
ASCAR: Automating Contention Management
for High-Performance Storage Systems

Yan Li, Xiaoyuan Lu, Ethan L. Miller, Darrell D. E. Long
Storage Systems Research Center, University of California, Santa Cruz

{yanli,xyuanlu,elm,darrell}@cs.ucsc.edu

Abstract—High-performance parallel storage systems, such as
those used by supercomputers and data centers, can suffer
from performance degradation when a large number of clients
are contending for limited resources, like bandwidth. These
contentions lower the efficiency of the system and cause unwanted
speed variances. We present the Automatic Storage Contention
Alleviation and Reduction system (ASCAR), a storage traffic
management system for improving the bandwidth utilization
and fairness of resource allocation. ASCAR regulates I/O traffic
from the clients using a rule based algorithm that controls
the congestion window and rate limit. The rule-based client
controllers are fast responding to burst I/O because no runtime
coordination between clients or with a central coordinator is
needed; they are also autonomous so the system has no scale-out
bottleneck. Finding optimal rules can be a challenging task that
requires expertise and numerous experiments. ASCAR includes a
SHAred-nothing Rule Producer (SHARP) that produces rules in
an unsupervised manner by systematically exploring the solution
space of possible rule designs and evaluating the target workload
under the candidate rule sets. Evaluation shows that our ASCAR
prototype can improve the throughput of all tested workloads –
some by as much as 35%. ASCAR improves the throughput of a
NASA NPB BTIO checkpoint workload by 33.5% and reduces its
speed variance by 55.4% at the same time. The optimization time
and controller overhead are unrelated to the scale of the system;
thus, it has the potential to support future large-scale systems
that can have millions of clients and thousands of servers. As a
pure client-side solution, ASCAR needs no change to either the
hardware or server software.

I. INTRODUCTION

If there is only one thing that all storage systems share,
from exascale cloud storage to high-performance computing
(HPC) storage systems, it is the ever increasing demand for
higher performance, which is often satisfied by adopting higher
parallelism: I/O operations are cut into smaller requests and
distributed to different servers concurrently in order to achieve
high throughput. However, this design also causes the clients
to contend for limited resources, such as bandwidth and disk
access time. When I/O requests from many clients are mingled
together, they form a sequence of random I/O requests that can
adversely affect the efficiency of network and storage systems.
Under heavy workloads, these contentions lower the efficiency
of the system and cause unwanted speed variances over time
and between clients. A storage system without contention
management is like a traffic system without traffic lights. What
we need is a high-performance, lightweight network and storage
contention management mechanism, which can work with many
different storage system architectures, and is autonomous so

that the human cost on system optimization can be kept to
minimum.

Today’s traffic management and contention control in dis-
tributed large-scale storage systems are not optimal. Most
solutions need models of the system and related devices for
establishing control thresholds, either through direct input from
the system administrator or periodic negotiation between nodes.
To find meaningful parameters that can fully utilize the system’s
potential, system designers and administrators often have to
spend too much time benchmarking and tweaking the system;
the situation can be much worse if the system changes often.

Our Automatic Storage Contention Alleviation and Reduc-
tion (ASCAR) system is designed for increasing the bandwidth
utilization and reducing speed variance. ASCAR is a delay-
based general-purpose client-side I/O rate control system.
It uses traffic controllers on storage clients, which control
the upper speed limit and the congestion window size of
each connection. The latter determines the number of I/O
requests that can be outstanding for each connection. These
controllers follow a set of traffic rules without the need to
communicate with each other or a control center, even when
handling highly dynamic workloads. This shared-nothing design
improves response speed and scalability. We treat the storage
servers as black boxes and design the traffic controller to
be simple, requiring no change to the hardware or server
software. This simple design makes ASCAR fit for many
different environments, such as data centers, and both High
Performance Computing (HPC) and enterprise systems.

The effectiveness of a rule-based traffic control system
largely depends on the quality of the rule sets. Traffic control
rules designate what actions to take in different congestion
states. Manually tweaking the rules is onerous and inefficient.
We design a SHAred-nothing Rule Producer (SHARP) to
produce and optimize traffic rules for a specific workload
running on a specific system. SHARP works in an unsupervised
manner and systematically explores the solution space of
possible designs. In the preparation phase, ASCAR first extracts
key behaviors from the target workload and generates a short
signature workload. Starting from one fixed initial rule, SHARP
runs the signature workload, measures its performance, and
records the number of times each rule is triggered. SHARP
optimizes the hottest rule in the set by using heuristics to
generate candidate rules and evaluating them using the signature
workload on the real storage system. After finding the optimal

978-1-4673-7619-8/15/$31.00 © 2015 IEEE

parameters for one rule, SHARP expands the rule set by
dividing the congestion state space of the hottest rule at
the observed mean values of the congestion indicators into
disjoint new rules, then restarts the optimization process with
the new rule set. By repeating this process, SHARP can
produce complex traffic rules that are best optimized for a given
workload running on a given system. The time complexity of
this process is unrelated to the size of the underlying storage
system, and is linear to the complexity of the rule set, which
only depends on the complexity of the control strategy.

ASCAR stores the best discovered rule sets for different
workloads in a database. When a new workload enters the
system, ASCAR measures its performance characteristics and
compares them with the known workloads in the database to
find the most similar known workload, whose control rule
set is then chosen for controlling this new workload. We
have conducted a series of experiments to understand the
measurement of similarity between workloads in terms of
applying traffic control rules.

The evaluation shows that ASCAR can effectively increase
the throughput and lower the speed variance, at the same
time (Table IV) for all the evaluated workloads. It increases
the bandwidths of the BTIO Class B and C checkpoint
workloads [43] by 29% and 35% respectively. For the random
write workload, the bandwidth is increased by 25%. Since
ASCAR increases the bandwidth utilization, it cannot optimize
those workloads whose bandwidth is near the hardware’s limit.
Current evaluation results show that ASCAR works best on
workloads that exhibit high contention or speed fluctuation.

The time needed for SHARP to generate rules varies from
7 to 36 hours. The long optimization process only needs to be
run once and can benefit all similar subsequent workloads until
the system’s configuration is modified. The optimization does
not show overfitting; the generated best rule sets work equally
well on different workloads as long as they exhibit the same
I/O pattern. Analyses of the best rules show that they increase
the bandwidth utilization by choosing the best combination
of congestion indicators and control parameters, and applying
primarily two control strategies: adaptive I/O rate limiting and
slow-start, fast-fallback.

The contributions of this paper include:

• a shared-nothing scalable storage traffic control framework
that features lightweight client-side traffic controllers and
automatic traffic rule generation,

• the SHARP algorithm for optimizing rule-based control
systems in an unsupervised manner on real systems when
mathematical model or simulator is hard to establish,

• evaluations of a wide range of workloads,
• the ASCAR prototype that works out-of-the-box with the

Lustre 2.4 file system [27]. Our prototype only requires
changes on the client-side, and can be easily evaluated in
a production environment. We release it as an open-source
project to promote further research on this topic.

II. BACKGROUND

Storage traffic management studies methods for maximizing
certain properties of a storage system, such as I/O through-
put and latency. Common methods include optimizing data
placement, traffic routing, and congestion management. Data
placement and routing algorithms are developed to minimize the
distance between data providers/consumers and storage devices,
and to spread the traffic evenly among nodes and switches to
balance the load [33]. But even with the optimal placement
and routing configuration, limited resources, such as network
bandwidth and disk access time, can still be contended when
the system is under heavy workload. Contention for network
bandwidth may lead to network congestion, causing packet
loss, timeout, or random disconnection. Severe contention in
storage devices lowers cache efficiency, increases seek time
for disk drives, and causes write amplification for flash drives.
Failing to keep resource contention under control would lower
bandwidth utilization and exacerbate speed fluctuation. In this
paper, “congestion” includes severe contention in the network,
server, and devices.

Distributed storage systems Distributed high-performance
storage systems, such as Lustre [27], GPFS [31], and Ceph [41],
are designed to run on a large number of servers to achieve the
level of high throughput and low latency that are impossible
to get from one server. Application’s I/O requests can vary
widely in size, thus modern file system clients aggregate small
I/O requests and split large I/O requests so that they can be
handled more efficiently, usually by equally distributing the
workload across multiple servers. In Lustre, one file system-
level request is issued by using one Remote Procedure Call
(RPC). The Lustre client always tries to issue multiple RPCs to
each server to increase throughput, and this also enables better
optimization, like re-grouping and re-ordering at the server
side. The number of these concurrent RPCs is controlled by a
congestion window, which limits how many requests can be
outstanding at any time.

The end-to-end data path between a client and a storage
device usually involves many network switches and servers.
Contentions may occur when data paths cross each other, e.g.,
when they need to use the same switch, the same server, or the
same storage device. Network congestion occurs when there
are more packets in the switch’s queue than it can handle.
Similarly, server and device congestion occurs when there are
more requests than the server or device can process in a timely
and efficient manner. Slowing down the incoming requests is
an efficient way for relieving congestion.

