
Efficient Archival Data Storage
Technical Report UCSC-SSRC-06-04

June 2006

Lawrence You
you@soe.ucsc.edu

Storage Systems Research Center
Baskin School of Engineering

University of California, Santa Cruz
Santa Cruz, CA 95064

http://www.ssrc.ucsc.edu/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

EFFICIENT ARCHIVAL DATA STORAGE

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Lawrence L. You

June 2006

The Dissertation of Lawrence L. You
is approved:

Professor Darrell D. E. Long, Chair

Professor Scott A. Brandt

Professor Ethan L. Miller

Doctor Richard A. Golding

Lisa C. Sloan
Vice Provost and Dean of Graduate Studies

Copyright c© by

Lawrence L. You

2006

Table of Contents

List of Figures viii

List of Tables x

List of Algorithms xi

Abstract xii

Acknowledgments xiv

1 Introduction 1
1.1 Contributions . 2
1.2 Evaluation . 3
1.3 Towards Efficient Disk-Based Archival Storage 4

1.3.1 The Explosion of Digital Data . 4
1.3.2 Demands in Computing on Archival Storage 5
1.3.3 Advances in Storage Technologies . 5
1.3.4 Moving Away From Tape . 7

1.4 Organization . 7

2 Background 10
2.1 Fulfilling the Need to Archive Data . 10
2.2 Deep Store: Scalable Archival Storage . 13
2.3 Space-Efficient Storage Systems . 14

2.3.1 Chunking: Dividing Data Streams by Content 15
2.3.2 Delta Compression and Resemblance Detection 16
2.3.3 Content-Addressable Storage . 18
2.3.4 Versioning File Systems . 19

2.4 Scalable Storage Systems . 20
2.5 Lossless Data Compression . 21

2.5.1 Stream Compression . 21
2.5.2 Delta Compression (Differential Compression) 23

iii

2.6 Lossy Data Compression . 26
2.7 Document Similarity . 27
2.8 User-Level File Systems . 28
2.9 Archival Metadata and Searching . 29
2.10 Reliability . 29

3 PRESIDIO Overview 31
3.1 Solution Overview . 32

3.1.1 Large-Scale Data Compression . 33
3.1.2 Compressibility of Data . 35
3.1.3 Efficient Encoding of Data . 36
3.1.4 The Virtual Content-Addressable Storage System 37
3.1.5 PRESIDIO and the Deep Store Architecture 41
3.1.6 PRESIDIO Hybrid Compression Framework 42

3.2 Prototype Implementation . 43
3.2.1 Feature Selection . 43
3.2.2 Similarity Detection . 44
3.2.3 Virtual CAS . 44
3.2.4 Redundancy Elimination Framework 45

4 Identifying Data 46
4.1 Overview . 46
4.2 Features . 49
4.3 Hashing and Fingerprinting . 52

4.3.1 Collision Properties . 53
4.3.2 Digests . 54
4.3.3 Rabin fingerprinting . 54
4.3.4 Strong and Weak Hashing . 57

4.4 Feature Selection . 60
4.4.1 Common Properties of Features . 60
4.4.2 Whole-File Hashing (Message Digests) 61
4.4.3 Chunk Features . 62
4.4.4 Block-Based Storage . 66
4.4.5 Shingling . 67
4.4.6 Superfingerprints . 70
4.4.7 Evaluation . 71

4.5 Discussion . 75
4.6 Summary . 76

5 Finding Data 77
5.1 Overview . 77
5.2 Similarity Detection . 78

5.2.1 Parameters used in similarity detection 81

iv

5.2.2 Comparing similarity detection properties 83
5.2.3 Identical Data . 84
5.2.4 Similar Data . 85
5.2.5 Harmonic Superfingerprints . 86
5.2.6 File Resemblance . 90

5.3 Evaluation . 90
5.3.1 Whole-file hashing . 90
5.3.2 Chunking . 91
5.3.3 Superfingerprint . 92

5.4 Discussion . 92

6 Compressing Data 94
6.1 Overview . 94
6.2 Redundancy Elimination . 95

6.2.1 Intra-file Compression . 95
6.2.2 Suppression of Multiple Instances . 97
6.2.3 Delta Compression Between Similar Files 99
6.2.4 Hybrid Methods . 105

6.3 Evaluation . 105
6.3.1 Comparing Chunking and Delta Compression 105
6.3.2 The chc Program . 106
6.3.3 Delta Encoding Similar Files . 108
6.3.4 Delta and Resemblance Parameters 109
6.3.5 Data Sets . 110

6.4 Evaluating Methods for Improving Compression 117
6.4.1 Delta compression between similar files 117
6.4.2 Measurements . 119
6.4.3 Measuring the benefit of high resemblance data 121
6.4.4 Performance . 130
6.4.5 Relationship Between Resemblance and Storage Efficiency 133

6.5 Discussion . 134
6.6 Summary . 136

7 Storing Data 138
7.1 Overview . 138
7.2 Content-Addressable Storage . 140

7.2.1 Addressing Objects . 141
7.3 Metadata . 146

7.3.1 Archival metadata formats . 146
7.3.2 Rich metadata . 148

7.4 Storage Operations . 149
7.4.1 C++ Interface . 150

7.5 Reliability . 153

v

7.6 Implementation . 156
7.6.1 Design Overview . 157
7.6.2 Indexing . 164

7.7 Discussion . 168
7.8 Summary . 169

8 Progressive Compression 171
8.1 Overview . 171
8.2 The PRESIDIO Storage Framework . 174
8.3 Efficient Storage Methods . 176

8.3.1 class TESM: the ESM class interface 177
8.3.2 class TVirtualFile: the virtual file interface 179
8.3.3 ESM: Whole-file . 182
8.3.4 ESM: Chunking CAS . 183
8.3.5 ESM: DCSF-FP . 184
8.3.6 ESM: DCSF-SFP . 185

8.4 Content-Addressable Storage (CAS) and Virtual CAS (VCAS) 185
8.4.1 Virtual Content-Addressable Storage (VCAS) 186
8.4.2 Progressive Redundancy Elimination 187

8.5 Summary . 190

9 Conclusion 191
9.1 Contributions . 191

9.1.1 Problems addressed . 193
9.1.2 Technology benefits . 193
9.1.3 Minor contributions . 194

9.2 Discussion . 195
9.3 Limitations . 198
9.4 Future Work . 199

9.4.1 Distributed Storage, Replication, and Reliability 200
9.4.2 Improving Compression . 201
9.4.3 Performance . 202

A Rabin Fingerprinting by Random Polynomials 204
A.1 Properties of the Rabin fingerprinting method 205
A.2 Modulo Polynomial Fingerprinting . 206

A.2.1 Binary Polynomials . 206
A.3 Properties of Rabin fingerprinting functions 207

A.3.1 Randomized Functions . 208
A.3.2 Collision Properties . 208
A.3.3 Binary Representation . 209
A.3.4 Concatenation . 209
A.3.5 Number of Hash Functions . 209

vi

A.3.6 Invertibility . 210
A.4 Data representation . 210

A.4.1 Representing Polynomials . 210
A.4.2 Fingerprint of the “null string” or “empty string” 211
A.4.3 Implications of the Prefixed String . 213
A.4.4 String Concatenation with Prefixed Strings 214
A.4.5 Sliding Window with Prefixed Strings 214

A.5 Constructing a Rabin fingerprinting library . 215
A.5.1 Computing Irreducible Polynomials 216

A.6 Related work . 219

Bibliography 220

vii

List of Figures

1.1 Overview of the algorithmic and data relationships in a space-efficient storage
system . 9

3.1 The Deep Store archival storage system model 41

4.1 Fingerprinting methods used for feature selection 48
4.2 Examples of file features . 51
4.3 A graphical representation of chunking parameters 63
4.4 Chunk size distribution . 64
4.5 Cumulative chunk size distribution . 65
4.6 DCSF file count by resemblance and window size 69
4.7 DCSF cumulative file count by resemblance and window size 70
4.8 DCSF cumulative file count by resemblance and window size (3D) 71
4.9 DCSF storage efficiency based on window size 72
4.10 Sketch and superfingerprints . 73

5.1 Similarity detection algorithms . 80
5.2 Sketch and harmonic superfingerprints . 87
5.3 Probability of detection with one superfingerprint, k = 32 88
5.4 Probability of detection with one superfingerprint, k = 128 89

6.1 Redundancy elimination methods . 96
6.2 Storage efficiency of xdelta vs. gzip . 100
6.3 Storage efficiency for different shingle sizes 101
6.4 Reference, version, and delta files . 102
6.5 Delta chains and degrees of dependence . 103
6.6 The chc program file format . 107
6.7 The space efficiency of chunk-based compression at different window and ex-

pected chunk sizes . 114
6.8 The space efficiency of chunk-based compression at different window sizes . . 115
6.9 Chunking efficiency by divisor size . 116
6.10 Storage efficiency by method . 120

viii

6.11 Cumulative data stored, by resemblance . 122
6.12 Cumulative data stored, by resemblance; Linux 2.4.0 vs. 2.4.0–2.4.10 123
6.13 Cumulative distribution of files stored by degree of dependence 127
6.14 Delta chain length and storage efficiency . 129
6.15 Storage used when delta applied: resemblance (F1,F2) < r vs. gzip 130
6.16 Relationship between resemblance and delta compression against uncompressed

data . 134

7.1 Content-addressable storage within the PRESIDIO framework 140
7.2 Metadata and file content . 148
7.3 Delta dependency graph . 153
7.4 Chunk dependency graph . 153
7.5 Delta chain length . 154
7.6 Chunk dependencies . 155
7.7 Megablock (MB) storage . 159
7.8 Group (G) and node storage . 160
7.9 PRESIDIO data classes . 162
7.10 PRESIDIO content-addressable object storage 164

8.1 Efficient storage methods in the PRESIDIO architecture 173
8.2 PRESIDIO ESM and CAS . 175
8.3 Efficient storage method operations . 176
8.4 PRESIDIO Efficient storage methods . 178

ix

List of Tables

4.1 Requirements for weak and strong hashing properties 58
4.2 Chunking parameters . 63
4.3 DSCF compression and window size . 69
4.4 Feature selection performance for selected digest and fingerprinting functions

using ProLiant (PL) hardware . 74
4.5 Hardware . 75

5.1 Comparing efficient storage methods and their similarity detection properties . 83

6.1 chc parameters . 108
6.2 dcsf parameters . 108
6.3 Comparison of storage efficiency from different compression methods 111
6.4 Data sets . 119
6.5 Cumulative data stored by dcsf, one version of source versus ten versions . . . 124

7.1 VCAS design parameters . 142
7.2 Approximate collision probabilities, p, for specific VCAS design values 143
7.3 Archive file metadata sizes . 147
7.4 Berkeley DB Hash versus Recno writing 10 million entries 167
7.5 PRESIDIO CAS Content address (CA) Hash index 167
7.6 PRESIDIO CAS Block index Recno table . 167

x

List of Algorithms

1 Write data to CAS . 152

2 Progressive Redundancy Eliminator (PRE) . 188

xi

Abstract

Efficient Archival Data Storage

by

Lawrence L. You

Archival storage systems must retain large volumes of data reliably over long periods

of time at a low cost. Archival storage requirements and the type of stored data vary widely,

from being highly compressed to highly redundant. The ever-increasing volume of archival

data that need to be retained for long periods of time has motivated the design of low-cost,

high-efficiency storage systems.

Due to economic factors, such as the rapidly decreasing cost of disk storage, memory,

and processing—as well as improvements in technology, such as increased magnetic storage

densities—research and development have moved toward disk-based archival storage. To fur-

ther lower cost, they eliminate redundancy using inter-file and intra-file data compression. Each

system uses its own strategy for compressing data, but none is consistently better than all strate-

gies.

Our main contribution, presented in this dissertation, is to prove the thesis that it is

possible to create a scalable archival storage system that efficiently stores diverse data by pro-

gressively applying large-scale data compression, providing better space efficiency than any sin-

gle existing method. To support this, our work identifies common properties in these systems,

evaluates efficient storage methods with respect to these properties, and presents a common

framework in which data can be compressed using a combination of similarity detection and

redundancy elimination methods. In addition, we have developed a prototype storage system

using a Progressive Redundancy Elimination of Similar and Identical Data In Objects (PRE-

SIDIO) framework. Similar and identical files are detected by the PRE algorithm. Data is

recorded using a virtual content-addressable storage (VCAS) mechanism that can be used to

store content with hybrid inter-file compression methods.

This work is a key part of the Deep Store archival storage architecture, a large-scale

storage system that stores immutable data efficiently and reliably for long periods of time over

a cluster of nodes that record data to disk.

Acknowledgments

I would like to thank the following people: Darrell Long, who has been my advisor

for over a decade, for providing scholarly and practical advice. I am indebted to him for his

patience and support, and have enjoyed sharing a learning experience that has been enlightening,

engaging, and gratifying. My wife, Debbie Gravitz, whose support and encouragement are the

reasons it has been possible to pursue this personal endeavor; and my sons, Davis and Nolan,

who have been patient with their dad. My parents, Clare and Byong-Ki You, who have given

me opportunity, encouragement, and freedom of pursuit throughout my life.

This dissertation wouldn’t have been possible without the discussion, help, support,

and friendship of all of the students, faculty, and staff at UCSC. I thank dissertation reading

committee members Scott Brandt and Ethan Miller, as principal faculty of the Storage Systems

Research Center who have joined with Darrell to grow the research group and evolve it into

an enjoyable and productive environment; and to Richard Golding, who helped to pave the

systems research path at UCSC before I arrived and to help me on the the way out. With Darrell

and Scott, committee members Patrick Mantey and Alexandre Brandwajn, for approving my

advancement to candidacy. Carol Mullane and Tracie Tucker, who were always available to

help with all matters throughout my eleven years in the graduate program and willing to keep

me in line whether my progress was steady or barely moving. My fellow UCSC graduate

student, Tom Kroeger, whom I first met when he was an intern, has the distinction of giving me

my first lesson at Santa Cruz—in surfing—the morning of my first class; I also thank him for his

cameraderie and for letting me watch him navigate the PhD program before me; Randal Burns,

for sharing his work and code on delta compression, and whose work we build upon; Ahmed

Amer, who helped us secure an NSF grant and my advancement to candidacy; Kristal Pollack,

for making the Deep Store project into a team instead of an isolated effort. Concurrent Systems

xiv

Laboratory, Computer Systems Research Group, Storage Systems Research Center, and Deep

Store members including Andrew Wiser, Svetlana Kagan, Anuj Srivastava, Deepavali Bhagwat,

and Kevin Greenan, for their discussions, ideas, implementation, and technical help. Ismail

Ari, for fruitful discussions during our commute “over the hill” and sharing the experience of

finishing the degree; Thomas Schwarz, for his guidance and discussions to understand problems

in reliability. Larry Stockmeyer for his help in understanding aspects of data fingerprinting. The

School of Engineering technical staff at UCSC for many years of support with the electronic

infrastructure we all depend on.

Many friends and colleagues have given support in so many ways. I hope I can return

you the favor as well. Special thanks to friends who have given their advice on PhD program

as well as their wisdom and guidance of what was important and what to do next. My aunt,

Youngbin Yim, who inspired me by starting her own PhD later in life to start a new career

and then completing it much faster than I could have ever done. Tia Rich, who has provided

guidance both for getting in and getting out of a graduate program; I wish everyone in a PhD

program could have a friend like Tia who can bring clarity through introspection. Dave Burnard,

Peter McInerney, and Neela Patel, who have given me perspective of their graduate experience

in their respective fields.

