total fingerprint size is the sum of all of
the unique fingerprints over an entire trace. We realize that
this may underestimate the data size a real system needs
to handle: all of our data is accessed, which is not true in
many systems. However, this is the best representation that
was available to us and is useful for our work because we
are primarily interested in catching elements we have seen
before.













(a) LRU without HANDS















  

  

  

   

       

      

   

   









(b) LRU with HANDS

Figure 5: Illustration of HANDS on a toy example. The patterned rectangles correspond to fingerprints.
We see that adding three working sets, or groups, improves the cache hit rate significantly by pre-fetching
fingerprints into memory. In the diagram, the letters underneath the fingerprints correspond to group
membership where the bolded letter is a group member that required a disk seek (a cache miss) and the
italicized letters are group members that were pulled in with a bolded member.

Table 1: Workload Statistics
Trace avg IOPS max IOPS R/W Ratio # of Accesses # Unique LBAs # Groups Time (h)
fiu 37 11897 96/4 17836701 1684407 2062671 503
ent-storage 75997 342142 100* 2161328 968620 70759 36

5.2.1 LRU
LRU was the best cache replacement strategy for the in-

dex cache with working sets. Figure 6(a) shows that the
cache hit rate for the fiu dataset was almost ideal even with
an index cache that was only .01% of the total fingerprint
size. In contrast, without working sets the fiu workload
had an unsurprisingly steady increase in index cache hits as
the cache size increased. Adding working sets to LRU in
the fiu case worked so well because the fiu workload al-
most entirely represents accesses by real people, and so has
a very high degree of temporal locality. The fiu dataset also
has far fewer IOPS, which helps our grouping algorithm find
more predictive groups.
In the ent-storage dataset, we see a more modest but

still clear improvement in cache hit rate for every cache size
except about .05 after adding working sets. At that cache
size, we see the beginnings of cache churn: the phenomenon
where the cache is too small to hold all of the elements that
are being accessed and so is passing elements in and out. We
see in Figure 8(b) that our ent-storage cache with a cache
size of .01% begins to churn at about 1.4 × 106 accesses.
We believe that we can reduce this churn in the future by
modifying the LRU to remove entire working sets at a time
instead of just elements. We also note that the working set
line never dips below the base LRU line, implying that the

cache churn is not severe enough to impact the base LRU
performance.

5.2.2 LFU
Figure 7 shows that for both the fiu and ent-storage

datasets, there is a substantially smaller improvement in
cache hit rate when grouping is added to the LFU caching
algorithm as compared to LRU. This is surprising at first
glance but logical when the effect that the cache replace-
ment policies have on working sets are taken into account.
The benefit of working sets for access prediction comes from
a heightened probability of co-access within a working set
in a given period of time. LFU evicts working set members
almost as soon as they are pulled in, since they are often
not used immediately. Indeed, if they were used immedi-
ately, they would be trivially easy to find and much less
interesting. We attribute the slight success of LFU on the
fiu dataset to the presence of a large number of sequential
working sets. Sequential accesses were automatically filtered
out of the ent-storage trace before it was given to us, so
LFU struggles. Again, however, we see that the grouped
line never falls below the ungrouped line, indicating that
the working sets are not pushing enough other predictive
elements out of cache to impact the base, working set free,
performance.
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Figure 6: LRU Cache hits across cache sizes.
Grouped data does consistently at least as well and
often significantly better than ungrouped data.

We also ran our simulations with LFU-ws, but saw essen-
tially identical results compared to normal LFU, and thus do
not include those in this paper. The results were likely iden-
tical because the bias provided by LFU-ws is not enough to
offset the huge disadvantage of having working sets pushed
out of cache immediately. While we believe it is worth inves-
tigating whether there is a balance, that is out of our scope
for this work.