Traffic control in distributed storage systems Applica-
tions can have different requirements for traffic control. HPC
checkpoint workloads, for example, issue sequential writes
from each node, which dumps about the same amount of
data to the storage concurrently. They need not only high
aggregated throughput but also even bandwidth distribution
among nodes; if some nodes write faster they still have to
wait for the slow nodes to finish writing because all nodes
must finish the I/O before the next cycle of computation can

0 5 10 15 20 25
Time (second)

0

10

20

30

40

50

60

70

80

T
hr

ou
gh

pu
t(

M
B

/s
)

Client Nodes Throughput

Node 1
Node 2
Node 3
Node 4
Node 5

(a) Without ASCAR

0 5 10 15 20 25
Time (second)

0

10

20

30

40

50

60

70

80

T
hr

ou
gh

pu
t(

M
B

/s
)

Client Nodes Throughput

Node 1
Node 2
Node 3
Node 4
Node 5

(b) With ASCAR

Fig. 1: Comparing a random write workload when running with and without ASCAR control. The benchmark that runs without
ASCAR (left) shows high temporal and spatial bandwidth fluctuation (average throughput is 46 MB/s). When running with
ASCAR (right), the lines are flatter, and the average throughput is higher at 52 MB/s.

start. Some other applications favor proportional bandwidth
allocation over overall aggregated throughput. One example
is that the virtual machines from different customers running
in the cloud need good performance isolation. ASCAR uses a
customizable objective function so that different requirements
can be properly handled.

Bernstein et al. have proven that distributed traffic control is a
NEXP-hard decentralized partially observable Markov decision
process (DEC-POMDP) [3], where outcomes are partly random
(due to the complexity of network and nonlinearity of storage
devices) and partly under the control of the traffic controllers.
Information of the entire history of observations up to this
point, including the times of all outgoing I/O requests and their
finish times, and the times of all future I/O requests, are needed
to generate an optimal traffic control scheme for maximizing
an objective function. Most practical traffic control solutions
use a certain method of approximation.

A traffic control strategy that maximizes system efficiency
should always be work-conserving. Work-conserving traffic
control allocates unused resources as soon as they become
available to the next consumer and does not waste usable
resources. For example, let the total usable amount of a certain
resource be m. When there are 12 consumers, a fair work-
conserving allocator would allocate m/12 units of the resource
to each consumer. When the number of consumers reduces to 7,
each consumer’s share of resource would be increased to m/7.
This feature is essential because letting usable resources sit
idle is wasteful and undesirable. Work-conserving bandwidth
allocation is hard for distributed systems because the peak
performance of the system for running a specific workload
is not easily known. It is affected by many factors, such as
the states of network switches, servers and storage devices.
It is also affected by the workload itself: a sequential read
workload can achieve a different throughput than a random
write workload. So far, researchers have yet to discover a
practical model to calculate the theoretical peak performance

given a complex mixed read/write workload running on a
complex storage systems, and still have to rely on benchmarking
the workload on the real system.

The current dominant method for work-conserving resource
allocation in these systems is best-effort, of which the basic
principle is round-robin scheduling for requests at the same
priority level and placing a premium on requests of higher
priority levels. This strategy is simple, easy to implement,
and behaves relatively well with small scale storage systems.
However, this simple policy does not monitor the congestion
states and cannot achieve optimal resource allocation in
a resource-constrained environment. The throughput of a
random write workload, as shown in Figure 1a, exhibits high
temporal and spatial speed variance. Facing these challenges,
an application’s best choice is, unfortunately, to send out I/O
requests as fast as possible, i.e., to mob the servers, in order
to grab more shares of the resources. Under this situation,
congestion easily occurs at many levels in the system, hurting
the overall efficiency.

Delay-based congestion control In network congestion
management, delay-based strategy detects congestion by moni-
toring the packet Round Trip Time (RTT) and following preset
rules to tweak the congestion window. The congestion window
designates how many packets are allowed to be on-the-fly
before allowing new packets to be sent. The traffic control rules
contains multiple control parameters, including the thresholds
of RTT [15] (or the current RTT to the lowest RTT ratio [13]),
speed of increasing/decreasing the congestion window, and
rate limits. Good parameters can help reduce congestion and
increase overall system performances, while bad parameters
can only make the system worse. When being used in wide area
computer networks, like the Internet, the control algorithm’s
parameters are often pre-tweaked by system designers. When
applying delay-based congestion control to storage systems,
there are several salient differences. First, one storage system
is often very different from another, and they cannot share the

same control strategy. Second, unlike in computer networks,
where the pressure on the system can be easily measured by
the number of bits to send, different I/O patterns can cause
radically different pressure on the system due to the statefulness
of storage devices. Third, network designers use simulators
heavily before deploying a real network, but unfortunately
there is no good simulator for simulating a large and complex
storage cluster. These differences indicate that new methods
must be developed for storage systems before we can apply
the delay-based congestion control strategy, not least of which
is the way to discover the optimal parameters for each storage
system and each I/O workload.

To discover the optimal parameters, existing methods either
require the system designers or administrators to carry out a
huge amount of work to benchmark the system in order to
gather system performance characteristics, or require the clients
and servers to communication with each other frequently to
measure the performance and negotiate the parameters. These
cross-client communication normally grows at O(n2) and has
no way to scale to support more than a few hundreds of clients.
Also, network synchronization cannot react fast enough to
handle burst or highly dynamic workloads.

Winstein and Balakrishnan described a method, Remy, for
producing network QoS rules using simulation [42]. Remy
produces good rule sets but requires the model of the network.
Remy’s method cannot be applied directly to storage systems,
because precise modeling of storage systems is very difficult,
and no storage simulator can do performance simulation for
a complex storage cluster at the precision level required by
Remy.

Design goals Overall, our design goals of a scalable storage
traffic management solution are:
• to handle the congestions in all the network, servers and

disk layers,
• to regulate highly dynamic workloads,
• to scale to support very large storage systems,
• not to incur overhead on network or server,
• not to require change on the system hardware or server

software. (History suggests that solutions that depend on
proprietary or customized hardware are often expensive,
hard to maintain, and face more resistance in deployment.)

III. SYSTEM DESIGN

ASCAR uses a delay-based congestion control strategy that
is similar to those that are being used in computer networks.
Traffic controllers derive the congestion state along an end-to-
end data path by measuring the process time (PT) of each I/O
request, which is the duration between the time a client sends
one request and the time it receives the acknowledgment from
the server after the request is processed. Controllers then adjust
the congestion windows according to a set of rules without the
need to communicate with either a central scheduler/regulator
or other clients. This design makes it possible to support future
large-scale storage systems that may have millions of clients.
Figure 2 shows the core components of ASCAR, including
the ASCAR Rule Manager (ARM) and traffic controllers. The

Legends:
Traffic rules

ASCAR traffic controller

Client node

Application

File system client

Storage servers

ASCAR Rule
Manager Workload

Character
& Rule Set
Database

Workload
Classifier

Rule
Generator &
Optimizer
(SHARP) traffic

rules

Workload character markers

Fig. 2: A parallel storage system with ASCAR

ARM is a small daemon that runs on a management node
and governs the discovery, storage, and deployment of traffic
rules. Traffic controllers run on storage clients and regulate
data streams between clients and servers by following rule sets.

A. ASCAR Rule Manager

The ARM only needs to communicate with the traffic
controllers when there is a need to change the rule set, for
instance when a new workload starts and a rule set needs
to be deployed, or when the user wants to further optimize
the rule set. Most of the time, the controllers will follow the
deployed rule set to regulate the traffic. Therefore the ARM
node needs neither high computation power nor fast network.
It can be placed on the slower management network of a real
cluster or co-located with the cluster’s management node. ARM
contains SHARP, the rule producer, who takes a workload and
an objective function as input and produces traffic rules that
guide how the traffic controllers work. The details of SHARP
will be introduced in the following sections.

B. Traffic controller

ASCAR’s controller is a software component that runs on
each storage client and regulates one data stream between one
client and server pair. Since one controller only handles the
traffic between one client and one server, multiple controllers
are needed when one client talks to multiple servers at the same
time. For the system shown in Figure 2, each client has three
traffic controllers because each client needs to communicate
with three servers. By using one controller for each data
stream, a client can apply different congestion windows and rate
limits to different steams, which may have different congestion
states. Ideally, a client should monitor the congestion state of
each individual storage device, rather than each server. But
in practice, information about storage devices is often not
exposed to clients, and adding more complexity to either the
I/O protocol or server software is what we want to avoid.

Overall, putting traffic controllers on the client side has the
following benefits:
• the ability to monitor contention that occurs at any place

on the data path, including network, server, and devices,
• the ability to instantly slow down an outgoing I/O stream

when congestion is detected (for comparison, server-side
traffic controllers cannot instantly tell the clients to slow
down when the network is already congested),

• each data path’s congestion state can be monitored without
being affected by other unrelated data paths,

• easy deployment without the need to change server
software.

C. Detecting congestion

As discussed in the Background section, distributed traffic
control is a NEXP-hard DEC-POMDP problem. Therefore,
as a compromise, we have to seek for good congestion
indicators that can reflect the real-time contention state of
a connection and, at the same time, are easy to track and
calculate. Remy [42], a QoS system for networks, shows three
good congestion indicators for network: exponentially weighted
moving average (EWMA) of gaps between acknowledgments
(ACKs) arriving from the receiver, EWMA of the gap between
TCP sender timestamps embedded in ACKs, and current RTT
(round-trip delay time) to minimum RTT ratio. We discover that,
with the following adaptation, they are also good congestion
indicators for storage systems. Instead of using TCP ACKs, we
use the stream of replies from servers, which are sent out when
servers finish processing I/O requests. We replace RTT with
the Process Time (PT), which is the time needed for a server
to process one I/O request. The congestion indicators used
by ASCAR are summarized in Table I. Each traffic controller
keeps a record of these indicator variables and updates them
when a reply is received.

TABLE I: Congestion indicators used by ASCAR.

Variable Description

ack ewma exponentially weighted moving average of gaps between
server replies

send ewma exponentially weighted moving average of gaps between
the original sent times of the corresponding requests of the
replies received by the client

pt ratio current Process Time / shortest Process Time seen so far

D. Traffic rules

A management node (can be co-located with the cluster’s
management node) deploys a traffic rule set to all traffic
controllers before starting a workload. For multiple workloads
running together, different rule sets will be deployed to clients
running different workloads.