My managers and colleagues at Taligent, Metrowerks, Pixo, and Google, for time and

financial support they have provided directly or indirectly for my education at UCSC. Thanks

to sponsors Hewlett-Packard Laboratories, CITRIS, Microsoft Research, UC MICRO, and the

National Science Foundation for their financial support to myself and to the Deep Store project;

and to Perforce, for providing educational licenses of their superb software configuration man-

agement system, which I have used to manage source code, presentations, papers, data, and of

course, this dissertation.

xv

With sorrow, I would like to dedicate this work to the late Larry Stockmeyer, Young-

bin Yim, and Sidney Gravitz, my father-in-law, all whose work I have admired, who gave me

encouragement during the period I worked on this dissertation, and with whom I would have

liked to share the celebration of completing this degree.

xvi

Chapter 1

Introduction

We show that a large-scale archival storage system efficiently stores diverse data by

progressively applying data compression algorithms in a single storage framework to provide

better space efficiency than any existing storage compression method.

The amount of data that is created and that must be stored continues to grow [94].

Archival storage systems must retain large volumes of data reliably over long periods of time

at a low cost. Archival storage requirements and the type of source material vary widely, from

being highly compressed to highly redundant. For example, some digital audio and video is

stored as compressed data and some not; in any case, file formats differ widely depending on

use. Another example is achieving regulatory compliance, which involves storing many similar

textual financial documents or email.

Archival storage systems store data efficiently by eliminating redundancy, but that

comes at a cost. Data content must be analyzed, identical or similar data identified, and re-

dundancy must be encoded or suppressed and also be retrieved reliably and quickly. Content

analysis can use significant computing and bandwidth resources. Efficient storage systems pro-

duce internal storage metadata that is used to detect similar or identical data. However, if little

1

or no redundancy exists, the additional overhead of producing and searching the metadata is

wasteful.

Prioritizing space efficiency in a storage system affects other areas of design. Reli-

ability is improved by reintroducing redundancy, and it is also dependent on the degree of the

interdependence of stored data. Query and content retrieval performance are directly related to

the organization of stored data, which depends on data compression. Less tangible qualities are

also important, such as the difficulty with which storage systems can be engineered to store data

today as well as re-engineered to access data archives after generations of systems have passed.

In short, we want to store large volumes of immutable data permanently, efficiently,

with high reliability and accessibility.

1.1 Contributions

Our main contributions are as follows. We measured storage compression efficiency

and performance for different types of archival data and identified new types of data sets for

computer storage systems. Using several archival storage methods, we identified common

stages of data compression across a large corpus and measured their costs and benefits. We

created a Progressive Redundancy Elimination of Similar and Identical Data In Objects storage

framework, or PRESIDIO, which allows multiple content-addressable efficient storage methods

to be integrated into a single system that balances space efficiency against read and write per-

formance. Finally, we have designed the Deep Store archival storage architecture, which hosts

an efficient content-addressable store such as PRESIDIO, to be scalable to a large scale system.

We show that PRESIDIO stores data more efficiently that whole-file content-addressable stor-

age, chunking, and as efficient as delta compression between similar files, using less resources

than the most efficient single method.

2

In addition, we have made other contributions including: chc, a single file chunk

archiving program; measuring degrees of inter-file dependencies for chunking and delta; mea-

suring the relationship between dependencies and storage efficiency; and a preliminary obser-

vation of the trade-offs from introducing redundancy to improve reliability.

1.2 Evaluation

To evaluate the proof of our thesis, we examine several dimensions to the problem and

evaluate them individually. Our examination starts with some existing solutions that address the

problem of scalable archival storage, measures and analyzes experiments on synthetic and real-

world data, presents the solution in the form of a design and architecture, and finally evaluates

a prototype implementation. We briefly outline these individual evaluations below.

First, we evaluate algorithms that eliminate redundancy in storage systems. A number

of existing methods for storing immutable data have been developed. However, no comparisons

had been made in a manner that shows the absolute or relative storage efficiency, execution per-

formance, or other measurements. We evaluate the existing methods to determine the common

properties and steps, the performance we can expect, and the storage benefits.

Second, we evaluate the problem of addressing, compressing and recording data in a

storage system in a scalable and unified manner. The question we try to answer is how we can

store petabytes of data in a system using not just one compression scheme, but multiple. We

assess a design and its ability to meet these goals.

Third, we examine and evaluate our solution to the efficient storage problem, the

PRESIDIO storage framework and a prototype implementation. Storage space efficiency is our

primary interest, but storage performance and bandwidth are also important for practical deploy-

ment of any solution. We measure compression rates, as well as computation and I/O bandwidth

3

to reveal the differences. Our analysis highlights trade-offs between the different methods, a key

factor used in the PRESIDIO algorithm to improve compression while mitigating high resource

usage.

1.3 Towards Efficient Disk-Based Archival Storage

Our research to develop an efficient archival storage system using hard disk was moti-

vated by a number of economic, performance, technology, and social factors to meet increasing

demands for storing increasing amounts of digital data. Our work starts with the premise that

it is of practical benefit to use disk-based archival storage and then we set out to show how

that can be done efficiently. We briefly describe the current computing and storage environment

and then outline how our solution uses disk storage to help improve space efficiency of archival

systems.

1.3.1 The Explosion of Digital Data

In recent years, the growth in the production of digital data and subsequent storage

requirements have grown dramatically. In 2002 and estimated 92% of all new information was

stored on magnetic media [94]. Despite decreasing tape storage costs [32], disk offers advan-

tages that are increasing its adoption for archival storage. Disks allow new storage techniques

that were not available, but they open up new challenges to research.

Reference data include content that is created and retained, such enterprise docu-

ments, scientific data, and communication forms in rich media formats such as web pages,

email, messaging, photographs, and videos. Legislation such as the Sarbanes-Oxley Act of

2002 [165], whose purpose is to raise the level of corporate governance and improve corporate

accountability, have had a tremendous impact on the storage industry as they meet the corpo-

4

rate need to retain documents for long periods of time. Email, financial records, and customer

interaction account for significant amounts of data, mandated by section 404 for maintaining

internal controls and procedures for financial accounting, and to store data in an immutable and

tamper-resistant manner, as mandated in sections 802 and 1102.

Personal computing and consumer electronics technologies have also increased the

demands for storage, for digitized music, digital photography, and digital video.

1.3.2 Demands in Computing on Archival Storage

Many industries and applications require access to more and more data with demands

for shorter latency. Medical images, such as MRIs and X-rays, are being digitized with higher

frequency. Media and news organizations would take advantage of an archival storage system

by moving daily articles to on-line deep store. Enterprise organizations would benefit if cor-

porate digital data, including user data, CRM (customer relations management), and web site

or database assets were moved to deep store at low cost, and productivity would be improved

by faster access with the additional benefit of operating high-availability, low-latency systems.

Even individual computer users could benefit from a personal archival storage system to capture

their own personal photographs, music, electronic mail, and records they create and use over

time. In general, reducing the time to access data for applications that used to be stored on tape

or optical disk reduces cost by reducing delays. And on-line availability of archival data that is

easily distributed is critical in disaster recovery situations.

1.3.3 Advances in Storage Technologies

The storage industry has introduced new technologies to meet growing demands from

increasing data volumes. High volume solid state flash memories, recordable CDs and DVDs

5

and digital video tape are capable of storing high quality digital data. But for archival storage,

these improvements have not been as consistent or dramatic as magnetic hard disk technolo-

gies. Disks have shown promise of increasing apparent data capacity through data compression

beyond the capabilities of streaming storage.

Data compression performance has improved in the last few years by using dif-

ferential compression techniques that create delta encodings of data related to other stored

data [4, 80]. These algorithms execute efficiently and compress at rates over 100:1 (or 99%

reduction in space) for data sets with high redundancy and encode differences with add and

copy operations. The typical usage of these techniques is to compress versions of files, but

this typically requires at least one file to be available on-line, with lower latency than is possi-

ble with traditionally slow tertiary storage. Higher rates of compression yield higher effective

bandwidth of storage devices; this allows inexpensive disks, when combined with differential

compression, to be even more economical than tertiary storage.

The key improvement hard disks offer is the opportunity for inter-file compression as

well as intra-file (or streaming) compression. Existing archival storage technologies, magnetic

tape and optical disk, do little to exploit the new technologies in providing high degrees of

compression, or to aid in information retrieval. The shortcoming of linear storage media such

as tape are that they provide one-dimensional access. Optical media exhibits better random

access behavior than tape, but not nearly as good as hard disks.

Worse, tape and optical costs have not dropped in cost as dramatically as magnetic

disk in the last three years. In 1999, tape media to disk cost ratios per byte were approximately

1:16 [57], but today the ratio is closer to 1:1.5, and that excludes the cost of a tape drive.

6

1.3.4 Moving Away From Tape

Economic and technological factors support the trend of the transition from traditional

archival media to magnetic disk based-storage. In dramatic fashion, disk costs have decreased

at the same time storage density have increased. In 1999, Gray predicted that “within five years

. . . the prices should be nearing 1 K$/TB” [57]. In fact, we have seen the price of storage devices

below that threshold.

Backup technology is no longer good enough for archival storage. Tape has compara-

tively high latency over hard disk; near-line data retrieval using tape robots takes approximately

2–4 minutes [105] and the utilization of tape drives has been measured at 15% [107]; the rest

of the time is spent positioning the tape. Retrieving data from off-line archival storage requires

human intervention and even longer delays. With traditional deep store systems using tapes,

differential compression as it is used in our architecture is impractical, since it requires random

access to file data, but with our disk-based approach it is possible to achieve new levels of com-

pression. Because of the additional overhead to access tapes, the integrity of data stored on tape

and optical disks is not easily tested.

1.4 Organization

Our study in storage system design explores and develops novel techniques into a

foundation for large-scale storage systems. The main theme of this work is data compression

over large volumes of data. Its purpose is to map out the similarities, to identify the differences,

and then to exploit those properties in an integrated storage strategy. Figure 1.1 illustrates

the major topics of this study and their relationships, which are feature selection, similarity

detection, redundancy elimination, and content-addressable storage, assembled into a space-

7

efficient storage framework. The fifth topic, efficient storage methods, lists the algorithms with

different properties that are applied progressively in PRESIDIO to reduce storage usage.

The figure is a road map for this dissertation and a representation of the integrated

solution to our thesis. It shows the dependency graph of relationships consisting of abstract

concepts and concrete algorithms or methods, and concrete instances of implementations and

references to instances. Concrete algorithms point to abstract concepts by arrow. For example,

the digest is a concrete algorithm based on the abstract concept of bit string hashing. Similarly,

references to instances of data or algorithms are connected by a line terminated by a dot. We

build the architecture from a number of concepts, ranging from hashing, data fingerprinting,

chunking, and shingling within the topic of feature selection. The topic of similarity detec-

tion includes digest hash retrieval and chunk digest hash retrieval that identify exact data, and

similar file detection using fingerprints and superfingerprints that use approximate resemblance

to detect similar data. Redundancy elimination includes various data compression algorithms

including inter-file, intra-file, and hybrid compression strategies. The content-addressable stor-

age topic covers the low-level implementation for storing actual bits onto devices. Finally, the

efficient storage methods tie all of the topics together into a single framework that uses hybrid

methods.

In Chapter 2, we provide the background to the problem and related work. Chap-

ter 3 is an overview of our solution, PRESIDIO, which includes a description of a prototype

implementation and a summary of our evaluation. It describes relationships between the main

phases, illustrated as the boxes in Figure 1.1. Chapter 4 describes and evaluates content analysis

algorithms and data structures in feature selection. Chapter 5 describes and evaluates methods

for measuring similarity and finding similar data. Chapter 6 describes redundancy elimination

methods. Chapter 7 describes the unified content-addressable storage subsystem used by PRE-

8

Feature Selection

Efficient Storage Methods

Content-Addressable Storage

Redundancy Elimination

Similarity Detection

chunk digest

hash retrieval

digest hash

retrieval

fingerprinting

bit string

hashing

shingling

chunk

divisions

super-

fingerprint

similar files-

super

fingerprint

(SF-SFP)

similar files-

fingerprint

(SF-FP)

chunk digestdigest

intra-file

compression

inter-file

compression

delta

compression
hybrid delta

compression

duplicate

suppression

delta compression

between similar files

DCSF-SFP

delta compression

between similar files

DCSF-FP

chunk CAS

CAS Virtual CAS

whole-file

CASstream

compression

chunk digest

chunk digest

hash retrieval

chunk CAS

abstract

concrete

instance

reference

Relationships

concept

uses

chunk lists sketch

data algorithm

Figure 1.1: Overview of the algorithmic and data relationships in a space-efficient storage
system

SIDIO to record and reconstruct data. Chapter 8 describes the algorithms to progressively com-

press data using the PRESIDIO algorithm and framework. In conclusion, Chapter 9 summarizes

our work and briefly discusses avenues for future work. Appendix A contains implementation

and technical details of the Rabin fingerprinting by random polynomial hashing method, a hash-

ing function used throughout our work.

9

Chapter 2

Background

The field of archival storage research covers decades of changes in technology and

orders of magnitude improvements in technology and cost. Like many problems in systems

research, we draw from a long history in many areas to formulate a new solution that is possible

from recent changes such as the lowered cost of disk storage, the increased density of memories,

and high availability of cheap computation capabilities.

We describe the background in this area of storage research with the following orga-

nization. First, we describe the problems facing archival storage today. Next, we describe our

solution to the problem to efficient storage as it relates to a larger project, Deep Store, in which

we are attempting to build scalable, reliably, and accessible storage in a larger setting. Finally,

we cover the many fields of research and related work.

2.1 Fulfilling the Need to Archive Data

Today, the need for large-scale storage systems is obvious; a study estimated that

over five exabytes (5× 260 bytes, or about 5× 1018 bytes) of data was produced [94] in 2002,

10

an increase more than 30% over the previous year. Furthermore, the fraction of data that is

fixed content or reference data continues to increase, accounting for 37% of all stored data,

and was expected to surpass mutable data by the end of 2004. This is unsurprising, especially

in the face of the over 10,000 legal regulations placed on companies in the U.S. for corporate

compliance [157]. The storage for compliance increased by 63% just in 2003, even before some

of the most demanding regulations, such as the Sarbanes-Oxley Act, went into effect.

Scientific computing simulations, life sciences databases, and environmental data rep-

resent huge volumes of data. Several databases range in volume from terabytes to petabytes [61].

Further compounding the need for archival storage is the increasing volume of mate-

rial converted into the digital domain. Permanent records archives, in which data is not removed,

will only continue to grow. The National Archives and Records Administration (NARA) aim

to have 36 petabytes of archival data on-line by the year 2010. As a result of these increased

demands, reference storage, for both archival and compliance purposes, is a rapidly growing

area of interest [156].