5.2.3 Random Working Sets
We also implemented a random working set generator to

compare HANDS against. Our goal was to identify any un-
foreseen externalities in pulling large chunks of data into the
index cache created in our deduplication system. To best
mirror our observed working set distributions, we wrote a
random generator sampling from a discretized Pareto dis-
tribution. The Pareto distribution is sampled from uniform
using the formula:

X =
xm

U1/α

Here, xm is a parameter indicating the minimum value of X,
which for groups is 1, U represents the uniform distribution
between [0, 1], and α is a shaping parameter. We set α = 3
to replicate our small-group bias. The resulting continuous
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Figure 7: LFU Cache hits across cache sizes. The
ent-storage dataset sees no benefit from grouped
data while the fiu dataset sees a modest benefit from
grouping.

value is then rounded to obtain an integer group size. This
distribution strongly skews towards small values with few
outliers, and so it is a good fit for our small working sets
(Figure 2).

When we ran this, however, we found that the results
were identical to the ungrouped results. We attribute this
to the large search space of LBAs combined with the small
size of groups resulting in an exceptionally low probability
of successful access. Indeed, the ent-storage case had 0
predictive fingerprints while the fiu random run had under
5%. Thus, we can say with some confidence that the benefit
of working sets is more than just pulling extra data into
cache; the pre-computed correlation of data in working sets
has value.

5.3 Analysis
Throughout this project, our technique performed as well

as or better on the fiu dataset compared to the ent-storage
dataset. We learned that, in the ent-storage dataset, se-
quential accesses are not part of the trace we were given be-
cause they are pre-fetched by the storage hardware. Since
previous work has shown that sequential working sets are
common and strong groupings, we thought that the lack of
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Figure 8: For the fiu data set using LRU, predic-
tive power of groups was unrelated to sequentiality.
In the ent-storage data set using LRU, predictive
power of groups fell as sequential groups increased.
The percentage of predictive accesses is deceivingly
low because it is calculated as a percentage of total
accesses, which were an order of magnitude higher
for fiu than ent-storage. The cache size was .01%

sequentiality in the ent-storage dataset was to blame for
its relatively poor showing in both the LRU and LFU cases.
However, in Figure 8(b) we see an inverse relationship in
the ent-storage dataset for the LRU case; there is a strong
correlation between groups becoming sequential and groups
becoming less predictive. In the parallel figure for the fiu

dataset, we see no relationship between the sequentiality
and the percentage of predictive accesses. Instead, we be-
lieve that the difference in the two datasets in the LRU case
comes from the average IOPS of ent-storage being high
enough to make groups more transient.
We also verified our theory that the LFU ent-storage

case suffered from cache churn by tracking correct predic-
tions over time based on cache size. In Figure 9, we see that
the few accesses that have a chance to be predictive are cor-
rect for small cache sizes before taking a precipitous drop
as the cache size grows. This indicates two things: first,
that working sets are being evicted early on, leading to an
inflated rate of correct predictions, and second, that as the
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Figure 9: % of correct predictions by cache size,
compared against the total fingerprints pulled into
cache and not immediately replaced. We see that
the few fingerprints that were pulled in were predic-
tive at small cache sizes, while extra elements were
pulled into a larger cache.

cache grows there are enough legitimate fingerprints being
removed from cache that even an improvement in longevity
of working set members is not enough to salvage the algo-
rithm. LFU is simply a poor choice for a deduplication index
cache with working sets.

Figure 10(a) shows that smaller cache sizes pull in more
LBAs early on, but over time the total number of LBAs
pulled converges. Even though the average increase in cache
hit rate for adding working sets to ent-storage for LRU
was only about 10%, we accomplish this by only pulling in
3% of the total LBAs. For the fiu case, we see that at
about one million accesses, where the ent-storage trace
ends, about 15% of the total LBAs are pulled in. In con-
trast to ent-storage, by the end of the trace almost 80% of
the total dataset LBAs had been pulled in. This high per-
centage of LBAs in cache is almost certainly why the cache
performed so well for the fiu with LRU case.