Let tuple C be the congestion state, we have C =

〈ack ewma,send ewma,pt ratio〉. All possible values of the
congestion state variables form the congestion state space K :
{〈ack ewma,send ewma,pt ratio〉 : ack ewma,send ewma ∈
[0,∞), pt ratio ∈ [1,∞)}. An action, A, defines how a traffic
controller controls the congestion window (cwnd) and speed

rate of outgoing I/O requests. The size of the congestion
window determines how many I/O requests can be allowed
in flight. Many modern distributed storage systems support
tunable congestion window, like the max rpcs in flight (MRIF)
in Lustre, which limits the maximum number of concurrent
requests in flight from a client to the paired server. We use
a tuple of two variables to express an action A = 〈m,b, τ〉, in
which m and b controls the congestion window using equation
cwnd = m × cwnd + b, and τ is the minimum gap (in millisec-
onds) between two successive outgoing I/O requests. A rule set,
S, contains one or more rules and maps the entire congestion
state space K to actions: S = {C → A : C ∈ K,

∑
C = K}. After

receiving a reply, the traffic controller updates the congestion
indicators, searches the rule set to find the corresponding action,
and performs the action. The controller also keeps a record
of how many times each rule is used and the mean value of
each congestion indicator, which will be used by SHARP to
refine the rules. Since we observe that there is a delay between
changing the congestion window and seeing the action’s effect,
we limit the number of changes to the congestion window
ASCAR can apply to two per second. With this restriction,
ASCAR still works well with highly dynamic workloads that
have sub-second burst I/O.

In Lustre 2.4, large I/O operations are broken down to small
fixed-size requests (1 MB by default). This makes the job of
traffic controlling easier, since the number of I/O requests is
proportional to the amount of I/O work that needs to be done,
and the controllers do not have to calculate the sizes of requests
when they limit the I/O rate. For other systems, if I/O requests
can be of different sizes, the traffic controllers must take that
into consideration.

The functions described above are relatively easy to im-
plement in a modern distributed file system. Our ASCAR
prototype is implemented in the Lustre client kernel module; it
tweaks max rpcs in flight to control the congestion window
and adds delays in the I/O request sending function to control
the rate limit. ASCAR’s controller introduces two kinds of
overhead: the calculation overhead for updating congestion
indicators and the control overhead when regulating outgoing
requests. The overhead grows linearly as the number of the
I/O requests increases but is still negligible comparing to other
tasks of the file system on a modern computer. Since none
of them is affected by the scale of the whole storage system,
ASCAR can linearly scale out to support very large storage
system.

One limitation of our current design is that we have yet to
implement metadata traffic control in ASCAR even though it
can be done in a similar manner. We plan to evaluate metadata
heavy workloads in the future. Another limitation is that each
client must stick to the rule set to achieve the global optimum.
A rogue or selfish client can take advantage of this system by
always sending a request without restraint. Since the traffic
controller can be implemented in the kernel, this requirement
can be easily met in controlled environments where all clients
are managed, like in HPC or enterprise systems, but might
be a potential issue for wider deployments with unmanaged

clients.

E. Objective function

An objective function describes the goal of the optimization.
It generates a score that reflects the performance of a workload.
The score is used to judge the merit of a rule set. An objective
function uses average throughput (tp) and speed variance (var)
as defined below:

tp =

∑N
c=0
∑T

t=0 throughput(c, t)
N × T

var = stddev (throughput(c, t))

N is the number of clients, T is the length of the benchmark in
seconds, throughput(client, time) is the measured throughput of
client at time. var covers both spatial and temporal throughput
variance.

There are several possible ways for combining the throughput
and speed variance as a single score. The most straightforward
method is using tp as the score when var falls within a limited
range. To avoid using an arbitrary number as the range limit,
we use the coefficient of variation (CV), which is calculated
as k = var/tp.

score(tp,var) =

tp if var/tp < k0

0 otherwise.

The scores of this method do not reflect the speed variance.
To reflect the variance in the score, we can multiply var by a
factor α and add it to tp:

score(tp,var) = tp − α × var. (1)

α controls the weight of stableness versus efficiency.
We have also evaluated objective functions of other forms,

such as Uα (x) = (x1−α)/(1 − x) (the alpha-fairness metric
traditionally used to evaluate allocations of bandwidth on shared
links [35]), (1−α)tp+α/var, a× tpα−b×var, and a× logα (tp)−
b × var. But they either failed to provide an effective balance
between throughput and variance, or were too sensitive to
rounding errors. We have not incorporated I/O latency into the
objective functions yet, because the applications we evaluate
are not very sensitive to high latency. That is planned as a
future work.

A real application’s I/O workload can be as long as several
hours or days, and ASCAR needs to benchmark the workload
for many times in order to test different rule sets. For that
reason, ASCAR uses shorter signature workloads, which usually
run for around 20 to 30 seconds, instead of the real workload.
The signature workload needs to cover the dominant I/O pattern
from the application. A checkpoint signature workload, for
instance, should be doing sequential writes concurrently from
all clients. ASCAR uses a workload monitor to collect features
from an application and generates the signature workload
accordingly. The feature set is described in Section III-G.

Because the signature workload is significantly shorter than
the real workload, a problem we encountered during the evalu-
ation of ASCAR is that the signature workload’s benchmark
result might not be stable on a large cluster, especially when the

benchmark is too short. Longer I/O workloads generally yield
more stable performance results because fluctuations can be
amortized over time, but they can also make the optimization
process too long. We use the following heuristic in SHARP to
find the shortest signature workload. Starting from 10 seconds,
SHARP gradually increases the signature workload’s run time
and runs it for 10 times to determine the speed variance, until
the CV is lowered to less than 0.1. This method currently
works well enough, and in the future we plan to implement
more complex methods for extracting workload’s key features,
such as those described in [32, 38]. Our experiments show that
a good signature workload should have a CV of less than 0.1
and should last about 20 to 60 seconds.

F. Producing a traffic rule set

SHAred-nothing Rule Producer (SHARP) finds the optimal
rule set that can maximize the value of the objective function
given a specific workload running on a specific storage system.
SHARP benchmarks the signature workload on the real system
to test the effect of candidate rule sets during the generation
process.

On the high level, a SHARP search process consists of a
series of epochs, and an epoch can include one or more rounds.
Within each epoch, SHARP only optimizes the hottest rule.
Conceptually, each candidate rule set can be thought of as a
point in the whole possible rule space. For each round, SHARP
picks points (candidate rule sets) from the rule space and tests
them using the signature workload; more points are picked
around the start value of the hottest rule’s action variables. In
other words, the further we move away from the start value of
the hottest rule’s action, the fewer candidate rules we try. This
is to fine tune the action’s variables at their current values,
and, at the same time, to avoid being trapped locally. The best
rule set from this round will then be used as the start value
for next round.

When the best rule set from this round is not better than
the best result of the previous round, we have reached the best
possible action for this hottest rule. SHARP then splits the
hottest rule’s congestion state space at the observed mean value
of each congestion indicator, and moves on to next epoch.

Algorithm 1 gives a detailed description on how
SHARP produces a traffic rule set. SHARP takes
two inputs: benchmark(ruleset) and objFunc. Function
benchmark(ruleset) deploys ruleset to all clients, runs the
benchmark, and returns the test result; objFunc is the objective
function that calculates a score for the result. Algorithm 1
keeps refining the rule set and never stops. (In practice, it
can be stopped after running for the desired optimization
time, usually around 10 hours, depending on the length of the
benchmark and available machine time.)

There are several implications about using a real storage
system instead of a simulator to test candidate rules. First,
we cannot run multiple benchmarks concurrently on a real
system as we can do with simulators, so the search algorithm
has to evaluate candidate rules sequentially; not being able
to parallelize this process makes the search process lengthy.

Algorithm 1 The traffic rule set producing algorithm.

1: . Producing traffic rule set for benchmark using objective function objFunc
2: procedure PRODUCETRAFFICRULESETS(benchmark,objFunc)
3: . Begin with one rule that maps the whole congestion state space to one initial action.
4: ruleset← 〈[0,∞), [0,∞), [1,∞)〉 → 〈1,0,20000〉
5: epoch← 0
6: . Within each epoch, the number of rules in the ruleset remains unchanged. The optimization focuses on optimizing the hottest

rule because it has the biggest impact on the overall performance.
7: while True do
8: epochBestScore← 0
9: . Optimizing the hottest rule within ruleset by generating and evaluating candidate actions for it. The one that yields the

highest score will be chosen.
10: round← 0
11: repeat
12: . Construct candidate actions by increasing/decreasing each action variable geometrically from the current value and

calculating Cartesian products, e.g., {m ± 0.01,m ± 0.01kb ,m ± 0.01k2
b
,m ± 0.01k3

b
, · · · } × {b ± 0.01,b ± 0.01kb ,b ±

0.01k2
b
,b ± 0.01k3

b
, · · · } × {τ ± 0.01, τ ± 0.01kτ , τ ± 0.01k2

τ , τ ± 0.01k3
τ , · · · }.