Despite the plummeting cost of low-cost consumer storage devices, the cost of man-

aged disk-based storage is high—many times the cost of a storage device itself and higher than

tape. In 2002, the cost for enterprise disk storage was over $100 per gigabyte, compared to tape

at $10 per gigabyte. A trend for near-line and archival storage is to use cheaper disks, such

as ATA devices, instead of SCSI devices, in order to bring down storage cost closer to that of

magnetic tape [57, 56].

In 1989, Katz et al. cite the predicted maximal areal density (MAD) by “the first law

in disk density” [77]:

MAD = 10(year−1971)/10 megabits per square inch (Mb/in2) (2.1)

11

However, since then, disk density has far surpassed those estimates, and in recent years has

increased at a higher rate. In 1999 IBM Deskstar 37GP (3.5 inch, 34 GB, 7200 RPM) drive [71]

areal density was 5.15 gigabits per square inch (Gb/in2), but the projection using the formula

above should have been 10(1999−1971)/10 = 1028/10 = 631 Mb/in2, an error of more than 8 times.

More recently, in 2004 Hitachi introduced the Ultrastar 10K300 300 GB (enterprise class SCSI)

and Deskstar 7K400 (consumer grade ATA/SATA 3.5 inch, 400 GB, 7200 RPM) disk drives [62]

that are available today are even more dense, at 61− 62 Gb/in2, when the projection shows 2

Gb/in2, or an error of more than 30 times.

A new class of storage systems whose purpose is to retain large volumes of immutable

data is now evolving. The engineering challenges include: improving scalability, to accommo-

date growing amounts of archival content; improving space efficiency, to reduce costs; increas-

ing reliability, to preserve data on storage devices with short operational lifetimes and inade-

quate data integrity for archival storage; and locating and retrieving data from within an archival

store. High-performance disk-based storage designs have been evolving to use lower-cost com-

ponents, but they continue to be expensive to manage.

The trade-off between space efficiency and redundancy for reliability has always been

an issue; however, for archival systems the trade-off is deepened. By the very nature of archives,

they will continuously grow over time because data is rarely removed. This creates the need

for a space-efficient solution to archival storage. However, the need for a reliable system is

also heightened in the case of archival storage since as stored data gets older it is more likely

that there will be undetected cases of bit rot, and as devices age the likelihood of their failure

grows. Efficient archival storage systems pose a problem: existing reliability models do not

consider metrics or have the means to compute failure of recorded data based on the degree of

data dependence.

12

2.2 Deep Store: Scalable Archival Storage

To address these problems, we have proposed a storage architecture for the Deep

Store archival storage system, designed to retain large volumes of data efficiently and reliably.

Traditional disk-based file systems, which include direct- or networked-attached stor-

age (DAS/NAS) and storage area networks (SAN), do not have the properties desirable for

archival storage. They are designed to have high performance instead of a high level of perma-

nence, to allocate data in blocks instead of maximizing space efficiency, to read and write data

instead of storing it immutably, and to provide some security but not to be tamper-resistant.

Archival data must be retained for retrieval after a period of time that exceeds the life

expectancy of disk-based storage systems hardware and likely to exceed the practical lifetime

of the storage system software and their interfaces. Digital data must be stored reliably and

automatically managed by the storage system in order to be preserved beyond single failures.

In some cases, data lifecycles may require practices to destroy certain content after a period of

time. For instance, corporate cost and legal liability is reduced if email or non-final documents

are destroyed according to pre-determined policy [122].

We desire the following properties in an archival storage system that set it apart from

file systems: significantly reduced storage cost, immutable properties (write once, read many),

cold storage (write once, read rarely), dynamically scalable storage (incremental growth of stor-

age), improved reliability (checksums, active detection, preferential replication), and archival

storage compliance (WORM, required duration, lifecycle management).

Additional properties to distinguish Deep Store from other archival storage systems

include: much lower latency than the tape systems which it replaces, a simple interface and

design, searching capabilities (essential to petabyte-scale storage systems), and accessibility

across decades or centuries as well as across local or distributed systems.

13

At the foundation of Deep Store is PRESIDIO, the efficient storage subsystem. Its ar-

chitecture presents a simple content-addressable storage interface, a compression algorithm that

progressively applies and evaluates multiple methods to yield storage efficiency, and a low-level

virtual content-addressable storage framework that encodes and decodes content depending on

the storage method used.

2.3 Space-Efficient Storage Systems

Archival storage systems that reduce redundancy have a long history of storing data

cheaply for long periods of time. These systems typically have been at the end of the memory

storage hierarchy: primary storage in the form of random-access main memory, secondary

storage in the form of random-access magnetic disk, and finally tertiary storage in the form

of magnetic tape or optical disk. Hierarchical storage management spans these systems by

automatically migrating files through the hierarchy [53].

Traditional tertiary storage media, especially tape, do little to eliminate all redundancy

due their physical constraints: they are good at sequential access but poor at random access.

This left storage designers to extract the most out of stream-based compressors. IBM ADSTAR

Distributed Storage Manager backup system (ADSM; and known as IBM Tivoli Storage Man-

ager) [70] pioneered the use of delta compression in tape-based backup; its shortcoming is that

redundancy is eliminated for versions of files, and not across the entire data set being backed

up [20]. Furthermore, the high latency for accessing tapes forced delta chains—the length of

the dependency graph formed from delta compression operations—to a small length; version

jumping [20] helped limit chain length at a modest cost of efficiency.

However, inter-object and inter-file redundancy can be significant and a more current

area of interest due to the potential for reducing storage cost. We briefly cover recent work that

14

eliminates redundancy in storage.

2.3.1 Chunking: Dividing Data Streams by Content

Streams of data can be divided into non-overlapping strings of contiguous data, called

chunks. Subdivision is useful for identifying instances of identical data. Spring and Wether-

all developed a technique to eliminate redundant network traffic [151] by dividing data into

chunks in a manner similar to the one used by Manber [100]. Our work evaluates the chunking

technique first used by the Low-Bandwidth Network File System (LBFS) [110]. To eliminate

unnecessary network transmission, both client and server avoid sending data chunks if they are

already found in a cache on the other end. Data chunks are delimited by breakpoints located

deterministically from the data content. One such method is to compute a hash function over

a sliding window of a few tens of bytes and then to select the breakpoint when the hash value

meets a simple criterion, for example when its integer representation modulo an integer constant

is zero. LBFS computed the hash over the window efficiently using Rabin fingerprints of 48-

byte length and selecting special values of those fingerprints. Next, data chunks were identified

by their SHA-1 hash values between delimiting breakpoints.

The rsync program synchronizes remotely located files efficiently [164]. The algo-

rithm identifies identical substrings of data in two locations in the following manner. First, a

fast signature algorithm computes a fingerprint over a sliding window. Second, a strong sig-

nature computes a hash over a block, such as the MD4 digest, a 128 bit hash value [132]. To

efficiently process a file, the fast signature incrementally computes over every position in the

file with a small number of instructions, and the strong signature computes a digest over each

block of size in the range of hundreds to thousands of bytes. The small amount of computation

in rsync yields high throughput and significantly reduces transmission of data. However, the al-

15

gorithm compares specific pairs of files to compute and then transmit differences. In an archival

storage system, there are two shortcomings of the rsync method for redundancy elimination in

an archive. First, a client would first be required to identify a similar file that had been stored

previously in order to minimize the transmission of differences between two files. This pre-

condition would be satisfied in a versioning file system, but not in a general solution. Second,

differences in rsync are computed with a fixed block granularity, unlike a delta compression

program that would identify common substrings within a file of arbitrary length.

2.3.2 Delta Compression and Resemblance Detection

Our work seeks to improve storage system efficiency by eliminating identical or sim-

ilar data across files. Since whole files or large contiguous regions of files may only be similar

and not identical, we turn to delta compression to express file encodings as differences between

two files. Douglis and Iyengar evaluated the efficiency of storage by using delta encoding via

resemblance detection (DERD) over a number of parameters, showing the relationship between

similarity and delta encoding sizes, and establishing a number of parameters such as resem-

blance thresholds, feature set sizes, and the number of delta encodings to compute to determine

the best match.

Manber used fingerprints to determine file similarity on a single volume, comput-

ing the entire contents of the volume as a single operation or incrementally as new files are

changed [100].

Fingerprints were computed between special or random anchor values, and identical

subsections of files were found between those anchors when the fingerprints matched. The time

and space to compute the similarity of files varied with the number of fingerprints per file as

well as with the number of files. The design of this system was not scalable without using

16

unlimited resources and required sorting and managing large sets of data.

Likewise, research in discovering web similarity has been of keen interest in recent

past. More recent studies have shown that there is a significant amount of duplication of web

documents [15, 39, 41]. For example, an April 1996 web walk of over 30 million web pages

generated clustering data: using a cluster resemblance of 50%, 3.6 million clusters were found

containing 12.3 million pages. However, 2.1 million clusters contained only identical pages

(5.3 million) and the remaining 1.5 million clusters contained 7 million pages which were either

identical or similar. A later experiment showed that 22% of web documents were identical and

48% were similar [148]. Using a separate method, later experiments showed the web grew to

24 million pages; identical pages numbered approximately 22% and with some similarity, to a

total of 48% [148].

Web searches over millions or billions of documents pose challenges that overlap with

the problem of detecting similar or identical data in file systems. Some difficult problems in web

search include the detection of related pages [59] and finding similar data in high-dimensional

search spaces [72]. The properties that make these techniques less suitable for file system

storage systems are updates and indexings of the corpus that are less frequent than the rate of

ingest in an archival store, the lack of a requirement for index space efficiency, and the nature of

structured natural language hypertext documents, which are more suited for extracting features

that are in the same namespace as the textual search terms.

Other techniques to detect duplication of documents have been useful but not de-

ployed on an extremely large scale [147, 47, 64]. Most research to detect similarity uses finger-

printing techniques as well.

The redundancy elimination at the block level (REBL) scheme improves on the per-

formance of DERD by using superfingerprints to detect similar data [83]. A number of data sets

17

were measured using different compression methods to highlight the effectiveness of superfin-

gerprints, i.e. fingerprints of features selected from files. When superfingerprints are used to

detect similar blocks in highly similar files, REBL compresses well, but for larger data sets of

less similar files, the benefits are not as evident. Measurements focus on the important step of

resemblance detection, however computing and selecting a large set of fingerprints for the pur-

pose of fingerprinting must also be accounted. Overhead for file metadata and efficient storage

metadata are not measured and incur an additional, but necessary cost to storage.

Cluster-Based Delta Compression of a Collection of Files [118] evaluates delta com-

pression across a corpus of data. Their work computes differences between data to compute

efficient delta encodings, but does not address the storage of data incrementally.

2.3.3 Content-Addressable Storage

Several storage systems use content-addressable storage (CAS) to identify files by

content. Content-Derived Names (CDN) was early example of a CAS-like system using proba-

bilistically unique hashes to identify files for configuration management [65].

Current archival storage systems are commercially available and under research, typ-

ically configured as network attached systems that are used in a manner similar to more tradi-

tional network file systems. EMC Corporation’s Centera on-line archival storage system [42]

uses CAS, identifying files with 128-bit hash values. Each file with identical hash is stored just

once (plus a mirror copy for fault tolerance).

Venti [125], provides archival storage with write-once characteristics. Venti views

files as fixed-size blocks and hierarchies of blocks that can help reconstruct entire files. Identical

blocks are stored only once and differences are computed at the block level. Fingerprints are

generated from blocks and from hierarchies of blocks. Versions of files are stored at fixed

18

locations and common data is not shared unless they are identical on fixed block boundaries.

Storage Tank, an IBM SAN file system, employed duplicate data elimination (DDE)

over mutable data by coalescing blocks that were identified using content-addressable stor-

age [66]. Like Venti, only duplicate blocks were identified by hash (SHA-1). The finer gran-

ularity of block hashing achieves a higher level of block reuse over whole-file hashing and

avoids extra hashing over unchanged blocks. The use of fixed-block sizes avoids excessive re-

computation incurred to detect variable-sized block boundaries. Copy-on-write allows in-place

modification with low write cost, and duplicates are detected using a lazy update.

Content-addressable storage can be extended to data of arbitrary length. Chunks,

whose boundaries are defined by content, divide files into smaller pieces. Chunks are also

identified and stored by their content address. Commercial products from Avamar and Rocksoft

use variations of this method, as well as other research projects [45].

2.3.4 Versioning File Systems

Versioning file systems such as the Elephant file system [140] and the Network Ap-

pliance Write-Anywhere File Layout (WAFL) [63] (also employed in their NearStore prod-

uct [112]) are similar to archival storage systems in that they retain multiple versions of files.

However, they do not have the ability to retain all copies permanently or to eliminate redundancy

across files. Because versioning file systems typically operate on snapshots of read-only data,

efficient archival storage systems enable new opportunities for their use if incremental storage

requirements are much smaller than sharing whole files. In addition, versioned file systems do

not exploit similarity of files and at most share blocks [125].

19

2.4 Scalable Storage Systems

Scalable storage systems use distributed resources to improve total storage capacity,

to distribute read/write bandwidth over multiple network interfaces and storage media heads,

and to decentralize control to reduce bottlenecks. This category includes cluster file systems,

distributed systems, and peer-to-peer systems.

The IBM General Parallel File System (GPFS) [142], a cluster file system, distributes

storage over multiple nodes. A single directory and file namespace is shared across computers

connected via high-speed LAN. Files are stored with larger block sizes, from 16 KB to 256

KB, and the blocks are distributed across nodes. Replication and failure are handled by dis-

tributing data on different nodes so that a single failure would not cause its owning cluster to

fail. In a similar manner, the Google File System (GFS) [51], incorporates replicated redundant

servers to provide reliability. Large blocks, called chunks, are 64 MB in size. GFS is designed

to work well with the append operation. Scalability is achieved with large numbers of slave

machines, or chunkservers. Storage reliability is greatly improved through replication and mi-

gration. Availability is improved through failover from master servers to replicas. Bandwidth is

increased by reading and writing directly to different chunkservers that store copies of a chunk.

In large cluster file systems, CPU and memory are available on each node and help manage

metadata and assist distribution. Larger block sizes are necessary to reduce metadata overhead.

The properties found in these on-line high-performance mutable storage systems helped influ-

ence the design of our proposed system architecture. Large block sizes and limited metadata

storage make GPFS and GFS suitable for smaller numbers of large files, however archival data

does not always meet this criteria.

Distributed storage systems include cluster file systems, storage area networks (SAN).

These include virtual disk storage systems like Petal [84] and Frangiapani [158]. Distributed

20

backup systems like Pastiche [37] provide efficient distributed storage when common data exists

across multiple machines. These systems do little to improve space efficiency but may provide

a model for improving data distribution in an efficient archival storage system.

Peer-to-peer storage systems further decentralize storage, even to the point where

control is decentralized. Such self-organizing systems may be tolerant of failures, network seg-

mentation, attacks to compromise data. When these peer-to-peer systems are widely distributed,

they can also exploit bandwidth in a wide area network to provide high aggregate bandwidth.

Naming and locating data is usually dependent on an overlay network such as Chord [153],

Pastry [136] or CAN [129]. Examples of peer-to-peer storage include PAST [137], Pasta [108],

Silverback [168], Herodotus [17], and Archival Intermemory [54, 35].

2.5 Lossless Data Compression

Our work incorporates existing data compression methods into a framework that uses

complementary methods and balances space efficiency with compression performance. We

describe commonly available methods and their place in our research.