One concern with this method is that the working sets
are made without the content data in mind. As we see
in Figure 11, the fingerprint-LBA pairing is transient. If
this pairing falls away before working sets are re-calculated,
the quality of predictions could decline. In this case, how-
ever, there were significantly more write accesses than read
accesses, and we believe that the different fingerprints on
consecutive LBAs thus represent different content with the
same access characteristics. In a subset of fiu with a slightly
higher read ratio of 9.5%, the number of data shifts drops
down to 58.5%. Even with our high read ratio, we see that
for both the fiu and ent-storage datasets the correlations
between LBAs and fingerprints remain fairly consistent until
the system sees about 500,000 accesses. We are interested in
acquiring more datasets with fingerprints to determine how
this compares to other types of workloads.

Determining when to recalculate the groupings will be
essential to future real-time systems. Though we did not
recalculate groupings often during the course of our runs be-
cause we had relatively little data, we looked for insights to
determine when to recalculate our groupings. Figures 8(b)
and 8(a) show that the predictive power of our groupings
is strongest early on. A real system could have an auto-
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Figure 12: A comparison of runtime vs. cache size for our algorithms. This was run in a prototyping
environment; for translation to a real system the key is that the grouped performance closely tracks the
ungrouped performance with a fixed overhead.

matic alert system to track the level of predictive power
and re-calculate groups in the background as needed. Al-
ternatively, working groups could be calculated even more
frequently to correspond with the need to go to disk to fetch
recent LBA-fingerprint pairs. As we see in Figure 11, the
LBAs and fingerprints shift at about 500,000 accesses in
both traces, though the fiu trace stops shifting for a time
after. More frequent group calculation is likely to slightly
improve cache hit rate numbers as the groups will more
closely match the current working environment. However,
since groups are based on a somewhat longer term system
view, re-calculation should not provide a large bonus in the
absence of a major usage shift.

5.3.1 Performance
While keeping the working set table up to date results in

some CPU overhead, we accept this because it is negligible
compared to the penalty for the I/O. It is likely that the
systems’ own cache policies will also place the data from
the active working set into system cache, but that is outside
the scope of this paper.
Our implementation was done on a personal desktop us-

ing Python for both group calculation and cache simulation.
Though we used the PyPy high-speed Python implementa-
tion [21], our code is designed for prototyping and thus lacks
some optimizations. As a result, the performance numbers
we have should only be considered relative to each other.
Figure 12 shows the performance for LRU for ent-storage
and LFU for fiu. These graphs are representative of all of
the experiments we did, and show that while the grouped
version takes about twice as long, the grouped and un-
grouped lines closely track each other. This indicates that
overhead is mostly fixed and can be predicted.

6. DISCUSSION AND FUTURE WORK
In our experiments, we only allowed the system to cache

fingerprints it had seen during the course of the trace. This
emulates starting from a clean slate, but in a real system
once it reaches a steady state the amount of data pulled in
should increase.

It is important to note that, contrary to our expectations,
adding working sets to the index cache never reduced the
cache hit rate. This indicates that there is still room for
larger working sets to be pulled in before cache churn starts
becoming a serious problem. Thus, real world results with
some tuning could likely produce more significant improve-
ment in cache hits. For example, if instead of periodically
updating the working set table the working sets likelihoods
are updated continuously the system would see more large
working sets and corresponding cache hits. Additionally, we
create working sets based on a bare-bone set of features,
namely location and timestamp. We used these to show our
method was valuable even in cases where it is not practical
to extract rich system traces. Additional features such as
request origin or client type could make the working sets
more reflective of real workload phenomena. Additionally,
any method for working set prediction or even file level ac-
cess prediction can be substituted into our system with little
effort, making our method a general purpose tool to improve
primary deduplication.

There are also workloads where we believe this method
could work significantly better than it does for our two
workloads. For example, a large bank of virtual machine
images should have both higher deduplication ratios and
tighter working sets, since they correspond closely to in-
dividual systems. Workloads from businesses that operate
based on strict timing rules such as banks and trading houses
should show a cyclic usage pattern that would be amenable
to our deduplication method.