13: newRulesets← GenerateCandidateRulesets(ruleset)
14: roundBestScore← 0
15: for all r in newRulesets do
16: result← benchmark(r)
17: score← objFunc(result)
18: if score > roundBestScore then
19: roundBestScore← score
20: ruleset← r
21: end if
22: end for
23: if roundBestScore > epochBestScore then
24: epochBestScore← roundBestScore
25: epochBestRuleset← ruleset
26: end if
27: round← round + 1
28: until roundBestScore < epochBestScore
29: . Split the hottest rule’s congestion state space at the observed mean value of each congestion indicator into 2d hypercubes,

where d is the number of congestion indicators.
30: ruleset← SplitRule(epochBestRuleset)
31: epoch← epoch + 1
32: end while
33: end procedure

To mitigate this issue, the signature benchmark needs to be
as short as possible, and the search process must be highly
efficient. Second, the benchmark results of some workloads
fluctuate between runs. To make sure we pick the best rule set
in each round, we benchmark the top candidate rule sets at
least three times at the end of each round to make sure their
results are stable and reproducible. SHARP also detects rule
sets that generate high variant results and adaptively runs these
specific rule sets more times to rule out the outliers. With these
methods, we can use a relatively short signature workload to
accelerate the search process and, at the same time, mitigate
the problem of volatile results of some benchmarks.

Line 12 of Algorithm 1 is SHARP’s rule refining process,
which searches for the optimal action for a rule. Due to the
complexity of the storage and network stack, the mapping from
action space to performance results is a multi-dimensional non-
monotonic discrete function. In searching for local optima for
this kind of functions, random-restart hill climbing search [30]
is a viable option, but it can also be slow and complex.
Remy [42] describes a successive approximation method that
evaluates candidate actions which are generated from the

Cartesian product of action variables. These variables are
geometrically increased/decreased from their current values,
then uses the optimum rule in this round as the start point for
next round, until no better rule can be found. This method tries
to find local optima and evaluate other alternative locations at
the same time to avoid being “trapped” locally. But Remy uses
a fixed common ratio (search step size) for all action variables,
and normally needs one or two CPU-weeks to run, which is
impractical when running on a real storage system. Based on
this method, we use the following heuristic to calculate the
step size for different action parameters from a tunable time
constraint:

step size = step

√
var upper limit − var lower limit

delta gran
.

delta gran is delta granularity that determines the granularity
to change variables to avoid meaningless small changes in the
first few steps. After evaluating a wide range of settings using
many workloads, we discover that the following parameters,
as shown in Table II on the next page, work best for ASCAR
(we use 30 as the upper limit of Lustre’s max rpcs in flight).

TABLE II: List of search settings for each action variable.

Act var Lower limit Upper limit Delta gran Search step

m 0.3 2 0.05 4
b -2.3 2.3 0.3 4
τ 0 70,000 500 6

Another heuristic SHARP uses to shorten the search time
is that in one epoch, SHARP only focuses on the hottest rule,
while Remy’s search tries to improve all rules, which is too
long to run with limited gain in storage systems. This does
not mean that the hottest rule attracts all the attention, because
it will eventually be broken down to smaller rules until it is
no longer the hottest rule. After that, other rules will get the
chance to be optimized.

There is no fixed time requirement for this whole optimiza-
tion process. The longer it runs, the more complex rule sets it
produces. In our evaluation, most rule sets contain no more than
29 rules, and we see diminishing returns for going beyond that.
Given a 3-dimensional congestion state space, four epochs
are needed to evolve one initial rule to 29 rules. The time
needed in each epoch depends on how long it takes to find the
local optimal parameters, which is proportional to the length
of the signature workload and the number of combinations of
parameters to evaluate. In our evaluation, most useful rule sets
are discovered within 12 hours, which is a big improvement
from the several weeks needed by Remy’s method. From the
discussion above, we can see that the speed of this optimization
process is proportional to the length of the signature workload
and the complexity of the rule sets, and is unrelated to the size
of the underlying storage system. The time needed for this
optimization can be fine tuned to meet different requirements
of workloads.

Twelve hours is a long time for running an offline train-
ing/optimizing system. But it can be justified in many situations.
First, many HPC applications generate repetitive workloads,
like checkpoints or sequential read/write. These workloads
are generated over and over, so spending a couple of hours
in exchange for a long-term double-digit percentage increase
in performance is reasonable. Second, when the cluster and
storage system are under construction or expansion, it is often
necessary to find the best parameters for tuning the system for
a wide range of workloads; ASCAR can accelerate this process
by automating the evaluation and rule discovery process.

G. Bootstrapping ASCAR using common workload set

A real world storage system usually needs to handle a variety
of different workloads. We call the set of workloads that a
storage system needs to process its common workload set.
ASCAR uses a database to store the discovered rule sets. An
ASCAR-enabled storage system can bootstrap this database by
finding the optimal rule set for each of the common workloads.

But the database can only cover a limited set of workloads.
For each new workload coming into the system, we need to
decide which traffic rule set suits it best. For that purpose, we
extract a set of features from the workload and store them in

the database. Each record in the database is a mapping from
a feature set of a workload to the best rule set for it. When
a new workload comes in, ASCAR extract its features and
searches the database to find the most similar workload, whose
corresponding rule set will then be deployed to optimize this
new workload.

Since the similarity of workloads are determined by compar-
ing their features, choosing the correct feature set is crucial for
this task. There is little known work which studies the similarity
of workloads that can benefit from the same traffic control
rules, therefore we have carried out a series of experiments
to understand this issue. We pick a workload with known
features and let ASCAR generate a good rule set for it that
can improve its performance. We then tweak the workload’s
features, one at a time, and measure whether the generated rule
set can still improve its performance (certain cases where two or
more features are changed are also evaluated). As an example,
we can use a workload that issues random read requests at
1 MB each and sequential write at 8 MB each, with a 10:1
read to write ratio and a known rule set that can increase its
throughput by 20%. Based on this workload, we can tweak
each of its features. First we generate workloads using 1+1 MB,
1+2 MB, and 1+4 MB read requests and measure the rule set’s
effectiveness. Then we change the write requests and use 8 ±
1 MB, 8 ± 2 MB, and 8 ± 4 MB, etc., and measure the rule
set’s effectiveness.

From the contention management point of view, the feature
set should express the workload’s pressure on the storage
system, its randomness, and dynamics (how many ups and
downs the workloads have). The more dynamic a workload
is, the more gaps between requests it has, which allows
for using more aggressive congestion window control. Our
experiments, as described in section IV-F below, show that the
most important features are:
• type (read, write, create, delete),
• request size,
• positional gap,
• temporal gap.
The positional gap describes the gap between the locations

requested by two consecutive I/O operations; it is zero for
sequential workloads and non-zero for other workloads. The
temporal gap describes the delay between outgoing requests. A
real workload can have multiple types of operations combined
together, and each type can have different values for request
size, positional gap, and temporal gap. A random read/write
workload, for instance, can contain a read thread that performs
non-stop random reads using 1 MB requests and a write thread
that performs a sequential write workload using 50 MB request
size with an average temporal gap of 50 ms. The requests we
discuss here are file system-level requests between file system
clients and servers, which can be different from application
level I/O requests. Because of the disk cache, file system-level
requests are usually a subset of application level I/O requests.

We did an information gain feature selection [5] using the
results of the experiments, which are shown in Figure 4 in the
Evaluation section. It shows the following correlations between

changed workload features and the effectiveness of an existing
rule set:
• a strong correlation with the read to write ratio,
• a strong correlation with the read size for small random

reads (when the average read request size is smaller than
40 MB in this test system),

• a weak correlation with read request size when read is
sequential,

• a very weak correlation with write size no matter they
are random or sequential.

Basically, when comparing the similarity of workloads in
terms of traffic control, the most important features are read
to write ratio and read size when the reads are random; the
other features can be safely ignored. Therefore, in order to
cover most possible workloads, we can bootstrap the system’s
workload/rule set database using common workloads from the
combinations of the following feature sets:
• read to write ratio: 2, 4, 6, 8, and >10;
• read: sequential, >40 MB random read, 30~40 MB random,

20~30 MB random, 10~20 MB random, 5~10 MB random,
1~5 MB random.

IV. IMPLEMENTATION AND EVALUATION

A. Our ASCAR prototype

We implemented a prototype of ASCAR for Lustre 2.4.0
running on Linux. The traffic controller is implemented in
Lustre’s client kernel modules. SHARP is implemented as a
user-space program. Table III summarizes the changes of our
prototype system against Lustre 2.4.0.

TABLE III: List of ASCAR prototype components (LOC is
Lines of source Code changed or added).

File LOC Changes

include/ascar.h 179 Traffic controller
osc/osc_request.c 169 Traffic controller
osc/qos_rules.c 116 Traffic rule set parser
ascar_sharp.sh 374 SHARP main program
osc/lproc_osc.c 110 The procfs interface
gen_candidate_ 166 Implementation of
rules.py GenerateCandidateRulesets()
split_rule.py 145 Implementation of SplitRule()
ascar-tests/
(dir)

396 Test cases

The prototype’s control client is implemented within the
Lustre file system client in the kernel space, thus the compu-
tation cost for tracking the congestion indicators is very low.
In fact, we did not observe any measurable CPU overhead
on the client side. Memory-wise, the data structure for
tracking the congestion indicators consumes only 48 bytes
per server. Therefore, even supporting very large file systems
with thousands of concurrent server connections would not
require too much extra memory.

B. Hardware and workloads used for evaluation

The purpose of this evaluation is to understand ASCAR’s
effectiveness on a variety of workloads. We measured the

changes on throughput, bandwidth allocation fairness between
clients, and the optimizing time needed. We covered common
HPC workloads, such as sequential write (checkpoint) and se-
quential read (analytical/big data), as well as random read/write
workloads as a reference for a wider range of applications. We
also included NASA NBP BTIO [43], a realistic checkpoint
I/O benchmark derived from a real application.