We are primarily interested in lossless data compression, which preserves input data

exactly. File contents are presented for storage and at a later time, the exact contents are re-

trieved. The lossy data compression, which is commonly used to encode audio or visual content

such as pictures, sound, and movies efficiently, is a related problem which we discuss briefly

below.

2.5.1 Stream Compression

Lossless stream compression takes an input stream and emits a (generally) smaller

output stream by eliminating redundancy that is seen within the stream itself. Input symbols

21

are converted to codes and then output. Codes, which are of varying size, are selected stati-

cally or dynamically and assigned to represent symbols depending on the probability of their

occurrence [111, 141].

Stream compression exhibits distinct properties. The streaming data window over

which the compressor can evaluate the statistical properties is typically limited to real memory

and often is much smaller. Some compression programs maintains a dictionary that is updated

as symbols and strings are scanned from input. This prevents stream compression from being

effective across files and even within large files which may have multiple instances of common

data separated by large distances.

Stream compressors can encode identical data with different codes. Static coders,

such as Huffman encoding, depend on the input. Dynamic coders, which update encodings as

the probability of symbol and substring appearance, adapt to input. In either case, unless a static

coder is also using a permanently assigned encoding, the encoded (and compressed) data is not

guaranteed to contain identical regions even if two uncompressed regions are identical. There-

fore, stream compression can interfere with inter-file compression if it is applied early. The

XRAY system used a variation of a pure stream compressor whereby an additional training pass

would create a semistatic model of phrase-based probabilities, separating the phrase dictionary

from individual files [30]. The inter-file training helps compress collections of similar data but

is fundamentally a stream compressor.

Performance of stream compressors is very good and can be implemented in hard-

ware. The current generation of processors, e.g. Pentium 4 at 2.5 GHz, also offer good software

implementations; we measured compression at rates in excess of 200 megabytes per second,

faster than the approximately 50 megabytes per second streaming read/write performance of

a single hard disk device. Many data compression implementations exist including the pop-

22

ular programs zip, compress, lharc, gzip [49] (based on Lempel-Ziv compression [177]), and

bzip2 [145] (based on Burrows-Wheeler compression [24]).

2.5.2 Delta Compression (Differential Compression)

Delta compression, or differential compression, is a method for computing differences

between two sources of data in order to produce a small delta encoding that represents the

changes from one data source to another. Generally, these data streams contain arbitrary content

(i.e. not just text) and are files. Delta encoding has been used for storage, for in-place updates

of data [22], and for reducing network bandwidth usage [104].

Delta compression programs scan two sets of input files, the first set consisting of

one or more reference files or base files, and the second a single version file. The program

scans the input files, computes a difference to the version file and then produces a delta file.

The reference and version files are usually related, most often as instances of changes from one

version to the next, and stored in the same file system location but differing in time. Otherwise,

reference and version files are selected for input explicitly based on an a priori relationship.

Delta compression is one of the two classes of inter-file compression algorithms used in our

solution.

The methods to compute differences between files are tailored to file contents. Early

programs to compute differences operated on text files. One commonly used program for com-

puting differences still used today is the diff [69] tool, used in the RCS version control sys-

tem [160]. Differences were computed at the line level, unlike binary delta, which does not

have well-defined characters defining units of text. Later programs computed binary differ-

ences. Reichenberger described an algorithm for differencing binary data [130]. This greedy

algorithm can produce an optimal (smallest) delta encoding, but exhibits quadratic execution

23

time in the size of the file inputs and uses memory space linearly in proportion to the size of the

input files.

The edit distance [159], or Levenshtein distance, is one measurement of the differ-

ence between two files or documents as a function of the number of insertions, deletions or

exchanges of characters. Our work uses delta compression, which aims to reduce edit distance.

Information theoretical differences such as the Chaitin-Kolmogorov difference might result in

smaller algorithmic representations of operations to transform one file into another; however,

computing optimal differences requires high computational complexity and are more useful in

theory than in practice [44]. For heuristic metrics, the weakly approximate edit distance [6]

may be a practical implementation for use of measuring resemblance, but not necessarily for

easily detecting resemblance of a single file against a large collection of files.

Burns improved delta compression performance by applying heuristic techniques to

compute the delta encoding in linear time, using constant space [21, 19]. The algorithms are

known as One Pass and One and a Half Pass. A more complete analysis of the execution

performance of these algorithms can be found by Ajtai, Burns, Fagin, Long, and Stockmeyer,

[4].

When the type of binary data is known, specialized differencing can be applied. Ex-

amples of programs that compute deltas between versions of executable code include BSD-

iff [121], RTPatch [123], and Exediff [5].

2.5.2.1 Reconstruction

File reconstruction from delta files is straightforward by applying copy and add oper-

ations from a version (or delta) file to a reference (or base) file. When a reference file needs to

be first reconstructed, the complete reconstruction depends on all antecedent files. This recon-

24

struction may incur a number of resource costs, including computation, memory, or intermediate

storage.

Yu and Rosenkrantz reduced the retreival time of the classical scheme for reconstruc-

tion versions, whose worst-case execution time was quadratic in the sum of the size of the initial

complete version and the sizes of the file differences down to a reconstruction time that is linear

in the sum of the size of the initial complete version and the sizes of the file differences [175].

While the cost of the reconstruction can be bounded from the file sizes, this scheme assumes

that the files are immediately available.

When the time to retrieve reference and version files is non-trivial, other methods for

storing these files can take less time. For instance, when files are stored on tertiary storage

such as magnetic tape (whose retrieval latency can take many seconds, minutes or even days),

a method described by Burns and Long known as version jumping [20] can be used to reduce

the number of file retrievals, thus reducing the load at the server and also reducing network

transmission time.

Several delta programs are available today, including diff, bdiff, vdiff, vcdiff, xdelta,

zdelta, bsdiff, dfc-gorilla and RTPatch. In a 1998 study, Hunt, Vo, and Tichy compared delta

algorithms by measuring performance over 1,300 pairs of files from two successive releases

of GNU software [68] using the diff, bdiff, and vdiff programs. Since that time, other imple-

mentations have appeared, such as vcdiff [80] (an IETF standard [79] and successor to vdiff),

xdelta [95, 96], and zdelta [162].

A comparison of delta compression programs is reported in the zdelta [162] techni-

cal report, measuring storage efficiency, compression and decompression speed of gzip (a file

compression program) against xdelta, zdelta, and vcdiff. The report outlines an experimental

methodology for producing synthetic test files varying in similarity from 0 (completely dis-

25

similar files) to 1 (completely identical files). The main difference in performance is in the

compression encoding schemes that are used in each program: xdelta computes a difference but

does not encode it, vcdiff uses a byte-based encoding, and zdelta encodes a difference using

Huffman codes. The zdelta program uses zlib [50] lossless data compression library based on

the LZ77 algorithm [177].

2.6 Lossy Data Compression

Although our work focuses on lossless data compression, many data types and media

forms are stored using lossy data compression. Sampled analog input data, such as audio, still

images, and motion pictures are encoded using a wide range of data compression algorithms

such those defined by JPEG (Joint Photographic Experts Group), JBIG (Joint Bi-level Image

experts Group), MPEG (Motion Pictures Expert Group), and DV (Digital Video), to name a few.

The compression algorithms produce encoded data that when uncompressed, are near replica

digital data of the original input, but exhibit small errors.

When lossless image compression is applied by different users, different output can

result despite small perceptive differences to the users who see or hear these data. For example,

searches conducted on search engines for images may produce large numbers of identical or

nearly identical images based purely on their metadata. Detecting similarity in such compressed

data is not likely to be further compressed, but some compression may be possible if similarities

are detected on the uncompressed data. Because the uncompressed data for media content

is interpreted by human perception and the compression methods seek to minimize errors in

perception, lossy data compression in storage systems is an topic for investigation outside of

our research area.

26

2.7 Document Similarity

In the field of study for information retrieval (IR), document similarity is a metric

that is often used to measure the similarity of two or more textual documents. Similarity is

commonly used by query operations, ranking the results and assigning a similarity measure to

each document that is retrieved [170].

One commonly used method to compute document similarity is the cosine measure

within the vector space model [8] . Documents are represented within a vector space with di-

mensions d, the number of documents, described by t terms, a t× d matrix A. Each element

ai j represents a weighted frequency in which the term i occurs in the document j. Rows, repre-

senting documents, are also called document vectors. Queries are represented as query vectors,

using the same terms found in the documents. Treating the vector space as Euclidean, the sim-

ilarity is computed as the cosine of angles the query and document vectors. Query results are

considered when the cosine is larger than a specified threshold. For natural language text docu-

ments, terms are words. Relative word frequency within a document improves the weighting of

a term; therefore, documents with higher occurrences of a word will have a higher likelihood of

matching a query.

Word frequency may be useful for finding related documents, but it is not clear that it

has any relation to redundancy that can be extracted between the two documents. For instance,

two documents each with a random ordering of words with the same term frequency will have a

very high cosine, but there will be little inter-document redundancy to eliminate and exploiting

the apparent similarity in an efficient storage system is not likely.

Arbitrary binary files exhibit a similar problem: the terms, unlike documents com-

posed of words, are not defined by one convention such as natural language. The number of

terms in a natural language are limited to a subset (through stemming) of all words used in

27

the language’s vocabulary; conversely, binary data would have an arbitrarily large set of terms.

The dimensions of the already sparse vector space grow unbounded and therefore the burden of

managing and searching through such space creates a new problem for storage efficiency.

File types, often specified by filename extension or file preamble, define contexts

in which terms can be defined. Our research assumes those distinctions are not necessary;

however, using a secondary vector space model to further detect similarity may prove useful in

future work. Vector space models have been used to search peer-to-peer networks [155] as well

as the web [152].

2.8 User-Level File Systems

Deep Store is a user-level file system. Portability and long-term maintainability is a

goal, not the very high performance that was once demanded by file systems that were tightly

bound to the underlying operating systems. There are many examples of user-level file systems,

including DAFS [97], GFS [51], and Swift [26, 25]. User-level file systems have advantages

during development such as ease of programming and debugging, leverage of existing program-

ming language libraries, and avoiding interdependence with an operating system kernel. The

Inversion File System [115] used a database system to manage file data and provided features

like database queries and file versioning; operations on files larger than 1 MB were about 70%

of native Unix file system performance. These characteristics suggest that the use of a user-level

file system would be suitable for our solution.

28

2.9 Archival Metadata and Searching

Moore et al. enumerate preservation and management policies that can be used to

define the infrastructure for a collection-based archive [105, 106]. The problem domain for

archivists is larger than simply to retain storage; however, the myriad requirements help define

the usage for an archival system, including management through metadata, including metadata

that use standardized formats to support versioning, security, and other desirable features in an

archival storage system. Automated content type detection and metadata generation in systems

like the Semantic File System (SFS) [146], Essence [58], and HAC [55] extract metadata from

content itself, such as might be used by an archival storage system to annotate itself.

Search tools for file systems, such as GLIMPSE [101] and Google Desktop [1] extract

metadata and index content, allowing users to search over file contents without reading the

data directly. Index storage overhead is low. Connections [150] improves search in active file

systems by incorporating temporal locality, which may also be useful for archival storage.

Earlier work to detect similar data in file systems by Burkhard et al. computed a

distance metric in a key space [18]. It precomputes a set of keys for each file and organizes

files into search spaces that can be traversed to find cliques of similar files. The large numbers

of indexed keys produce large overhead, and the imposed organization of search data structures

make this design less attractive for a distributed low-overhead storage system.

2.10 Reliability

Long term data permanence depends on reliable storage. Data storage reliability mod-

els are evaluated at different levels. Low-level storage depends on the storage medium technol-

ogy, permanence of materials, and failure modes based on physical changes. Single-node reli-

29

ability storage models including RAID [34] to handle single or double failures [36] when data

is stored using block-based device storage. Cluster-based reliability models like Ursa Minor

allow the use of flexible reliability models on a per-object basis [2] that address the heteroge-

neous storage requirements of file system content. Xin et al. have demonstrated that two-way

and three-way mirroring schemes optionally combined with RAID is sufficient to yield reliable

large storage systems of petabyte scale [172]. Distributed file storage that distributes encoded

file data, such as Rabin’s Informational Dispersal Algorithm [128] and OceanStore [82] allow

for reconstruction from m of n pieces, where m < n.

30

Chapter 3

PRESIDIO Overview

Our thesis is that a scalable archival storage system efficiently stores diverse data by

progressively applying large-scale data compression in a single storage framework to provide

better space efficiency than any existing storage compression method. The solution consists of

the following: a system that identifies similar and identical data, methods to eliminate redun-

dancy using one or more space-efficent storage methods, and a low-level content-addressable

storage system into which data is recorded. The degree of similarity between new data requested

for storage and previously stored data has a direct relationship on redundancy and therefore the

compression rate. Depending on similarity, different types of compression algorithms are eval-

uated in a progressive manner to maximize storage benefit while minimizing computational and

I/O cost.

We start this overview by presenting the Solution Overview, which describes the PRE-

SIDIO progressive redundancy elimination solution and its relationship to the Deep Store ar-

chitecture. Next, we describe a prototype implementation of PRESIDIO that was used to help

validate results to support our thesis. And last, we give a brief overview of our evaluation of

PRESIDIO and our main contributions.

31

3.1 Solution Overview

The PRESIDIO solution strategy is to apply progressively efficient data compression

methods that meet performance criteria over large volumes of data, using a single content-

addressable storage subsystem. The properties of data compression algorithms vary in many

ways: the granularity of identifying redundant data, the computational complexity of detecting

similar or identical data, the method to encode compressed data, and performance of the multi-

ple stages of compression. Some compression schemes may yield high reduction of used storage

with low space and time overhead, while others yield moderate efficiency beneifts with higher

overhead, we employ an algorithm to progress through a number of compression schemes to

find the most beneficial with the least cost.

Our data compression model expands on the generalized compression paradigm con-

sisting of a model and a coder: the model predicts or defines the probability of the source, and

the coder produces the code based on the probabilities. The application of this paradigm is

present in most high-efficiency lossless stream encoders, as well as a part of lossy compression

algorithms including JPEG, which incorporate lossless compression in a substage.

PRESIDIO differs from existing data compression models in the following ways.

First, the data compression uses a much broader context, which includes all previously stored

data within the archive. Second, because PRESIDIO is a hybrid compression algorithm, it

depends on multiple algorithms whose probabilities of detecting redundant data differ. Third,

codes that allow data reconstruction are very small compared to the large amounts of data that

are stored, leading to high rates of compression when redundancy exists. Fourth, in contrast

to many data compression formats, PRESIDIO virtual content-addressable (VCAS) storage is a

non-linear format that supports hybrid methods for reconstruction. Finally, because our solution

uses a hybrid compression scheme, the stages for compression and decompression are defined

32

by the PRESIDIO framework.

3.1.1 Large-Scale Data Compression

Our fundamental problem is compressing data on a large scale. Data compression

is a large area of research that has matured in a number of areas such as lossless compression

within streams, lossy compression for audio or video content, and compression of web/network

or disk based content. Data compression algorithms are as diverse as types of applications and

their output data. Data compression to reduce the redundancy existing in a large corpus is less

mature, but information theory applies to it as it does to small-scale data.