In addition to large scale data, our technique could be
applied to object stores where any reduction in media cost
is amplified because of the relative expense of storage class
memory technologies. Our method could also be used to
cost-effectively address the growing problem of archival-like
storage that does not obey “write-once, read maybe” seman-
tics and instead has transient periods of primary activity.
Storing exabytes of data and maintaining a usable primary
deduplication index is prohibitive, but storing 1% of the in-
dex size in memory should be much more manageable and
cost effective for long term storage such as Internet archives
and media.
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Figure 10: Each line corresponds to a run with the
given cache size. Adding working sets to ent-storage

with LRU achieves an increased cache hit rate while
only pulling in < 3% of the total LBAs. Conversely,
fiu with LRU pulls in up to 80%.

We are seeking new data sets to test our algorithm on,
particularly datasets with a high degree of inherent duplica-
tion. Once we gather enough of these datasets, we intend to
attempt a characterization of workloads based on the most
salient features for working set analysis and examine the
possibility of automatically tuning working set algorithms
based on the workload type. We also would like to explore
the intersections of our work and other working set and file
prediction technologies.

7. CONCLUSION
Traditional in-line deduplication typically requires a large

in-memory index to make deduplication feasible, yet such
an index is so resource-intensive that it greatly reduces the
attractiveness of inline deduplication for primary storage.
To address this problem, we have proposed the use of a
fingerprint cache guided by algorithms to predict and then
prefetch accesses. Our approach calculates working sets and
pulls entire sets of fingerprints into memory when a single
fingerprint is accessed, significantly increasing the number of
cache hits for the in-memory deduplication index cache. We
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Figure 11: LBA-fingerprint correlation shifts over
time. Though the data sets have very different char-
acteristics, both show a sharp rise in shifts after
about 500,000 accesses.

also showed that LRU is a relatively good caching algorithm
for our fingerprint groupings, and we hypothesize that a
similar pattern will hold for most other workloads.

Our design translates directly into fewer disk accesses for
inline deduplication and, from there, better performance.
Our system is highly modular and adaptable to specific en-
vironmental constraints, and thus is an approach that can
be deployed in nearly any system to alleviate the disk bottle-
neck problem. Since only a small percentage of LBAs need
to be kept in cache for good performance, primary dedupli-
cation should become much more widely used to help lower
costs and manage our wealth of data. Although neither
of our workloads had the requisite 45% deduplication ra-
tio to benefit from traditional primary deduplication, with
HANDS they can achieve near perfect deduplication using
just .01% to 10% of the memory. As server consolidation and
virtualization continue to become more common, our design
makes primary deduplication an affordable option for almost
all real systems.
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[20] J.-F. Pâris, A. Amer, and D. D. E. Long. A stochastic
approach to file access prediction. In The
International Workshop on Storage Network
Architecture and Parall I/Os (SNAPI ’03), sep 2003.

[21] A. Rigo and S. Pedroni. Pypy’s approach to virtual
machine construction. In Companion to the 21st ACM
SIGPLAN symposium on Object-oriented
programming systems, languages, and applications,
pages 944–953. ACM, 2006.

[22] A. Riska and E. Riedel. Disk drive level workload
characterization. In Proceedings of the USENIX
Annual Technical Conference, pages 97–103, 2006.

[23] K. Srinivasan, T. Bisson, G. Goodson, and
K. Voruganti. iDedup: Latency-aware, inline data
deduplication for primary storage. In Proccedings of
the 10th conference on File and storage technologies.
USENIX Association, 2012.

[24] M. Storer, K. Greenan, D. Long, and E. Miller. Secure
data deduplication. In Proceedings of the 4th ACM
international workshop on Storage security and
survivability, pages 1–10. ACM, 2008.

[25] Y. Tsuchiya and T. Watanabe. Dblk: Deduplication
for primary block storage. In Mass Storage Systems
and Technologies (MSST), 2011 IEEE 27th
Symposium on, pages 1–5. IEEE, 2011.

[26] G. A. S. Whittle, J.-F. Pâris, A. Amer, D. D. E. Long,
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