The evaluation system contains five dedicated servers and
five dedicated clients. Our client and server nodes use the
same hardware configuration: Intel Xeon CPU E3-1230 V2
@ 3.30 GHz, 16 GB RAM, one Intel 330 SSD for the OS.
Each node has one 1 Gb network connection. For the Lustre
cluster, each storage server node uses one 7200 RPM HGST
Travelstar Z7K500 hard drive, whose raw I/O performance is
measured at 113 MB/s for sequential read and 106 MB/s for
sequential write. The Lustre cluster has one dedicated metadata
node and four storage nodes, which match the default stripe
count four. The Lustre file system uses default settings: 1 MB
I/O size, 1 MB stripe size, stripe count four. No workload is
memory intensive, so all server and clients nodes have plenty of
memory for buffering and running worker threads. The cache
policies of read and write are both Lustre default – write cache
is write-through; the server replies the completion of a write
when the data hit the disk. It is worth noting that the evaluation
system’s network bandwidth is relatively small when compared
to modern supercomputers, but its measured aggregated network
bandwidth (∼500 MB/s) to disk bandwidth ratio (∼500 MB/s)
is 1:1, which is on par with modern supercomputers [6].
Thus, the configuration of the evaluation system is sufficient
for studying the effectiveness and potential of ASCAR on
increasing bandwidth utilization and bandwidth sharing fairness
in a resource-constrained environment.

We use IOR [20] for generating those sequential workloads.
The I/O size of IOR is set to 1 MB, which is common among
HPC systems [19]. It also matches Lustre’s default I/O size.
The configuration of the IOR sequential read/write workloads
is: MPI I/O, 5 client nodes, 3 GB in total data volume, and
each process has its own dedicated file (unshared). We generate
those random workloads using FileBench [36]. The I/O size
is set to 1 MB, and we patched FileBench to do direct I/O
on Lustre to avoid being affected by local cache. (The patch
is needed because FileBench’s memory buffer is not aligned
and cannot do direct I/O on Lustre.) For the random read
and random write workloads, each client accesses a separate
5 GB file (unshared). In order to understand the effect of using
a shared file, we also ran the random read/write workload
using a shared file (all clients share the same file). The read
to write ratio (r:w ratio) is fixed at 1:1 unless otherwise noted.
The FileBench fileserver workload creates 1,000 files with a
mean file size of 5 MB and mean directory width of 20; there
are 50 threads doing create, write, read, append, and delete
operations, with a mean I/O size of 1 MB and mean append
size of 5 MB. The BTIO Class B workload uses four clients
and writes 1.7 GB in total. The BTIO Class C workload uses
25 clients and writes 6.8 GB in total.

TABLE IV: Summary of workloads and performance improvements. Each result is the average of 10 test runs. “TP” is the
throughput average (in MB/s) of all clients. “Var” is the standard deviation of throughput (in MB/s) over time and between
clients. Those percentages in parens show the increases of TP and Var over non-ASCAR baseline. We used two objective
functions: those “(max TP)” traffic rules were generated using an objective function that favors higher throughput, and “(α = 1)”
rule sets were generated using an objective function based on Equation 1. “Run time” is the duration of SHARP’s optimizing.
BTIO is recorded differently because it does burst I/O. We use BTIO’s own speed results as TP and speed variance of 10 runs
as Var. Since calculating temporal speed variance for a burst-I/O workload is meaningless, we cannot use Equation 1-based
objective functions. Instead, the α = 1 columns of BTIO workloads show the results of the rule sets with the least speed
variance.

Workload
w/o ASCAR (baseline) ASCAR (max TP) ASCAR (TP/Var) Run

time (h)BW Var Var/BW Throughput Variance Throughput Variance

Sequential write 421 18 4% 428 (+2%) 15 (-18%) 382 (-9%) 8 (-54%) 12
Sequential read 445 16 4% 452 (+2%) 14 (-11%) 451 (+1%) 14 (-11%) 9
Random write 219 20 9% 273 (+25%) 22 (+11%) 257 (+17%) 9 (-55%) 19
Random read 238 9 4% 244 (+3%) 4 (-48%) 241 (+1%) 7 (-17%) 7
Random read/write (shared) 48 4 9% 50 (+5%) 4 (0%) 49 (+3%) 4 (-3%) 5
FileBench fileserver 358 25 7% 414 (+16%) 25 (+1%) 412 (+15%) 24 (-4%) 24
BTIO (Class B) 116 7 6% 150 (+29%) 8 (+14%) 146 (+26%) 3 (-57%) 36
BTIO (Class C) 119 3 3% 160 (+35%) 4 (+15%) 159 (+33%) 1 (-55%) 23

C. Evaluation results

The performance improvements of ASCAR are listed in
Table IV. For each workload, we run ASCAR using two
different objective functions: one uses only tp as the score,
the other uses Equation 1 with α = 1. With the first function,
ASCAR maximizes the throughput without considering speed
variance; with the second function, ASCAR takes a balanced
approach toward throughput and variance. It can be seen that
with the “max TP” objective function, ASCAR improves the
throughput for all test workloads, some have the added benefit
of lower variance. With the “α = 1” objective function, ASCAR
reduces speed variance for all workloads. For HPC systems
that favor high throughput, lowering speed variance might not
be an important goal; the results generated using α = 1 are
included to demonstrate the effect of using different objective
functions.

The effect of ASCAR varies between workloads. Since
ASCAR is a delay-based congestion control system, it works
best with the kind of congestions that can be alleviated by
applying self-control to clients. The experimental results show
that ASCAR is generally good at improving throughput for
write-heavy workloads (25% to 35% increases), but is not
as effective on read-heavy workload (2% to 5% increases).
Figure 1 shows the effect of ASCAR on a random write
workload for lowering speed variance and increasing I/O
throughput at the same time.

Sequential write (checkpoint) is a common workload in
HPC systems and needs high throughput for parallel writes.
Modern distributed file systems, like Lustre, generally handle
this kind of simple, sequential write workloads well enough so
that the space for further optimization is limited. But ASCAR
not only decreases speed variance by 17.9%, it also increases
throughput by 1.8% at the same time. The sequential read
workload’s baseline throughput is 445 MB/s, which is already
near the bandwidth limit of the hard drives. Thus it sees only

2% increase in throughput by using ASCAR.
ASCAR increases the throughput of the random read

workload by 3%. According to Lustre’s manual, random read
is considered one of the worst cases for Lustre because the
reads from clients cannot be reordered like the write requests
and have to be processed in the order they came in, which
usually requires a lot of seeks. So the random read throughput
is relatively low even when only one client is issuing random
read. The random read/write workload using a shared file is
very slow on Lustre due to the contention on locks; the access
regions of clients are all overlapped, and locks are needed
for every I/O request. ASCAR increases its throughput by
5%. Lock contention here is causing clients to spend much
time waiting. ASCAR cannot optimize these workloads much,
because they exhibit the kind of congestion that cannot be
controlled by exercising self-restraint. For these workloads,
ASCAR can still be used to lower speed variance if needed
(-17% and -3%).

The BTIO benchmark is challenging because of its burst
writes. On our test system, BTIO Class B contains 200 check-
points, each of which lasts for only 0.2 seconds; BTIO Class
C contains 200 checkpoints of 0.9 seconds each. No traditional
traffic control solution can handle workloads that change
this fast, because most of them require slow communication
between clients. ASCAR’s controllers are built into the file
system client and require no network communication, so they
are highly responsive. The best rule sets discovered by SHARP
can increase the throughput of BTIO Class B by 29.9% and
BTIO Class C by 34.8%.

D. How the rules affect the workload

In order to understand how the traffic rules help increasing
the bandwidth utilization, we looked into the detail of the
rules and measure how ack ewma, PT ratio, I/O throughput,
congestion window (max rpcs in flight), and τ are affected

0 10 20 30 40 50
Time (second)

Client status

Ack EWMA
Congestion window
Bandwidth
PT Ratio
τ

Fig. 3: When running the checkpoint workload, one client’s
ack/send ewma, PT ratio, congestion window, and throughput
change over time.

TABLE V: Excerpt of the best traffic rule set for the checkpoint
workload. Twice a second, the ack ewma and PT ratio are
measured and are used to trigger a matching rule. The rule’s
m is multiplied to the congestion window, b is added to the
congestion window, and τ is used to control the rate limit for
the outgoing I/O stream. The “Times” column shows the times
each rule is trigger. Average ack ewma and average PT ratio
are the average values of ack ewma and PT ratio when the
rule is triggered.

ack
ewma

PT ratio m b τ Times Avg. ack
ewma

Avg. PT
ratio

[41, 48) [2.4, 4.5) 1 -1.7 33 3011 45 3.2
[48,∞) [0, 4.5) 1 0.9 40 7426 60 2.6

by the traffic rules. Figure 3 shows the states of one I/O
connection during a checkpoint workload when it is controlled
by ASCAR. This ASCAR rule set contains 15 rules. Two of the
most often triggered rules account for 51% of all rule triggers
and are shown in Table V. The first rule is triggered when the
ack ewma and send ewma are low (the avg. ack ewma is 45)
but PT ratio is high (avg. PT ratio is 3.2). This rule shrinks
the congestion window by 1.7 and lowers τ. This means that
the I/O requests will be sent faster, but fewer are allowed to
be outstanding. The second rule is triggered when ack ewma
and send ewma are high (average at 60) but PT ratio is low
(average at 2.6), and this rule increases the congestion window
by 0.9 and increases τ. This means a lower sending rate but
more requests are allowed to be outstanding. PT ratio is a
more real-time reflection of the current congestion state, while
ack ewma and send ewma show the trend of the congestion
state because history values are taken into calculation. In other
words, under these rules, if the connection is not congested
(low EWMA values) but the situation is getting worse (high PT
ratio), the client would send requests quickly to take advantage

of the current low latency, but would also restrain from sending
too many requests until the previous requests are finished to
prevent further worsening the connection. On the contrary,
if the connection is congested (high EWMA values) but the
situation is improving (low PT ratio), the client would slowly
send requests to prevent clogging the connection, but would
also send more requests before hearing back from the server
since we already know that the condition is getting better. From
these analyses we can see that the machine generated rules
are reasonable. It used to be difficult to pick up the correct
values for the rate limits and congestion window change speeds
without doing many experiments. Now SHARP can automate
this process.