The general model of data compression consists of a model and coder [111]. The

model takes input data and rules that determine the codes to output. In stream compression,

the input is a serialized data stream of symbols. Encoding the data in a more compact form

reduces the space that is necessary to store the input data. Symbol encoding algorithms include

Huffman coding, in which symbols are assigned codes based on static or dynamic probabilities,

and arithmetic coding, in which probabilities of the occurrence of symbols are represented by

subdivisions of a fractional numerical space. Frequently occurring symbols are represented by

codes with fewer bits than infrequently occurring symbols.

Recent research and development in storage systems employ data compression [42,

125, 118, 40, 83, 163], but most literature published on data compression does not consider

inter-file compression.

For the purpose of discussion, we define inter-file compression as the process used

to eliminate redundancy across independently addressed objects. In addition, we use the term

large-scale data compression to include both inter-file and intra-file data compression.

We can consider the two forms of compression we will consider in our solution as:

33

• intra-file compression consists of two stages, the model and coder

• inter-file compression consists of four stages, the feature selection and resemblance de-

tection stages, followed by redundancy elimination and recording to disk

These two forms of data compression overlap in their operation. The model attempts

to identify symbols that can be re-encoded, and then the coder encodes the data. Likewise,

in inter-file compression, the feature selection and resemblance detection phases perform the

same function as the model: they identify and then detect (large) symbols. Once these symbols

are detected, then redundancy elimination will encode the data to eliminate duplication. The

encoding process ends once the data is recorded to disk.

Each method can be used effectively for different types of redundancy. The long re-

search history of stream compression has produced a wide range of space- and time-efficient

algorithms that are effective at reducing stream sizes. These algorithms have trade-offs in com-

pression and decompression speed as well as the rate of compression [170]. Likewise, inter-file

compression performance—in all dimensions—is subject to trade-offs. In order to best com-

press data in a large-scale storage system, we use a combination of these methods to provide

the highest reduction of storage with the lowest amount of space and time overhead.

Combining different forms of compression is useful. For instance, stream compres-

sion, which is restricted to examining and eliminating redundancy from the symbols seen within

a stream, does nothing to eliminate copies of the same stream or file. Likewise, suppressing du-

plicate storage of files does not compress data within the files. When possible, we maximize

complementary compression methods when it improves results.

The best strategy for efficiently storing different forms of compressed data is not

directly evident. A wide variance in behavior, for instance, the average size of a stored file

or object, or the amount of redundancy that exists in input files, can have significant impact

34

on the effectiveness of a storage system. When little or no redundancy exists in data, then

overhead should be minimized; otherwise it makes little sense to use a “compression” scheme

that increases storage usage. Likewise, if a storage system does not compress highly redundant

data well for a particular application, then cost will increase and customized compression will

be employed for that application. The development of a unified object storage mechanism will

improve the ability for an efficient archival storage system to record data for a wide variety of

data types and content.

3.1.2 Compressibility of Data

Data compression is data dependent, whether lossless or lossy. In lossless compres-

sion, the probabilities of the occurrence of characters, strings or other redundant data, depend

on the type of content. Textual documents consist of many characters occurring with different

probabilities, as well as words with non-uniform distribution and often as repeated substrings.

More structured documents whose contents are defined by a file format, such as word process-

ing documents, spreadsheets, and databases, use fixed fields, preambles, tables, and frequently

occurring codes that bear no relation to natural language. Other documents, such as digitized

analog data may consist of sequences of data that is noisy but may be compressed. Already-

compressed files and files with random data have little redundancy and high entropy. These are

some examples of reasons why there is high variability in compression rates of data written to

archival storage.

The wide variation of data probabilities makes it more difficult to engineer a single

efficient archival storage system to satisfy all types of input data. Our solution is to adapt using

progressive compression methods, based on the content of existing data. Before proceeding to

encode the input data, PRESIDIO uses several heuristic tests to determine the probability of

35

finding exact or similar data. When exact data is not found by using a fast hashing test, then

another test is applied. If highly-similar data is not found using a hashing test with finger-

prints, then another test is applied. And these tests are continued until they are exhausted or

certain performance thresholds are exceeded. In this manner, probabilities for high similarity

are progressively evaluated and discharged.

Once the tests for probability are evaluated, then coding (redundancy elimination and

recoding to disk) is performed.

3.1.3 Efficient Encoding of Data

Encoding of data is the stage of data compression to reduce the stored data by re-

taining smaller codes to represent the uncompressed data. Common codes may be static codes

like Huffman encodings, or they can be dynamically determined such that codes change their

meaning in the compressed data stream. Designing space-efficient codes is important for the

representation of data in lossless stream compression because they must be included in the

output; their size matters significantly.

Our solution uses content-addressable storage with strings of data that range from

hundreds of bytes to megabytes in size and are addressable by their content. Content addresses,

which are of fixed size in the range of 16 to 20 bytes, are small enough such they can be used

as references. A single content address can address an arbitrary amount of data. While content-

addressable storage exists today that suppress storage of duplicates, our solution also encodes

slightly different data with very low overhead.

The main themes employed within our solution are the following: using small con-

tent addresses, using low overhead to store data, and storing and reconstructing data indirectly

through a virtual CAS.

36

3.1.4 The Virtual Content-Addressable Storage System

Within our solution for storing data efficiently is a virtual content-addressable storage

(VCAS) system that addresses shortcomings in existing storage systems. File systems are pri-

marily designed to provide high performance read and write operations rather than high space

efficiency. For example, allocation blocks allow fast appends and updates, extents or sequen-

tial allocation of blocks improve streaming performance, and partial block allocation reduces

fragmentation. In addition, directories store collections of files with rigid metadata that do not

capture data properties that are necessary for archival storage.

Simple content-addressable storage, which stores full copies of instances, is not suf-

ficient for storing multiple forms of compressed data, either. CAS space efficiency depends

greatly on factors such as the average size of stored objects, the size of metadata—specified ex-

ternally by users or applications as well as internally by the CAS itself, the type of compression

methods being used, and most importantly, the level of redundancy in the data being stored.

The VCAS addresses the shortcomings of existing storage systems that arise when

a wide variety of data is recorded to disk. It does this by presenting a single CAS program-

ming interface, implementing a framework for storing and retrieving data polymorphically, and

recording both small and large content-addressable data blocks into a unified CAS. The fol-

lowing description of the VCAS outlines the virtual data representation and then the storage

operations.

3.1.4.1 Virtual Data Representation

The VCAS stores data virtually in a manner that is transparent to the larger archival

storage system. By doing so, the VCAS appears to be a standard CAS, but internally it stores

the content-addressable data objects more efficiently. This design solves a number of problems.

37

First, objects stored in the VCAS are addressed by content, as in a regular CAS. Ad-

dresses are computed by hashing the contents of the object being stored with a high probability

of uniqueness.

Second, objects are stored with little overhead. This permits the CAS to be used

with small objects. In some applications, small files will be stored. In other instances, efficient

storage methods in PRESIDIO may store sections or encodings that are smaller than the average

file. Low overhead also allows storing completely unique data without incurring the overhead a

regular CAS or file system would impose.

Third, the content address (CA) data type is small, on the order of 16 or 20 bytes, but

similar in size to other CAS systems. Because the CAs are used internally and externally, the

address size contributes to the storage overhead.

Fourth, objects are stored virtually. The storage and reconstruction processes use

simple rules to construct arbitrarily complex internal representations of the stored data. Vir-

tual storage is flexible enough to provide literal storage, i.e. traditional CAS operations where

single, raw or stream-compressed instances of objects are stored in their entirety, as well as sub-

divided sub-file chunks or delta-encoded storage. Content addresses are embedded within the

virtual representations; the VCAS interprets the virtual objects and the content addresses during

storage and retrieval operations.During a storage request, the VCAS converts input, or concrete

representations, into virtual CAS objects. During a retrieval request, the VCAS converts the

virtual representation back into the concrete representation. The VCAS offers other desirable

properties: the content address is used to ensure the integrity of the object, and the polymorphic

behavior allows the VCAS to be extensible to use other internal virtual representations.

Last, internal and external object metadata are stored using the same CAS as the

object content metadata. File metadata are stored as VCAS objects, as are internal data to help

38

the large-scale data compression methods.

3.1.4.2 VCAS Storage Operations

Our VCAS subsystem presents a simple external storage interface. The operations

are designed with a number of criteria in mind. They should be simple, so that specification,

implementation, verification, and accessibility far in the future are possible. They should be

flexible, to allow a variety of data and file formats to be stored and without limitations such as

those placed on metadata like filenames or on structure like singletons of flat files. And they

should be complete, to provide a round-trip guarantee that all data can be stored and that all

retrieved data is identical to the stored data.

The storage interface consists of operations on objects, such as files or file metadata,

that are addressed by content. The storage operations are:

• Store object

• Retrieve object

This simplicity in design is motivated by the need for long-term preservation. For

content-addressable storage of disparate types using different efficient storage methods, we

required a uniform storage interface. Toward the goal of long-term preservation, a simpler

specification and ease of implementation helps ensure that data written today from one client

system can still be read from a completely different client system in one, ten, or even a hundred

years. These operations form the basis for other storage and retrieval operations like storing

files with metadata.

Retrieving data from an archival store can be difficult if the encoding of stored data

requires complex interpretation, or if instructions are not self-evident or explicitly defined. Our

39

solution aims to outlive changes in computing and storage technology by combining a sim-

ple file storage and identification interface with an efficient storage mechanism that separates

the mechanisms to detect and eliminate redundancy from the data format and specification

to retrieve and reconstruct files from their component parts. An example of how even well-

intentioned archival digital data is fragile is evident in the attempt to recover and make accessi-

ble data from the Domesday Project of 1986, in which British life at that time was chronicled to

complement the original paper Domesday Book (c. 1086) [48, 28]. The multimedia presenta-

tion was recorded onto LVROM videodisc media designed for permanence of about 100 years.

Unfortunately, wear on the media and the obsolescence of the LVROM players shortened the

useful life of this digital artifact. More importantly, the software to present the materials was

not portable, limiting interpretation of the data itself. Consequently, the preservation effort aims

to emulate the combined hardware and software of the original Domesday system. Although

it is not the intent of our project to solve the problem of interpreting application content, our

solution aims to ensure that the data stored internally is easily interpreted and can migrate to

future systems.

The VCAS storage interface is intentionally designed not to meet certain non-goals.

Application- or user-defined inter-file relationships are not specified explicitly by any operation;

it is the responsibility of the storing application, which includes the filing programs that are

the analog of file systems, which provide directories and linkage, to store the relationships.

Internally, the VCAS creates inter-file relationships in order to reduce storage of redundant

data, but these relationships are not made visible to the client of the interface.

The storage operations and interface are described in more detail in Section 7.4.

40

3.1.5 PRESIDIO and the Deep Store Architecture

The Deep Store architecture consists of these primary abstractions: storage objects,

physical storage components, a software architecture, and a storage interface. We briefly de-

scribe each of these in turn.

Store

Retrieve

Store

Metadata

File

Archival
Storage
Interface

Content Analysis

Interfile/intrafile
Compression

Data placement onto
storage device

Archival
Storage
Service

Deep Store Client Deep Store Node

Retrieve

storage
buffer

content-
addressable store

Figure 3.1: The Deep Store archival storage system model

The primary storage objects presented to the archival store are the file and its meta-

data. A file is a single contiguous stream of binary data. It is identified by its content. A hash

function, such as MD5 [133] or SHA-1 [114] digest, is computed over each file to produce the

primary portion of its content address. File contents are stored as content-addressable objects,

devoid of any metadata. Simple metadata associated with the file, such a file’s name, length, and

content address, are contained within a metadata structure. The metadata can also be identified

by content address. Content-addressable storage (CAS) systems like EMC Centera store files

in this manner [42]. Section 7.3 discusses the use of file metadata in detail.

The primary unit for storage is a Deep Store storage node. Multiple nodes connect

over a low-latency/high-bandwidth network to make up a storage cluster. Each node contains a

processor, memory, and low-cost disk storage. Content analysis, which is absent from most

41

file systems, includes fingerprinting, compression, and data storage and retrieval; these are

necessary operations, but they must have high throughput to be practical.

While the additional processing of compressing data might reduce throughput, the re-

duction in stored data can also make a positive contribution to performance. Content analysis is

performed on silicon, and the performance growth rates for silicon-based processors and mem-

ories historically have been greater than the capacity and latency improvements of magnetic

disk. Considering the ever increasing CPU-I/O gap, this disparity implies a potential perfor-

mance benefit to effective bandwidth from the reduction of stored content—in other words,

compression can benefit I/O performance.

The software architecture is embodied in processes that execute on each storage node:

an archival storage service, a temporary storage buffer, a content analyzer, and a content-

addressable store. The archival storage interface accepts input using a common system interface

such as function interface, pipes, sockets, or WebDAV, all of which we have found to be suitable

for a simple client-server request mechanism. The storage buffer minimizes request latency;

our implementation stores the uncompressed content in a CAS. The content analyzer eliminates

redundancy and can also be used for extracting metadata. The efficient CAS stores content and

metadata alike.

3.1.6 PRESIDIO Hybrid Compression Framework

PRESIDIO is designed as a framework defining a storage model, efficient storage

methods, and an algorithm to combine the two. The heart of this storage system is the CAS.

Efficient storage methods are object-oriented classes that implement several operations on a

single piece of data: feature selection, resemblance detection, and redundancy elimination. The

storage methods also perform the two parts to write and then read the data. To record the data,

42

a storage object is represented as a virtual object; the virtual object describes itself as a series

of actions to encode itself using the CAS. To reconstruct the data, the self-describing virtual

object describes the steps to reconstruction. The instructions are defined as concatenations of

other stored CAS objects, delta-compressed CAS objects, stream-compressed data, or just raw

bytes.

To determine the most desirable efficient storage method, the PRE algorithm itera-

tively applies feature selection and resemblance detection to a candidate file to compute a rank-

ing based on the estimated storage efficiency. Once all ranking has been completed, the most

efficient method is used to record the object. Because the most efficient storage methods vary

based on the content and estimated storage efficiency, more than one method can be applied to

a file, thus creating a hybrid compression storage mechanism within the PRESIDIO framework.

3.2 Prototype Implementation

We have implemented a prototype of PRESIDIO that demonstrates the ability of our

solution to eliminate redundancy progressively within an experimental VCAS and efficient stor-

age method framework.

3.2.1 Feature Selection

Feature selection is performed using a variety of data fingerprinting methods. Feature

sizes range from tens of bytes, in the case of shingling over sliding windows, to entire files,

in the case of whole-file hashing. We have implemented a flexible Rabin fingerprinting library

in C++ for this purpose. It has been improved for sliding windows on byte boundaries and

feature selection over sets of fingerprints to make it perform close to the bandwidth of disks.

Appendix A provides implementation details and some technical details we found important to

43

our work.

Other feature selection methods like whole-file digests are readily available. We se-

lected pre-built executables like md5sum or libraries like libopenssl for their availability and

conformance to specifications.

3.2.2 Similarity Detection

We experimented with similarity detection first using standalone executable programs

such as chc (Chunk Compression) and dcsf (Delta Compression between Similar Files) to de-

termine their efficacy, then later bringing the similarity detection algorithms into the PRESIDIO

application.

The hash-based storage and retrieval was implemented using the Berkeley DB Data-

base [149, 144], a multipurpose embedded database storing key-value pairs in linear hash and

recno (record number) databases. Similarity detection by matching fingerprints and superfin-

gerprints was also performed by storing feature sets, or sketches, and using inverted term lists

to find similar data.

3.2.3 Virtual CAS

The Virtual Content-Addressable Store was implemented as a C++ framework with

multiple object-recording implementations: a file-based CAS in which VCAS objects were

stored individually as files in a directory, a Berkeley DB hash database in which objects were

stored as values, a Berkeley DB recno in which objects were also stored as values, and a hybrid

Berkeley DB hash database mapping Content Addresses to recno entries in a second database,

and a large-block file storage.

The polymorphic design of the VCAS allows different implementations to be used

44

simultaneously for different purposes. For instance, the file-based CAS is sufficient for small

numbers of files when used in the storage buffer shown in Figure 3.1, but the hybrid CAS is

used to meet the requirements of storing large numbers of files in the content-addressable store,

also shown in the same figure.

3.2.4 Redundancy Elimination Framework

The Efficient Storage Method (ESM) framework is the other major component to

PRESIDIO. Within it, multiple methods such as whole-file hashing, chunking, and delta com-

pression between similar file are applied to data to compress it. More than one ESM may be

used to detect and then to eliminate redundancy. A second part of this ESM framework is the

selection algorithm. The PRESIDIO algorithm chooses the best method based on the data, per-

formance constraint, and probability of redundancy. Combined together, these parts assemble

to form the PRESIDIO CAS.

45

Chapter 4

Identifying Data

In this chapter we describe the methods for identifying data using features, data fin-

gerprinting, and feature selection. These content analysis tools are used to help identify similar

and identical data within a large corpus. The organization of this chapter is as follows. First,

an overview defines a number of terms used in data fingerprinting and the feature selection pro-

cess. Second, we describe what features are, followed by a survey and brief analysis of hashing

and fingerprinting algorithms we use in our solution. Third, we enumerate and detail the feature

selection algorithms we use. Fourth, we present the main feature selection methods used within

our solution. We close with a summary of feature selection.

4.1 Overview

Efficient archival storage requires tools to help identify and then eliminate redundant

data. Identification of similar and identical data relies on hashing, fingerprinting, and digest

algorithms that make it possible to deterministically compute an identification value for a range

of data into a much smaller fingerprint.

46

We start with a few definitions to help unify concepts used within our storage com-

pression framework. We define feature data as a substring of data—a contiguous sequence of

bytes of non-zero length. It may be a proper substring or the entire contents of a file. Each fea-

ture data region, the starting and ending positions bounding the feature string data, may overlap

with other feature data regions, or they may be distinct. Storage objects include files, variable-

or fixed-sized blocks from a file, or other content including metadata. From these objects, we

compute features to identify them. Features are fingerprints of feature data. Fingerprinting

computes a hash, or fingerprint, over a feature string with the usual hashing property of provid-

ing a much smaller name for an object with low probabilities of name collision. A collection

of features (fingerprints) forms a feature set. Operations on feature sets are desirable because

they can compute approximate similarity metrics between files that are highly correlated with

similarity operations between files without re-reading contents of files, dramatically reducing

computation. This heuristic approach works well over large data sets when direct comparison

would be infeasible. Feature selection, also known as feature extraction, is the process of de-

termining a characteristic set of features. An underlying theme in our experiments has been

the wide variety of data that are stored as archival data, but finding a single type of feature that

can apply to all data is challenging. Large numbers of smaller features and content-dependent

features such as text extraction improve resemblance detection, but they can increase storage

overhead or may not apply to other classes of data.

Figure 4.1 illustrates the relationships between the algorithms and objects that are pro-

duced during the feature selection process. The foundation includes simple bit-string hashing

and data fingerprinting algorithms. Variable-length subsections of files can also be used as con-

tent from which to compute features. Shingling methods compute fingerprints from overlapping

(sliding) windows over content.

47

The bottom row lists the main features we use: digest, chunk digest, chunk lists,

sketches, and superfingerprints. Digests are hashes computed over arbitrary binary strings such

as whole files. Chunk digests are the same, but computed over chunks, or subsections, of

files. Chunk lists are concatenated identifiers to chunk data; the identifiers are usually chunk

digests. Sketches are summary collections of identifying data, like data fingerprints, selected

deterministically from a larger set of fingerprints; in addition to identifying data, they can be

used to compute a similarity metric. Sketches that are serialized into a stream of data can also

be used as input to a fingerprinting function to compute superfingerprints.

Feature Selection

Efficient Storage Methods

Content-Addressable Storage

Redundancy Elimination

Similarity Detection

chunk digest

hash retrieval

digest hash

retrieval

fingerprinting

bit string

hashing

shingling

chunk

divisions

super-

fingerprint

similar files-

super

fingerprint

(SF-SFP)

similar files-

fingerprint

(SF-FP)

chunk digestdigest

intra-file

compression

inter-file

compression

delta

compression
hybrid delta

compression

duplicate

suppression

delta compression

between similar files

DCSF-SFP

delta compression

between similar files

DCSF-FP

chunk CAS

CAS Virtual CAS

whole-file

CASstream

compression

chunk digest

chunk digest

hash retrieval

chunk CAS

abstract

concrete

instance

reference

Relationships

concept

uses

chunk lists sketch

data algorithm

Figure 4.1: Fingerprinting methods used for feature selection

48

4.2 Features

Features are properties that identify and distinguish data. We differentiate between

feature data, the original binary data, and (computed) features, the features computed from the

feature data. Developers arbitrarily design features for their purpose, and usually based on the

content and by design constraints. In our work we have chosen to use the least constrained, most

general content-independent algorithms operating over arbitrary binary data when possible so

as to apply features to a wide range range of problems.

When the format and contents of data are known a priori, features that yield higher

quality metrics are possible. For example, information retrieval and web search systems use

human-readable words extracted from content to determine features made up of words, word

bases, sentences, word sequences, as well as numerical or hash representations for those words.

Metadata, both manually or automatically generated, are also used as features. These include

tagged data, filenames, keywords, and time stamps.

If such a wide range of metadata and feature types are available, why do we not

use them? Semantic feature computation and selection algorithms that require knowledge of

the data encoding have several shortcomings for the purpose of storing data efficiently. First,

the content types must be well-specified. Data encoding standards exist, but they change or

update relatively quickly, making it difficult to predict what features used today will be used in

the future [135]. A striking example is the common conception that PDF (Portable Document

Format) is suitable for archival use; however, work on the archival PDF/A standard is only

in progress now [85, 119, 74, 73]. Second, interpreting content implies ensuring algorithmic

permanence in addition to data permanence—in other words, semantic interpretation of the data

must be possible well into the future when data is read, and not at present when it is written. This

is a difficult problem that is well outside of the domain of our problem [91, 92]. Third, searching

49

over the stored data is a different problem than identifying data for data compression. Current

indexing and retrieval techniques differ based on content type. For example, text searches that

use inverted file indexing [170] or PageRank functions [10, 9] require low latency—not high

throughput or space efficiency—and serve the purpose of searching for arbitrary user queries.

The goals for storing data efficiently and searching semantic content are different,

but not mutually exclusive. Instead of incorporating them into a single system, we defer the

design of content-sensitive selection and search mechanisms to higher levels of the system and

focus our solution on the problem of storing data efficiently. We spend the rest of this chapter

describing content-independent feature selection algorithms.

Figure 4.2 illustrates some examples of different types of feature data that can be

found in files. File content and length are shown as long horizontal rectangles. The shorter

rectangles—contiguous regions of data within files—represent substrings of binary data, which

represent individual feature data. Operations on feature data such as testing for equality are

unwieldy so strategies for identifying the data in a more compact form is essential for improving

performance. The primary type of feature we use is fingerprints, which are hashes computed

from the features that are the file contents. Fingerprints, which are small and of fixed size, easily

identify large amounts of data uniquely enough.

The meaning of features may be implied by context. For example, fingerprints used

in the rsync program to determine substrings can be considered features, but they exist within a

context, namely the comparison between two files that are known to have an existing relation-

ship. We will discuss the differences across these features in more detail later this chapter.

Features may also be inferred. For instance, data clusters reveal certain features that

may only exist when they are in collections. Machine learning algorithms may also extract

features from serial data that is analyzed over time.

50

C21 C22 C23 C24 C25 C26 C27

C28

B11 B12 B13 B14 B15 B16

B11 B12 B18 B19 B20 B21

Dividing files into variable-sized chunks

F1

Shingles, w = 4 bytes

Dividing files into fixed-sized blocks

F1

Whole-file hashing

F1

F1

F2

F1

F2 C21 C22 C23 C25 C26 C27

F1
S1

S2
S3

S4

S5
S6

S7
S8

Figure 4.2: Examples of file features

In order to minimize dependencies across a very large system, our design uses strictly

deterministic feature computation and selection, i.e. computing and selecting features is purely

algorithmic and not dependent on data already stored in the system. Independence across a

distributed system allows it to operate without interaction, thereby improving the opportunities

for scalability. Feature selection that is independent of existing data may offer performance

benefit within a single storage machine by avoiding extra I/O due to data retrieval before data

storage.

51

4.3 Hashing and Fingerprinting

Two of the most important tools we use for identifying content are hash tables and

hashing functions. In order for our storage system to manage large volumes of data in the

range of petabytes to exabytes, we first use unique identifiers based on content and then store

them using hashing data structures. This content-based addressing strategy meets the following

deisgn requirements:

• identifying data deterministically with no prior knowledge

• high probability of identifying identical content

• low probability of mis-identifying non-identical content (false positives)

• low computational complexity finding similar data in a storage system

• computing data identifiers is efficient

Hashing is the method we use to represent arbitrarily large strings of binary data as

smaller strings that meet these properties. An arbitrarily large sequence of n bits is concatenated

to form a bit string, equivalent to a byte string of n/8 bytes.

A hash function maps the space of bit strings into the space of hash values. The

space of all possible permutations of that bit string is 2n. A hash function produces hashes or

hash identifiers, which are much smaller bit strings. Our solution uses hashes of fixed length

m, whose value is typically tens to hundreds of bytes. Thus, the hash function maps the space

of permutations 2n into 2m possible values. Because m� n not all possible bit strings can be

represented unambiguously. But when m is 128 or larger, the range of 2m hash values is large

enough to uniquely identify data with high probability. Hash functions are designed to avoid

collisions—duplicate hash values for different inputs—with any change in input.

52

We seek to produce evenly distributed hash results regardless of the input. For a

fixed fingerprint size, Rabin fingerprinting by random polynomials defines easily tested criteria

(irreducible polynomials) for creating functions for the size. For each size, the set of Rabin

fingerprinting functions forms a universal class of functions, from which a function may be

selected at random. Carter and Wegman have shown how random selection in universal hashing

avoids biased hash results [31, 161].

Broder narrows the definition of fingerprinting [11] from the more general univer-

sal hashing. In (universal) hashing, n, the number of distinct objects, is a fraction of the total

number of possible fingerprints 2k, whereas in fingerprinting, n� 2k. In other words, finger-

printing relies on the low probability of collisions to achieve near-uniqueness, whereas general

hashing often assumes hash collision is common enough to design hash tables around collision

resolution algorithms such as open hashing.

Maximizing I/O performance in storage systems is always a goal. Modern computers

and storage systems bypass the CPU by using direct memory access (DMA); data is transferred

directly between primary memory (RAM) and secondary storage (disk). When we introduce

content analysis like fingerprinting into the storage pipeline, storage bandwidth is reduced, so it

is important to use hashing functions with very low computation complexity.

4.3.1 Collision Properties

We rely on low collision rates for identifying data; when evaluating content-address-

able storage for identifying blocks with probabilistic uniqueness, it is important to consider how

it affects the design of the storage system. We discuss content address size and collision rates

in detail in Section 7.2.1.1.

53

4.3.2 Digests

Functions that accept variable-length strings are often called message digests to reflect

the summarizing effect of the hashing process. Digest functions include Rabin fingerprinting

by random polynomials, string hashing in the Karp-Rabin string matching algorithm [76], Pear-

son’s Fast Hashing of Variable-Length Text Strings [120], and cryptographic hash functions like

MD4 [132], MD5 [133], SHA-1 [113], SHA-256, SHA-384, and SHA-512 [114].

Digest functions hash the contents of files into small digests in the range of tens of

bytes. Most digest functions that are used today for fingerprinting large blocks of data are one-

way hashing functions or cryptographic hashing functions. The main reasons for this practice

appear to be consistency, availability, and performance, and not necessarily their security prop-

erties. Digests must be well-specified for cryptanalysis, and implemented and deployed widely.

And because cryptographic functions often are used in high-bandwidth applications, they must

exhibit high throughput.

4.3.3 Rabin fingerprinting

Rabin fingerprinting by random polynomials is useful for hashing and fingerprinting.

It has been popular with high-bandwidth networking and disk-storage applications for many

reasons [11, 127]. The most important properties that apply to our solution are

• efficient computation of fingerprints over sliding windows

• improved performance by precomputing tables for byte- and word-level operations

• availability of a large number of randomized functions that can be used for feature selec-

tion

54

Broder identified other desirable properties such as the ability to compute fingerprints

over two concatenated strings as a function of the fingerprints of the two strings. This permits

parallel computation of subsections of a large file, unlike some cryptographic functions like

MD5 and SHA-1, which compute chained results.

There are a few shortcomings to using Rabin fingerprinting, none of which signif-

icantly affect the quality of the fingerprints when they are used over random data. See Ap-

pendix A for details. However, from an implementation standpoint, there are no existing speci-

fications so at best de facto standards are established by implementation.

4.3.3.1 Toward a Specification

We have found that the lack of specification revealed differences in several imple-

mentations, including those used in the Low-Bandwidth File System (LBFS) [110] and the

Microsoft Research implementation [99]. At least these parameters should be specified:

Conventions required in a Rabin fingerprint specification

• size of the polynomial and fingerprint

• bit ordering of polynomial and fingerprint

• byte ordering of polynomial and fingerprint

• bit ordering (which bit is highest coefficient within a byte) of data

• byte ordering (which byte is highest within a word) of data

Parameters in a Rabin fingerprinting function that will change hashing properties

• irreducible polynomial (i.e. polynomial coefficients)

55

• degree of the polynomial

• fingerprint for the “empty string” (or equivalently, a bit string prefix for all strings)

Conventions used in our application of Rabin fingerprinting During our implementation,

we observed the effects of these conventions and parameters on the functions. We selected the

following conventions; Appendix A provides a more detailed description.

• polynomials of degree 32 and 64, and fingerprint representations of 32 and 64 bits, re-

spectively

• all polynomials of degree 32 were monic in the highest degree; in other words, a polyno-

mial of degree 32 would have a high-order coefficient of one, resulting in x32 + · · ·

• big endian bit and byte ordering of data to the string to be fingerprinted

Our choice to use big endian was somewhat arbitrary, but we decided it was easier to

understand the implementation by observing bit values stored in bytes so that low-order

memory represented high-order polynomial coefficients.

• big endian bit and byte ordering of the irreducible polynomial used in the fingerprinting

function and also in the fingerprint itself; we use the same convention for both cases

The irreducible polynomials used in the fingerprinting must be selected once and used

for all data. To do this, we wrote a program to test for irreducibility described by Rabin [126] us-

ing an pseudo-code algorithm from Chapter 2 of the Handbook of Applied Cryptography [102].