We dig deeper into the layers between the application and
storage devices to find out where the performance improvement
comes from. Different workloads have different bottlenecks.
We observe that when the bandwidth utilization is increased,
the measured hard drive access time is also decreased. The
access time measures the average time needed for the drive to
process one fixed size request. When I/O streams from different
clients are interlaced, extra seeks between I/O requests lead to
high access time. This slow-start, fast-fallback policy can be
used to mitigate these extra seeks. In practice, the access time
of disk drives depends on how the I/O requests interlace and
the characters of the drives, such as the seek time, rotational
latency, and re-ordering of requests. Designing the optimal
traffic rules requires knowledge of these properties and how
the I/O requests are interlaced with other requests. Using an
automated optimizer, like SHARP, frees the designer from the
work of measuring and understanding the internals of each
involved device.

Since the workloads we picked for this evaluation are
distinctive from each other, their related traffic rules are also
different. This implies that the optimization process should be
run at least once for each different category of workloads. It
is not needed for workloads within the same category. Most
checkpoint workloads exhibit a similar sequential write I/O
pattern and should be able to share the same best set of traffic
rules.

E. Search efficiency

Unlike Remy [42], which can use a network simulator
to evaluate candidate rule sets, ASCAR has to use the real
storage system, which is often busy and cannot be occupied
exclusively for a very long time, therefore search efficiency
is very important for ASCAR. We have introduced several
heuristics in SHARP to improve the search efficiency over
Remy’s search method. In one epoch, SHARP only optimizes
the hottest rule instead of trying to improve all rules. Also,
SHARP is more aggressive on splitting rules when a local
optimal rule set is discovered.

We compared the efficiency of different traffic control rule
search methods. The efficiency of a search method is measured
by how much the best discovered rule set can improve the
I/O performance after a fixed search time. A highly efficient
search method discovers rule sets that better improve the I/O

22%
10%

12%
18%

21%
23%

20%
11%

14%
22%

0% 5% 10% 15% 20% 25%

Original
R size 1MB

R size 10MB
R size 60MB

R size 110MB
R size 140MB

W size 2MB
W size 4MB

W size 10MB
Seq. W

(a) Changed read request size

13%
12%

16%
7%

0%
0%
0%
0%

0% 5% 10% 15% 20% 25%

R:W 25:1
R:W 14:1
R:W 12:1
R:W 8:1
R:W 5:2
R:W 5:4
R:W 1:1
R:W 2:3

(b) Changed read to write (r:w) ratio

8%
14%

16%
17%

14%
0%
0%

6%
1%
1%

0% 5% 10% 15% 20% 25%

Rnd R+R:W 25:1
Rnd R+R:W 20:1
Rnd R+R:W 14:1
Rnd R+R:W 12:1
Rnd R+R:W 8:1
Rnd R+R:W 6:1
Rnd R+R:W 5:2
Rnd R+R:W 5:4
Rnd R+R:W 1:1
Rnd R+R:W 2:3

(c) Changed r:w ratio and read from sequential
to random

19%
18%

21%
24%
24%
23%
23%

1%
0%
0%

0% 5% 10% 15% 20% 25%

Seq W+R size 60MB
Seq W+R size 90MB

Seq W+R size 110MB
Seq W+R size 140MB

Seq W+W size 2MB
Seq W+W size 4MB

Seq W+W size 10MB
Seq W+R:W 5:1
Seq W+R:W 1:1
Seq W+R:W 2:3

(d) Changed write from random to sequential,
combined with changed read size, write size,
and r:w ratio

23%
0%

6%
15%

18%
17%

19%
16%

21%
14%

22%

0% 5% 10% 15% 20% 25%

Random R
Rnd R size 10MB
Rnd R size 30MB
Rnd R size 40MB
Rnd R size 60MB
Rnd R size 90MB

Rnd R size 110MB
Rnd R size 140MB

Rnd R+W 2MB
Rnd R+W 4MB

Rnd R+W 10MB

(e) Changed read from sequential to random,
combined with changed read and write request
size

Fig. 4: A rule set’s effect on changed workloads. The original workload is a sequential read (100 MB per request) plus random
write (1 MB per request). The best rule set discovered by ASCAR increases its throughput by 22%. Each bar here shows the
same rule set’s effect on throughput when we changed one or two parameters of the workload.

performance in a shorter time. The results are shown in Figure 5.
ASCAR generates better rule sets in a shorter time than Remy’s
search method.

baseline 12h 24h
Search time

0

10

20

30

40

50

60

T
hr

ou
gh

pu
t(

M
B

/s
)

Search method efficiency

Ascar m,b,tau
Remy m,b,tau

Fig. 5: Comparing the search efficiency of different methods on
one workload (the same workload as we used in section IV-F).

F. The effectiveness of rules on changed workloads

This section of evaluation focuses on measuring the effective-
ness of a rule set after the workload is changed. This evaluation

is important for determining whether an ASCAR system is
stable. The ASCAR system is stable if a small change in the
workload does not cause much change to the effectiveness
of an existing traffic rule set on increasing the workload’s
performance; in other words, we need to know whether the
rule sets generated by ASCAR are overfitted to the specific
training workloads. Studying the effectiveness of a rule set on
changed workloads also helps us to understand how to calculate
the similarity of different workloads in terms of selecting traffic
control rules. When a new workload starts, ASCAR needs to
search its workload/rule set database for the most similar known
workload that already has a generated rule set.

Due to the space limitation, we present the result of tweaking
only one workload in Figure 4. It is a fairly typical result. The
workload is a sequential read workload using 100 MB requests
plus random write using 1 MB requests. We have the following
observations:

• changing the r:w ratio has the biggest impact on the rule
set’s effectiveness,

• changing the read size does not change the effectiveness
unless the read size is very small (<= 10 MB),

• changing the write size to a larger value also affects the
rule set’s effectiveness, but as the write size becomes
larger than 10 MB, the rule set becomes useful again.

The rules we derived from these observations are described

above in section III-G.

V. RELATED WORK

There are mainly two categories of methods for storage
traffic management. The first category focuses on removing
contention during the design phase, usually by optimizing the
routing of data path or how applications access data, such as
ADIOS [22].

The second category focuses on managing contention at the
runtime after the system is put into production, and includes
scheduling-based methods and delay-based methods. Many
early systems work on a single-server [7, 25, 34], or for
a specific kind of workloads, such as media recording and
streaming [23, 46, 47] or virtual machines [10].

One step further are the later systems that support Distributed
Rate Limiting (DRL), which limits the aggregated rate (or
throughput) of distributed agents by some preset criteria. They
can be roughly classified to four categories:
• Controllers work from the client side [12, 16, 18].
• Controllers work from the server side [10, 14, 24, 40, 45].
• Controller works from a proxy layer between the clients

and servers [16, 21, 49].
• A mix of the above three methods [4, 50].
All scheduling-based and delay-based systems mentioned

above face several challenges. Some of them require frequent
communication or synchronization between rate limiters to
function [12, 24, 40, 49, 50]. They have the following
disadvantages: a centralized controller is a single-point of
failure and a single-point of contention that does not scale
out; those systems cannot handle highly dynamic workloads
because remote synchronization and controlling is often slow;
the volume of periodic communication and synchronization
between clients often becomes prohibitively large when the
system scales beyond a few hundreds of clients; they impose
extra burden on the network and do not work well when
the network latency is high due to congestion. Server-sided
and proxy DRL solutions, by nature, cannot handle network
congestion well since they cannot limit client-side sending.

The next issue is capability discovery – finding the optimal
I/O bandwidth for a specific workload running on a specific
system. This optimal value depends on nearly every aspect
of the workload and the system; we already know that
many features, like the I/O request size, randomness, network
topology, etc., can all affect this value. This optimal value is
important because it is the basis for allocating bandwidth to
clients. Current traffic control solutions either assume a certain
fixed value as the top performance of the system [14, 40, 44],
use a time-sharing scheduler [10, 12, 17, 24, 29, 34, 45, 49],
or employ a simple control-theoretic heuristic: slow-start,
fast fallback [37, 44, 50]. Some of them require that the
storage system’s performance conforms to a mathematical
model [18, 39]. Manually determining the capabilities of
devices and servers is difficult because of the reason we
mentioned above: the optimal bandwidth changes by workload.
In practice, these solutions only shift the burden of determining
the optimal bandwidth to the administrators.

With all these mechanisms, the system administrators still
face the problem of determining the best parameters. This
task can be daunting because a file system or a traffic control
solution may have hundreds of parameters to tune. For the
slow-start, fast-fallback method described above, if the start is
too slow or the falling back is too fast, the system’s capacity
is wasted; if the speed increasing is too fast or the falling back
is not fast enough, the system becomes unstable.