To ensure a high degree of randomness, we first generated a 32-bit (or 64-bit) pseudo-random

number to represent the lower 32 coefficients of the polynomial, and then tested the polynomial

for irreducibility.

56

4.3.4 Strong and Weak Hashing

We use hash functions in two distinct ways: strong hashing to uniquely identify vari-

able length data across the storage system, and weak hashing to identify smaller strings using

smaller hash identifiers with lower probability of uniqueness. We adapt the notion of strong and

weak hashing from Tridgell’s PhD thesis on rsync [164].

Strong hashing is used to identify large blocks of data, including whole files, to pro-

duce an identifier that uniquely identifies that object by its content. We define the computed

hash of the content as its content address. Hash identifiers are represented as bit strings large

enough to be probabilistically unique over all the data. Identifier sizes of at least 128 bits (16

bytes) are used for this purpose. The advantages to strong hashing are the high speed of many

implementations, but more importantly allow exact duplicate data to be detected with extremely

high probability and non-matching data to be detected positively.

In addition, cryptographic or one-way hash functions, which make undetectable mod-

ification of content difficult and that also have high throughput, are attractive algorithms for

improving the tamper-resistance of immutable data.

Weak hashing in the form of fingerprinting is used to identify smaller regions for

many reasons. These hashing regions are smaller than stored objects, and identify data with the

assumption that small contiguous regions are more likely also to be present in similar files than

not. We will describe how fingerprints over smaller regions are used to identify similar data.

Our solutions use weak hashing in the following ways:

Shingling An algorithm to compute fingerprints over small, overlapping regions in a file.

Chunking A technique to subdivide files deterministically so that two independent processes

produce identical subfile boundaries for identical files and nearly identical division points

57

weak hashing strong hashing
collision resistance yes yes
pre-image resistance no yes
weak collision resistance no yes
efficient over sliding windows yes no
randomized hashing functions yes no

Table 4.1: Requirements for weak and strong hashing properties

for similar files.

Feature selection A method to select a set of features (often fingerprints over shingles) using

a randomized algorithm.

Superfingerprints A fingerprint over multiple fingerprints.

4.3.4.1 Useful Hashing Properties for Feature Selection

We make the following distinctions between these two forms of hashing, as shown in

Table 4.1

If an input string is A, the hashing function h computes the hash value a: a = h(A).

Hash functions always determine inequality, so if h(A) 6= h(B) then A 6= B. The opposite is

not true of hash functions, however the required collision resistance property is satisfied if the

probability h(A) = h(B) is very small if A 6= B.

The pre-image resistance property is required of one-way and cryptographic hash

functions: if the hash value a is known, then it is computationally difficult to find the input

string A. Historically, it has been difficult to ensure this property over long periods of time as

computing power have enabled brute force attacks and cryptanalysis have rendered many digest

functions as flawed or less secure than anticipated.

Another cryptographic property, weak collision resistance, is satisfied when it is com-

58

putationally difficult to determine a different input which will hash to the same value, i.e. it is

difficult to find A′ such that h(A) = h(A′). It has recently been shown that this property is more

vulnerable in functions such as MD4, MD5, HAVAL-128 and RIPE-MD in which hash colli-

sions were discovered [166]. However, this property remains important to archival storage—

probably more so than pre-image resistance—and guards against tampering of immutable data

by assuring that once data is recorded and then a strong hash is computed, it is difficult to

modify the data without invalidating the hash.

There are also properties that distinguish weak and strong hash functions in practice.

Computing hash values must be efficient over sliding windows to provide high throughput when

analyzing large volumes of data. Cryptographic hashes often use minimum block sizes and pad

small strings, which are typically the case of sliding windows, thereby dramatically reducing

efficiency. Also due to their cryptographic nature, they are unable to update a hash dynamically

by introducing data entering the window and removing the effect of the data leaving the win-

dow. In contrast, some hash functions like Rabin fingerprinting by random polynomials will

incrementally compute hashes over sliding windows with low overhead.

Finally, the randomized hash functions property can be used for feature selection. To

select a randomized hash function, first a hash function is selected at random once and then fixed

thereafter. In the case of Rabin fingerprinting, random polynomials are generated and then the

polynomials are tested for irreducibility. The result is a new hashing function that will emit a

different set of hash values for a set of input than another randomized fingerprint function using

a different polynomial. The randomization improves the probability that no two functions will

produce similar results over any set of input.

59

4.4 Feature Selection

Feature selection is the first major step for identifying identical similar data and for

naming objects for content-addressable storage. In a manner similar to the way data compres-

sion algorithms identify strings and tokens, feature selection defines the rules for feature strings

that are fingerprinted into features, and the algorithm for selecting the features to be retained.

In the following sections, we describe and analyze several feature selection algorithms

for both cases of identifying identical and similar data.

4.4.1 Common Properties of Features

A stored object, whether it is a file or a sub-file region, can contain an arbitrary number

of feature strings. Feature selection defines two things: the feature strings to be fingerprinted,

and the feature selection algorithm for retaining fingerprints. In some cases, the feature set

may be small; for instance a file digest would compute one feature over a feature string that

is the whole file. In other cases, the number of features that are computed is very large, as is

the case in shingling. Retaining all computed features is not always practical, and as described

below, is not necessary for the purpose of approximate similarity metrics; therefore the selection

algorithm plays an important role in determining feature set quality.

A feature set may contain multiple instances of features. An instance when this would

occur is when randomized functions select two features representing the same feature data

twice. We sometimes speak of features as both the feature string, as well as the feature fin-

gerprint. The literature mixes these terms also, for instance “shingles” sometimes refers to the

literal substring and at other times the fingerprint of the shingle.

Feature sets are stored as a representation of stored objects. There are several reasons.

The first is that we assume immutable data, so once the features are computed, there is no need

60

to update them. The second is that computing and selecting features can be I/O and CPU

intensive. The third is that fingerprints are much smaller than the data they represent, so the

additional storage overhead is small.

4.4.2 Whole-File Hashing (Message Digests)

Whole-file hashing computes a hash value by using the entire contents of a file as the

feature string to produce a single feature. It is identical to computing a message digest. The

hash function can invertible or cryptographic (non-invertible). Invertible functions, like Rabin

fingerprinting by random polynomials or the Karp-Rabin hashing function, make it very easy to

tamper with the contents of objects while preserving the hash value. In contrast, cryptographic

hash functions are designed to make tampering much more costly, if at all possible. Hash

functions can produce variable sized hash values, but usually they are designed to produce fixed

size values.

Within archival storage, the main goal of whole-file hashing is for storage clients and

servers to produce a content address, an identifying machine-readable name for a file. Using

whole-file hashing conveniently solves several problems: immutable file data is identifiable by

content address; content addresses are very small (for instance 16–20 bytes) to reduce identifi-

cation metadata; and hashing can be used to locate a file object in a flat namespace instead of

traversing directories or other search domains, suppressing storage, and minimizing or elimi-

nating data transfer by using content addresses instead of file file contents.

Whole-file hashing still exhibits several problems. The first is that file data must be

immutable, otherwise the hash is invalidated. Second, hash functions do produce colliding

results, making it possible for a file not to be stored because the write operation was suppressed

on account of the apparent existence of the file’s hash value for a different file [60]. Third,

61

hashing requires computation that may affect performance.

Furthermore, cryptographic hash functions may not stand the test of time. Many

functions have shown weaknesses over time either due to analysis that reveals problems, or

because computing power in the future will allow brute-force attacks on algorithms designed in

the past. Archival storage systems that assume today’s hash functions are secure may become

vulnerable eventually.

4.4.3 Chunk Features

Chunking subdivides files into variable-sized blocks. Chunking divides files deter-

ministically into variable-sized chunks of which single instances are stored. The technique first

used in the low-bandwidth file system (LBFS) [110] divides files deterministically into chunks

and then identifies chunks by hashing their contents.

We use two algorithms for chunking to solve two problems. First, a data stream, such

as a file, needs to be divided into chunks in a deterministic way. We consider the general case

of variable-sized chunks, which works for any type of data, including binary formats. Second,

the feature content—data within a single chunk—is used as input to compute chunk features.

Dividing Files Into Chunks Chunk boundaries are defined by calculating some feature (a dig-

ital signature) over a sliding window of fixed size. In practice, we use Rabin fingerprints [127],

for their computational efficiency in the above scenario. In Figure 4.3 the file stream is rep-

resented by the longer horizontal rectangles, and chunk boundaries are indicated by the short

vertical lines. Boundaries are set where the value of the feature meets certain criteria, such as

when the value, modulo some specified integer divisor, is zero; the divisor affects the average

chunk size. Such deterministic algorithms do not require any knowledge of other files in the

62

chunking parameter
w constant-sized window
m minimum chunk size
M maximum chunk size
d expected chunk size
r residue (fingerprint mod divisor)
RFsize degree of Rabin fingerprint (bits)
RFpoly random irreducible polynomial
CIDsize size of chunk ID hash (bits)

Table 4.2: Chunking parameters

system. Moreover, chunking can be performed in a decentralized fashion, even on the clients of

the system.

 sliding window

window size

chunk size

chunk end/start

Rabin fingerprint size

m, d, M

w

chunk ID size
CID size

Figure 4.3: A graphical representation of chunking parameters

Chunk size distribution depends on several factors, but most notably d, the divisor.

Typical distribution of chunk sizes varies whether the content is structured content, such as

binary content in PDF files, or if the data is purely random. We evaluated two different data

sets: a single file, 100 MB (100×220) containing random bytes; and a tar file containing mostly

unique PDF files, total size 238.7 MB (754 files with the following size statistics: mean 324.1

KB, median 124.4 KB, standard deviation 783.2 KB). Parameters m = 64, M = 16,384, d =

1,024 bytes.

63

chunk size distribution

-

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

10 100 1,000 10,000 100,000

chunk size

b
y
te

s
 i

n
 c

h
u

n
k
s

PDF data set Random data

Figure 4.4: Chunk size distribution

Figure 4.4 is a histogram showing the distribution of chunks weighted by their sizes

(horizontal axis) and the total number of bytes stored for chunks of that size (vertical axis). The

distribution is representative of a wide variety of file types. The sum of the height of all points

is equal to the total number of input data.

Two data points in the PDF group are particularly interesting. The first is the point

located where chunksize equals 1,580 and the bytes in chunks stored is 1,549,766. This point

represents a highly replicated chunk whose size is within the interval [1580, 1589] or approxi-

mately double the number of adjacent chunks of similar size. This tends to indicate a particular

pattern that is commonly written in the data stream, either part of the tar file format or within

64

the PDF file format itself. The other data point is at M, or 16,384 bytes, a sum of the tail

distribution.

cumulative distribution of bytes and chunk counts, by chunk size

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 1,000 10,000

chunk size

Random data, chunk count (%) PDF, chunk count (%) Random data, bytes (%) PDF, bytes (%)

Figure 4.5: Cumulative chunk size distribution

Cumulative distributions of chunks by their sizes and counts and by their sizes and

total storage are shown in Figure 4.5 for the same two data sets, Random and PDF. The cumu-

lative distribution for both data sets is nearly indistinguishable, both for the number of chunks

on the upper cumulative distribution curve, as well as the number of bytes occupied by those

chunks, on the lower curve.

Note that although the divisor is 1,024 bytes, the median size of chunks is smaller,

approximately 760 bytes at 50%, and total chunk storage (approximately 1,760 bytes at 50%)

is larger than what is commonly expected. The expected distribution is also affected by the

65

lower and upper chunk size thresholds. Our analysis, explained in later sections, was limited

to evaluating divisors for their efficiency and not with the goal of setting a particular expected

median chunk size. However, future analysis may be of interest for system designers who are

designing chunk storage based on size distributions.

Identifying Chunks An algorithm that computes a digest or a hash function over a variable-

length block of data is sufficient to compute the chunk’s feature, which is exactly its content

address, a probabilistically unique identifier. Although functions such as MD5 [133], SHA-

1 [113], or newer SHA standards [114] (128-, 160-bit, and larger cryptographic hash functions,

respectively) would be more suitable for a production system where very low probabilities are

required to help ensure global uniqueness, our prototype computes block hashes using Rabin

fingerprints of sufficient degree to satisfy chunk uniqueness within the corpora that were eval-

uated. To evaluate the storage efficiency using a larger chunk identifier size we only need to

account for the instances of identifiers that were stored and reevaluate the storage used by them.

4.4.4 Block-Based Storage

Block-based storage, or fixed-size chunks, is a degenerate case of chunk-based stor-

age. The chunk division algorithm is trivial: it simply determines the file division at constant

intervals from the start of the file. Chunk identification is unchanged. The drawback to this

method is that data inserted into or deleted from a block (other than the block size itself) will

prevent any data following the modification to be identified due to the misalignment of feature

data.

66

4.4.5 Shingling

To compute a complete feature set for a file, we compute fingerprints over shingles.

Shingles are overlapping substrings, Wi within a file of length s with a fixed length w. The file

length is s bytes in length, resulting in s−w+1 shingles, 0≤ i < s−w+1. The window (shin-

gle) size is fixed, for example 30 bytes. Each shingle (substring) is fingerprinted fshingle(Wi).

Rabin fingerprinting by random polynomials [127] is commonly used for shingling [15, 46],

using a fingerprint size such as 32 bits to avoid collisions across millions of objects.

Computing, collecting, and creating a subset from all features would use a large

amount of temporary space, so we use min-wise independent permutations [13, 14, 46] to in-

crementally select features as we fingerprint shingles. This involves the use of a fixed set of

k unique and randomly selected irreducible polynomials, each of which is used to fingerprint

the shingle fingerprint. After each shingle fingerprint fshingle(Wi) is computed, k Rabin finger-

prints are computed, fselection j(fshingle(Wi)),0 ≤ j < k− 1. For each j, we retain the minimum

fselection j(fshingle(Wi)) and its corresponding shingle fingerprint, fshingle(Wi). Upon completion,

the minima are discarded. The resulting feature set is called a sketch. Resemblance between

two sketches is simply the number of matching features divided by the total number of features.

Sketches are formed by deterministically selecting features from a large set. The goal

of selection is to use randomized functions, one per element in a feature set or vector in position

j, so that the selection function for each position j is independent of other randomized functions

in other positions. Functions fselection j are preselected once and applied throughout, and the

shingles are computed deterministically. As a result, it is trivial to compute the minimum integer

representation of shingle fshingle(Wi) from the value of fselection j and then select and retain this

value. We use the arbitarily chosen minimization function, but any other selection functions

used consistently would provide similar behavior.

67

4.4.5.1 Sliding Window

The most efficient shingling parameters are a tradeoff, and depend on the type of

data. We experimented with window size, w, from 8 bytes to 256 bytes, and determined that

the overall compressed size from the delta compression between similar files algorithm (DCSF)

varied slightly, but for each data set there was a minimum. Our experiment used ten versions

of the Linux kernel source code, versions 2.4.0-2.4.9, 88,322 files, 1.00 GB in size. Figure 4.6

displays the number of files matched by DCSF for each number of matching features. We set

a low matching threshold to 1 of 16 fingerprints, with a sharp peak at 2 of 16. The even larger

peak at 16 of 16 matching features is due to the highly similar data set of related text source code

files, at 75,524 matching files (w = 8) down to 72,567 (w = 256). This “bathtub curve” indicates

that many files exhibited high resemblance and also that many other files were compressed that

had little, but non-zero, resemblance.