Remy [42] produces network QoS rules given parameter
ranges of the target network. It requires a descriptive model
of the target network and uses a simulator to generate test
environments to evaluate workloads. In the process, Remy
generates candidate rules by increasing/decreasing all variables
of the busiest action by a geometric progression with a fixed
common ratio. ASCAR does not need a model of the storage
system, which can be very difficult to get. Instead, ASCAR
uses the real storage system. Using the real system can lead
to more accurate results because there’s no simulator that can
accurately simulate a large and complex distributed storage
system. SHARP improves the QoS rule production process with
several heuristics that greatly reduce the number of rules to
evaluate. Hippodrome [2] automatically changes and evaluates
the system design to prevent device overload. Unlike ASCAR,
which only needs controllers on each clients, Hippodrome
requires intrusive and radical changes to the whole system.

We view the following work on data placement and pro-
visioning as complementary to our work. Improved data
placement can further reduce network congestion. HPC storage
systems can explore data locality by placing data near to
its consumer, as shown by Shipman et al. [33], or by re-
balancing data placement when a hotspot is detected [21, 48].
Other related data placement optimization works include
Pesto [11] and BASIL [9] for virtual machine deployment.
An alternative to complex traffic management mechanism is to
provide higher than necessary bandwidth by generously over-
provisioning, where the total system capacity is based on peak
workload estimates. Alvarez et al. [1] proposed a framework
for calculating the resource demand to avoid too much waste.
Another problem is converting high-level SLA or application
time requirements to a precise QoS I/O bound. Zhang et al.
proposed machine learning methods for this purpose [51].

VI. CONCLUSIONS AND FUTURE WORK

ASCAR successfully increases the bandwidth utilization for
all the workloads we have evaluated, and can decrease speed
variance in many cases at the same time. These improvements
come with no need to change either hardware or server software.
And the whole optimization process is unsupervised, requiring
no human knowledge of either the workload or the system.
ASCAR can be safely evaluated in production environments and
makes little assumption of the storage system and is applicable
to a wider range of different systems.

ASCAR is designed to be scalable, and there is no perfor-
mance bottleneck in ASCAR. The time and space complexity
of all the algorithms used in ASCAR are not related to the
number of the nodes in the system, so, theoretically, ASCAR

can scale to support millions of nodes. Even though we do
not have resources to validate this yet, some of ASCAR’s
design ideas have already been proven to be highly scalable
in managing computer network congestion [42].

There are several limitations of the current generation of
ASCAR. First, the long offline studying/optimizing process,
while reasonable for repetitive workloads, can be improved by
using an online optimizing system. Second, the user may need
to run the optimizer for each distinct workload. Third, we are
assuming that all the clients stick to the rules and there is no
rogue player. This should not be a problem for HPC systems,
but need to be addressed when deploying in other uncontrolled
environments, like in the cloud.

We are actively working on a more complex and adaptive
online SHARP optimizer to address some of these issues. The
online version of SHARP will be able to tweak and measure
the effectiveness of traffic rules online while the workloads
are running. An online optimizer would be a big improvement
over the current offline SHARP optimizer, because the online
optimizer would not need to occupy the system (or a part of it)
exclusively for a long time. As a first step, we are working on
optimizing repetitive workloads, like the checkpoint workloads
in HPC systems. This repetition gives us the opportunity
to try different traffic rules for each checkpoint, gradually
polishing the rules and generating better rules. By analyzing
the performance of existent traffic rule set, a new rule set
will be designed and tested during the next checkpoint run.
We are also working on evaluating ASCAR on a larger scale,
including how to deal with multiple workloads. We plan to
cover more categories of workloads, such as disk rebalancing
and error recovery workloads in the future. We are also studying
the effectiveness of supporting heterogeneous storage devices,
which can be a mixture of hard drives, SSDs, and full in-
memory storage, such as [26, 28]. Since ASCAR uses a separate
controller for each connection, we believe it can handle mixed
devices well if certain design conditions can be met.

The SHARP algorithm is efficient at producing rules for
complex rule- or policy-based control systems. A future
research topic is evaluating this algorithm with other similar
problems, such as data placement, device power management,
load balancing, and data re-routing in large-scale storage
systems. We are also actively working on improving the
algorithm in the following aspects:
• To use only a part of the storage system to produce traffic

rule sets that can be used for the whole storage system.
This will be useful when using the whole storage system
is too expensive for traffic rules generation.

• The current traffic rule set producing process only opti-
mizes the hottest rule in one epoch. This can be improved
by using more complex searching processes, such as
simulated annealing, random-restart hill climbing [30],
and Greedy Randomized Adaptive Search Procedures
(GRASP) [8].

In some use cases, bounded throughput is still needed in
addition to proportional allocation [24]. We are exploring meth-
ods to design customizable traffic rules for this purpose, and

we will also investigate the possibility of combining ASCAR
with other traffic solutions to provide more functionalities.

Lustre is mainly used by the HPC community, but the
mechanism of ASCAR is not limited to HPC and should
be able to be applied to other environments running other
systems. We are seeking collaborators who want to provide a
test environment and to bring ASCAR to other systems.

We will publish the source code of our prototype and raw
experimental data at http://www.ssrc.ucsc.edu/ascar.html. The
prototype works out-of-the-box on Lustre clients and can be
safely evaluated in a production environment.

ACKNOWLEDGMENTS

This research was supported in part by the National Science
Foundation under awards IIP-1266400, CCF-1219163, CNS-
1018928, the Department of Energy under award DE-FC02-
10ER26017/DESC0005417, Symantec Graduate Fellowship,
and industrial members of the Center for Research in Stor-
age Systems. We would like to thank the sponsors of the
Storage Systems Research Center (SSRC), including Avago
Technologies, Center for Information Technology Research in
the Interest of Society (CITRIS of UC Santa Cruz), Department
of Energy/Office of Science, EMC, Hewlett Packard Laborato-
ries, Intel Corporation, National Science Foundation, NetApp,
Sandisk, Seagate Technology, Symantec, and Toshiba for their
generous support. We also thank the faculty and students of
SSRC, especially Christina Strong, Lincoln Thurlow, and Andy
Hospodor for their help, guidance, and valuable comments.

REFERENCES

[1] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer, R. A.
Becker-Szendy, R. Golding, A. Merchant, M. Spasojevic,
A. Veitch, and J. Wilkes. Minerva: An automated resource
provisioning tool for large-scale storage systems. ACM
Transactions on Computer Systems, 19(4):483–518, Nov.
2001. ISSN 0734-2071. doi: 10.1145/502912.502915.

[2] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal,
and A. Veitch. Hippodrome: running circles around
storage administration. In Proceedings of the Conference
on File and Storage Technologies (FAST), Monterey, CA,
Jan. 2002.

[3] D. S. Bernstein, R. Givan, N. Immerman, and S. Zil-
berstein. The complexity of decentralized control of
Markov decision processes. Mathematics of Operations
Research, 27(4):819–840, Nov. 2002. ISSN 0364-765X.
doi: 10.1287/moor.27.4.819.297.

[4] D. Bigelow, S. Iyer, T. Kaldewey, R. Pineiro, A. Povzner,
S. A. Brandt, R. Golding, T. Wong, and C. Maltzahn. End-
to-end performance management for scalable distributed
storage. In Proceedings of the 2007 ACM Petascale Data
Storage Workshop (PDSW ’07), Reno, NV, 2007.

[5] C. M. Bishop. Pattern Recognition and Machine Learning.
Springer, 1st edition, 2007.

[6] J. Borrill, L. Oliker, J. Shalf, and H. Shan. Investigation of
leading hpc i/o performance using a scientific-application

http://www.ssrc.ucsc.edu/ascar.html

derived benchmark. In Proceedings of SC07, pages 1–12,
Nov 2007. doi: 10.1145/1362622.1362636.

[7] A. Elnably, H. Wang, A. Gulati, and P. Varman. Efficient
QoS for Multi-Tiered Storage Systems. In Proceedings
of the 4th Workshop on Hot Topics in Storage and File
Systems (HotStorage ’12), Berkeley, CA, 2012. USENIX.

[8] T. A. Feo and M. G. C. Resende. Greedy Randomized
Adaptive Search Procedures. Journal of Global Opti-
mization, 6(2):109–133, 1995. ISSN 0925-5001. doi:
10.1007/BF01096763.

[9] A. Gulati, C. Kumar, I. Ahmad, and K. Kumar. BASIL:
Automated IO Load Balancing Across Storage Devices.
In Proceedings of the 8th USENIX Conference on File
and Storage Technologies (FAST), Berkeley, CA, USA,
2010. USENIX Association.

[10] A. Gulati, A. Merchant, and P. J. Varman. mClock:
Handling Throughput Variability for Hypervisor IO
Scheduling. In Proceedings of the 9th Symposium on
Operating Systems Design and Implementation (OSDI),
2010.

[11] A. Gulati, G. Shanmuganathan, I. Ahmad, C. Waldspurger,
and M. Uysal. Pesto: Online storage performance manage-
ment in virtualized datacenters. In Proceedings of the 2nd
ACM Symposium on Cloud Computing (SOCC ’11), pages
19:1–19:14, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0976-9. doi: 10.1145/2038916.2038935.

[12] A. Gulati, G. Shanmuganathan, X. Zhang, and P. Varman.
Demand Based Hierarchical QoS Using Storage Resource
Pools. In Proceedings of the 2012 USENIX Annual
Technical Conference, 2012.

[13] D. A. Hayes and G. Armitage. Revisiting tcp congestion
control using delay gradients. In networking11p2, NET-
WORKING’11, pages 328–341, Berlin, Heidelberg, 2011.
Springer-Verlag. ISBN 978-3-642-20797-6.

[14] S. Ihara. New Quality of Service policy for lustre based
on the lustre network request scheduler (NRS). In Lustre
Admins and Developers Workshop 2013, Sept. 2013.

[15] R. Jain. A delay-based approach for congestion avoidance
in interconnected heterogeneous computer networks. ACM
SIGCOMM Computer Communication Review, 19(5):56–
71, Oct. 1989. ISSN 0146-4833. doi: 10.1145/74681.
74686.

[16] W. Jin, J. S. Chase, and J. Kaur. Interposed proportional
sharing for a storage service utility. In Proceedings of
the 2004 SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 37–48, New York,
NY, USA, 2004. ACM. ISBN 1-58113-873-3. doi: 10.
1145/1005686.1005694.

[17] T. Kaldewey, T. Wong, R. Golding, A. Povzner,
C. Maltzahn, and S. Brandt. Virtualizing disk performance.
In Proceedings of the 14th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS 2008),
Apr. 2008.

[18] M. Karlsson, C. Karamanolis, and X. Zhu. Triage:
Performance differentiation for storage systems using
adaptive control. ACM Transactions on Storage, 1(4):

457–480, 2005.
[19] Y. Kim, R. Gunasekaran, G. Shipman, D. Dillow,

Z. Zhang, and B. Settlemyer. Workload characterization
of a leadership class storage cluster. In Proceedings of
the 5th Petascale Data Storage Workshop (PDSW ’10),
pages 1–5, Nov 2010. doi: 10.1109/PDSW.2010.5668066.

[20] Lawrence Livermore National Laboratory. IOR soft-
ware. http://www.llnl.gov/icc/lc/siop/downloads/download.
html, 2003.

[21] Q. Liu, N. Podhorszki, J. Logan, and S. Klasky. Runtime
I/O Re-Routing + Throttling on HPC Storage. In
Proceedings of the 5th Workshop on Hot Topics in Storage
and File Systems (HotStorage ’13), Berkeley, CA, 2013.
USENIX.

[22] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and
C. Jin. Flexible IO and integration for scientific codes
through the adaptable IO system (ADIOS). In Proceedings
of the 6th International Workshop on Challenges of Large
Applications in Distributed Environments, CLADE ’08,
pages 15–24, New York, NY, USA, 2008. ACM. ISBN
978-1-60558-156-9. doi: 10.1145/1383529.1383533.

[23] D. D. E. Long and M. N. Thakur. Scheduling real-
time disk transfers for continuous media applications.
In Proceedings of the 12th IEEE Symposium on Mass
Storage Systems, pages 227–232, Monterey, Apr. 1993.
IEEE.

[24] A. Merchant, M. Uysal, P. Padala, X. Zhu, S. Singhal,
and K. Shin. Maestro: Quality-of-service in Large Disk
Arrays. In Proceedings of the 8th ACM International
Conference on Autonomic Computing (ICAC ’11), pages
245–254, New York, NY, USA, 2011. ACM. ISBN 978-
1-4503-0607-2. doi: 10.1145/1998582.1998638.

[25] M. P. Mesnier, F. Chen, T. Luo, and J. B. Akers. Differen-
tiated storage services. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (SOSP ’11),
pages 57–70, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0977-6. doi: 10.1145/2043556.2043563.

[26] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkataramani.
Scaling memcache at facebook. In Proceedings of
the 9th Symposium on Networked Systems Design and
Implementation (NSDI ’13), pages 385–398, Berkeley,
CA, USA, 2013. USENIX Association.

[27] Open Scalable File Systems, Inc. The Lustre® file system.
http://www.opensfs.org/, 2014.

[28] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazières, S. Mitra, A. Narayanan,
G. Parulkar, M. Rosenblum, S. M. Rumble, E. Stratmann,
and R. Stutsman. The case for RAMClouds: Scalable
high-performance storage entirely in DRAM. Operating
Systems Review, 43(4):92–105, Dec. 2009.

[29] A. Povzner, D. Sawyer, and S. Brandt. Horizon: Efficient
Deadline-driven Disk I/O Management for Distributed
Storage Systems. In Proceedings of the 19th IEEE In-
ternational Symposium on High Performance Distributed

http://www.llnl.gov/icc/lc/siop/downloads/download.html
http://www.llnl.gov/icc/lc/siop/downloads/download.html
http://www.opensfs.org/

Computing (HPDC ’10), pages 1–12, New York, NY,
USA, 2010. ACM. ISBN 978-1-60558-942-8. doi:
10.1145/1851476.1851478.

[30] S. J. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Pearson Education, 3 edition, 2009.
ISBN 0136042597.

[31] F. Schmuck and R. Haskin. GPFS: A shared-disk file
system for large computing clusters. In Proceedings of
the Conference on File and Storage Technologies (FAST),
pages 231–244, Jan. 2002.

[32] H. Shan and J. Shalf. Using IOR to Analyze the I/O
performance for HPC Platforms. In Cray User Group
2007 Proceedings, 2007.

[33] G. M. Shipman, D. Dillow, S. Oral, F. Wang, D. Fuller,
J. Hill, and Z. Zhang. Lessons learned in deploying the
world’s largest scale Lustre file system. In Cray User
Group 2010 Proceedings, 2010.

[34] D. Skourtis, S. Kato, and S. Brandt. QBox: Guaranteeing
I/O Performance on Black Box Storage Systems. In
Proceedings of the 21th IEEE International Symposium
on High Performance Distributed Computing (HPDC ’12),
pages 73–84, New York, NY, USA, 2012. ACM. ISBN
978-1-4503-0805-2. doi: 10.1145/2287076.2287087.

[35] R. Srikant. The Mathematics of Internet Congestion
Control. Systems & Control: Foundations & Applications.
Birkhäuser Boston, 2004. ISBN 9780817632274.

[36] SUN Microsystems and File system and Storage Lab
(FSL) at Stony Brook University. FileBench. http://
filebench.sourceforge.net/, 2014.

[37] A. S. Tanenbau. Computer Networks (5th Edition).
Prentice Hall, 2010.

[38] V. Tarasov, D. Hildebrand, G. Kuenning, and E. Zadok.
Virtual Machine Workloads: The Case for New NAS
Benchmarks. In Proceedings of the 11th USENIX
Conference on File and Storage Technologies (FAST).
USENIX, 2013. ISBN 978-1-931971-99-7.

[39] M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Falout-
sos, and G. R. Ganger. Storage device performance
prediction with CART models. In Proceedings of the
12th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication
Systems (MASCOTS ’04), pages 588–595, 2004. doi:
10.1109/MASCOT.2004.1348316.

[40] Y. Wang and A. Merchant. Proportional-share scheduling
for distributed storage systems. In Proceedings of the 5th
USENIX Conference on File and Storage Technologies
(FAST), Berkeley, CA, USA, 2007. USENIX Association.

[41] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In Proceedings of the 7th Sympo-
sium on Operating Systems Design and Implementation
(OSDI), Nov. 2006.

[42] K. Winstein and H. Balakrishnan. TCP ex Machina:

computer-generated congestion control. In Proceedings
of the Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication
(SIGCOMM ’13), pages 123–134, Hong Kong, 2013.
ISBN 9781450320566.

[43] P. Wong and R. F. V. der Wijngaart. NAS Parallel
Benchmarks I/O Version 2.4. Technical Report NAS-03-
002, NASA Advanced Supercomputing (NAS) Division,
2003.

[44] J. C. Wu and S. A. Brandt. The design and implementation
of AQuA: an adaptive quality of service aware object-
based storage device. In Proceedings of the 23rd IEEE /
14th NASA Goddard Conference on Mass Storage Systems
and Technologies, pages 209–218, College Park, MD, May
2006.

[45] J. C. Wu and S. A. Brandt. Providing Quality of Service
Support in Object-Based File System. In Proceedings of
the 24th IEEE Conference on Mass Storage Systems and
Technologies, Sept. 2007.

[46] J. C. Wu, S. Banachowski, and S. A. Brandt. Automated
QoS support for multimedia disk access. In Proceedings
of Multimedia Computing and Networking Conference
2005 (MMCN ’05), pages 103–107, San Jose, CA, Jan.
2005.

[47] J. C. Wu, S. Banachowski, and S. A. Brandt. Hierarchical
disk scheduling for multimedia systerms and servers.
In Proceedings fo the ACM International Workshop on
Network and Operating System Support for Digital Audio
and Video (NOSSDAV ’05), pages 189–194, Stevenson,
WA, June 2005. ACM.

[48] J. C. Wu, B. Hong, and S. A. Brandt. Ensuring perfor-
mance in activity-based file relocation. In Proceedings
of the 26th IEEE International Performance Conference
on Computers and Communication (IPCCC ’07), pages
75–84, 2007. doi: 10.1109/PCCC.2007.358881.

[49] Y. Xu, D. Arteaga, M. Zhao, Y. Liu, R. Figueiredo, and
S. Seelam. vPFS: Bandwidth Virtualization of Parallel
Storage Systems. In Proceedings of the 10th USENIX
Conference on File and Storage Technologies (FAST),
2012.

[50] J. Zhang, A. Sivasubramaniam, Q. Wang, A. Riska,
and E. Riedel. Storage performance virtualization via
throughput and latency control. ACM Transactions on
Storage, 2(3):283–308, Aug. 2006. ISSN 1553-3077. doi:
10.1145/1168910.1168913.

[51] X. Zhang, K. Davis, and S. Jiang. QoS Support for
End Users of I/O-intensive Applications Using Shared
Storage Systems. In Proceedings of the 2011 International
Conference for High Performance Computing, Networking,
Storage and Analysis (SC11), pages 18:1–18:12, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0771-0.
doi: 10.1145/2063384.2063408.

http://filebench.sourceforge.net/
http://filebench.sourceforge.net/