As one would expect, small window sizes (e.g. w = 8) allowed DCSF to match

files across the spectrum of resemblance, so the low-resemblance peak was lower and mid-

resemblance was higher. Conversely, large window sizes decreased matches in the mid-range

(4–14 of 16 features matching).

While the difference in granularity (and coverage) varies, there are two other effects to

be noticed. First, the cumulative distribution of files matching above all possible resemblance

values in Figure 4.7 indicate the gradual nature of matching ability of fine grained windows

(w = 8). The second, and more important result, is that the total storage, namely the rightmost

points for all values of w, is nearly identical. For highly-resembling data, the window size does

not have significant impact on compression rate.

Figure 4.8 illustrates this point as well. The edge on the upper right represents the total

amount of data stored across all resemblance. The slight inflection reflects favoring window

68

DCSF file count by resemblance

0

1,000

2,000

3,000

4,000

5,000

6,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

resemblance (matching features)

fi
le

s

w=8

w=16

w=32

w=64

w=128

w=256

Figure 4.6: DCSF filecount by resemblance and window size of highly resembling data, Linux
2.4.0–2.4.9 kernel source; (72,567 to 75,524 files at 16 of 16 matching features)

window size (bytes) w = 8 w = 16 w = 32 w = 64 w = 128 w = 256
bytes (1000s) 47,729 47,298 47,015 46,864 47,016 47,575
% over best 1.845% 0.925% 0.321% 0.000% 0.324% 1.517%
% of uncompressed 4.426% 4.386% 4.360% 4.346% 4.360% 4.412%

Table 4.3: DCSF compression based on window size (1,078,315,981 bytes input)

sizes around w = 64. Table 4.3 and Figure 4.9 list the the compressed sizes (less than 4.5% of

the original input), and the variation across the window sizes is less than 1.85%.

Other data sets also exhibit similar variations, with optimal compression ranging in

the range of 16–128 bytes. As is the case with selecting chunk size divisors, no single parameter

works best across all data sources. More importantly, a single window size must be selected for

69

DCSF size, cumulative Linux 2.4.0-9 source

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

resemblance (# matching features)

b
y
te

s

w=8

w=16

w=32

w=64

w=128

w=256

Figure 4.7: DCSF cumulative file count by resemblance and window size

all data in order to compute features deterministically; fortunately, for window sizes within this

range the data compression rates do not vary significantly.

4.4.6 Superfingerprints

One refinement to further summarize the sketch is to compute superfingerprints, or

fingerprints of features. Superfingerprints are fingerprints of a fixed number of features [15]. For

example, let the string SF0 be the concatenation of fshingle(Wi),0≤ i < l. Then fsuper0(SF0) is the

first superfingerprint, fsuper1(SF1) the second, and so on. Figure 4.10 shows the how superfinger-

print S0..3 is simply a fingerprint with input string of concatenated fingerprints fshingle(Wi),0 ≤

i < 4. This reduces the sketch size by a factor of l. Because the features are independent, a sin-

70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

w
=

8

w
=

3
2

w
=

1
2
8

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

40,000,000

45,000,000

50,000,000

b
y
te

s

resemblance (# matching features)

DCSF size, cumulative Linux 2.4.0-9 source

45000000-50000000

40000000-45000000

35000000-40000000

30000000-35000000

25000000-30000000

20000000-25000000

15000000-20000000

10000000-15000000

5000000-10000000

0-5000000

Figure 4.8: DCSF cumulative file count by resemblance and window size (3D)

gle superfingerprint that matches a corresponding superfingerprint in another sketch reduces the

probability of locating a sketch with low resemblance while still being able to detect sketches

with high resemblance [46]. In Chapter 5 we elaborate on the use of superfingerprints in the

similarity detection phase of PRESIDIO.

4.4.7 Evaluation

We measured the hashing performance of selected digest and fingerprinting functions.

Table 4.4 lists the functions, the size of the fingerprint, and the computational throughput. (File

sizes were 100 MB and 256 MB, measured with 10 microsecond resolution, pre-cached file

data.)

71

DCSF size, cumulative Linux 2.4.0-9

46,400,000

46,600,000

46,800,000

47,000,000

47,200,000

47,400,000

47,600,000

47,800,000

w=8 w=16 w=32 w=64 w=128 w = 256

window size

b
y
te

s
 (

d
e
lt
a
+

z
li
b
)

Figure 4.9: DCSF storage efficiency based on window size

The program versions are the following:

MD5 : GNU md5sum (coreutils) 4.5.3

SHA-1 : GNU sha1sum (coreutils) 4.5.3

Rabin fingerprint : UCSC Deep Store Rabin fingerprinting library, 12/2004

chc32 : Chunk Compression program, 32-bit version

shingle32 : Shingle and superfingerprinting program, 20 features

cat : The Unix cat program, writing to the null device

The Rabin fingerprinting program operates by appending a single byte or a (32-bit)

word. The efficient execution of this function is due to precomputed table lookup; implementa-

72

fshingle(Wl)

fshingle(Wm)

fshingle(Wn)

fshingle(Wzz)
S

 0..
.3

S

 4..
7

s=
4,

 g
=

4

k = 16

f s
up

er
(S

 0..
3)

f s
up

er
(S

 4..
7)

f s
up

er
(S

 8..
11

)

f s
up

er
(S

 12
..1

5)

Sketch Superfingerprints

Figure 4.10: Sketch and superfingerprints

tion details can be found in Appendix A. For each program, features were computed from sam-

ple input files that were fully cached by the operating system buffer cache. Whole-file hashing

using MD5 and SHA-1 were much faster than disk bandwidth, suggesting that I/O bandwidth

would be the limiting factor in implementation. Likewise, Rabin fingerprinting performance

computing a single fingerprint over the entire data file is significantly faster. The “by bytes”

operation appends data by bytes to the fingerprinted string, and “by 32b words” appends data

by 32-bit words. The chc32 program computed both strong and weak hashes (one for the chunk

fingerprint and one for the sliding window to determine division point) and also stored chunk

data for its output, written to the null device. The shingle32 program computed a feature vector

73

hash size (bits/bytes) MB/s
MD5 128b/16B 174.8
SHA-1 160b/20B 79.5
Rabin fingerprint (by bytes) 32b/4B 272.5
Rabin fingerprint (by 32b words) 32b/4B 1,528.0
Rabin fingerprint (by bytes) 64b/8B 75.2
Rabin fingerprint (by 64b words) 64b/8B 1,514.6
chc32 32b/4B 36.4
shingle32 (before optimization) 32b/4B 0.5
shingle32 (after optimization) 32b/4B 19.7
cat > /dev/null N/A 45.0

Table 4.4: Feature selection performance for selected digest and fingerprinting functions using
ProLiant (PL) hardware

of 20 bytes.

Programs computing shingle feature sets using the min-wise permutation algorithms

are computationally expensive. Our initial implementation reached 0.46 MB/second (listed as

0.5 MB/second in Table 4.4), but we were able to improve the throughput dramatically by more

than 42 times through careful programming. Such improvements are necessary if resemblance

detection is to be practical in an environment that evaluates different compression algorithms.

We also note the performance of reading a file with the cat program on an uncached file, at 45.0

MB/second.

Our test hardware machines, listed in Table 4.5 include CPQ and PL. We used the

single-node HP ProLiant (PL) server for the experiments in Table 4.4. As is evident by the

high throughput of our implementation of Rabin fingerprinting, non-cryptographic functions

can have a significant performance improvement over cryptographic hash functions.

74

Description CPQ PL
Hostname cerium deep-store-8
CPU Compaq Evo N620c HP ProLiant DL320 G2
Platform Cygwin/XP Red Hat 9 Linux
Processor Pentium M Pentium 4
Clock Speed 1.6 GHz 2.66 GHz
L2 Cache 1,024 KB 512 KB
Frontside cache bus speed 400 MHz 533 MHz
RAM 1,024 MB 2,048 MB
Memory speed (PC) PC 2100 PC 2100 ECC
Hard disk drive Toshiba MK6026GAX (ATA) Seagate ST380023A (ATA)
size, speed, cache 60 GB, 5400 RPM, 16 MB 80 GB, 7200 RPM, 2 MB
Disk file system NTFS NFS/GPFS/ext3

Table 4.5: Hardware

4.5 Discussion

Data identification through fingerprinting and feature selection is the foundation to

the solution of our archival storage problem. A practical implementation is necessary for adop-

tion in environments where data storage bandwidth is a primary concern. The algorithmic im-

provements to detect similar data are dependent on probabilistically unique identifiers. And the

tradeoffs between data identifier size and retrieval accuracy are important due to the incumbent

overhead of storing metadata information.

A conflict exists between choosing parameters and algorithms for “optimal” behavior

and the wide variety of input data provided to a storage system. While a range of fingerprinting

parameters might work for one data set, it might not work for others; however, it is desirable and

even necessary to fix parameters. Our experiments have shown that the range of parameters is

somewhat flexible. For example, the sliding window size of shingled binary data plays a much

smaller factor than the compression method that is employed. Because compression behavior

is data dependent, there is a stronger need to select the best compression method, and a need to

75

use multiple methods within the same system.

During our investigations, we discovered that data fingerprinting methods were ex-

tremely useful and could be applied in a number of ways; the performance would make a

tremendous difference between a practical solution and a non-starter. For example, the “in-

ner loop” for computing a Rabin fingerprint was a bottleneck, as was fingerprinting to perform

min-wise selection from a sketch. Careful programming improved performance by more than

an order of magnitude.

4.6 Summary

In this chapter we have described algorithms that we use for computing and select-

ing features from binary storage objects, including whole file hashing, variable-sized chunking,

data fingerprinting over shingles, and superfingerprints over blocks of data. Because our so-

lution examines features over a range of object sizes, we have examined feature performance

and the coverage of fingerprinting methods. Fingerprinting sliding windows does not have a

single optimal window size; we have evaluated different sizes to show that for some data types

different sizes affect overall storage efficiency; however, there is no one size that provides an

optimal storage efficiency over all data.

We have created a chunk compression program called chc that divides files into

chunks. Chunk size distribution can be parameterized by different sizes, including minimum,

maximum, and divisors. The distribution for highly structured file types is similar to that for

random data, but some variation occurs for commonly identified blocks. To prove the capability

of both chunk and shingle-based feature selection, we have implemented fingerprinting algo-

rithms using shingles and superfingerprints that are capable of yielding throughput on par with

that of disk devices that are available today.

76

Chapter 5

Finding Data

In this chapter we focus on finding identical or similar data within the archival store.

We show we use different similarity detection algorithms over input file data. The output from

the similarity detection algorithms are then used in the next stage in PRESIDIO to compress

data by eliminating redundancy. Data compression over large scale storage trades off the cost

of detecting similar or identical data at fine or coarse granularity against the effectiveness of the

the detection methods and data compression algorithms.

5.1 Overview

Efficient archival storage compression methods use similar phases in processing. The

different efficient storage methods, or ESMs, we use within our framework eliminate redun-

dancy using techniques like suppressing storage of common data or by storing delta encoded

files. We identify two common compression phases which we can use within the framework,

namely similarity detection and redundancy elimination. These follow feature selection, in

which fingerprints are computed, but before recording to disk, where compressed data are writ-

77

ten to the storage medium.

The qualitative differences in similarity detection algorithms most strongly distin-

guish the differences in efficient storage methods. We recognize this common phase makes

the tradeoff between highly accurate detection of identical data at little space and execution

cost—to a middle ground of heuristic algorithms which find highly similar data with some ac-

curacy and low cost—to complete comparisons of pairs across the entire archive at high cost

but diminishing returns. Exploiting the best aspects of each ESM is a key part of our solution.

This chapter is organized in the following manner. First, we provide an overview of

similarity detection. Next, we examine methods to detect similar and identical data using hash-

ing and resemblance detection mechanisms in more detail. Finally, we close with a summary of

similarity detection within the context of our solution.

5.2 Similarity Detection

We define similarity detection as the method by which two or more similar or identical

data objects are located from within a large corpus. In practice, we use data objects that are

byte-aligned, contiguous binary string data, such as a partial file or a whole file. The data

objects are identified or named by their content address. Thus as a prerequisite to using content

addresses, we consider the content immutable.

The objects stored in a content-addressable store have both virtual and real represen-

tations, which are uncompressed and compressed, respectively. A client of the storage system

relies on the virtual file image. The redundancy elimination mechanism uses both virtual and

real file representations, and the real object data size is usually smaller than whole files.

Similarity detection is a key phase in data compression of large-scale data stores be-

cause it is what makes the elimination of redundant data possible. We compare and contrast

78

PRESIDIO data compression to stream compression, commonly used to compress individual

files.

Stream compression algorithms work by first identifying similar data. For exam-

ple, sliding window dictionary based compressors like Lempel-Ziv [177] continuously update

a string dictionary. As new uncompressed data is read in, the compressor looks for previously

encoded strings that match incoming data. On a much larger scale, our PRESIDIO detects sim-

ilarity using multiple methods including hashing and feature selection algorithms, and then a

separate phase eliminates redundancy by encoding data before it is written to disk.

Stream compression algorithms and PRESIDIO operate over different ranges of data

size. Whereas a stream compressor examines substrings in short windows and retains string

dictionaries that fit in real memory—for example kilobytes or small numbers of megabytes—

PRESIDIO extracts features from files of arbitrary size. Stream compression does little or

nothing to eliminate redundancy across distinct data objects. In contrast, PRESIDIO identifies

similar uncompressed data across its entire corpus. Both fine-grained stream compression and

large-grained similarity detection are complementary. PRESIDIO incorporates both types of

compression into its architecture.

The number of methods that can be developed for detecting similarity is unlimited.

The effectiveness of a single method varies with the type of input data. Because our goal was

to develop a general-purpose storage system, we employed methods that compress a variety

of data types. Content-specific methods exist, such as those which identify similarity between

text-based web pages [15, 39], but their shortcoming for our storage problem is that they are not

designed for non-textual data.

Similarity detection algorithms evaluate features such as fingerprints, superfinger-

prints, and sketches, which are selected from content in a previous phase. We use features

79

because their small size enables high performance of similarity detection at low cost. If we

did not, then it would be impractical to compare files. For example, in a corpus of one billion

(109) files, each with average size of 5,000 bytes (conservatively, twice the median file size in

a recent survey [154]), comparing each new file against all existing files would take n(n+1)/2

comparisons, and each comparison at best would read at least 5,000×109 = 5×1012 bytes≈ 5

terabytes. We will show how we reduce both the number of comparisons as well as the cost for

each comparison by using features instead.

The detection algorithms use metrics such as the resemblance between two files and

compression efficiency instead of theoretical differences like the (Levenshtein) edit distance.

Feature Selection

Efficient Storage Methods

Content-Addressable Storage

Redundancy Elimination

Similarity Detection

chunk digest

hash retrieval

digest hash

retrieval

fingerprinting

bit string

hashing

shingling

chunk

divisions

super-

fingerprint

similar files-

super

fingerprint

(SF-SFP)

similar files-

fingerprint

(SF-FP)

chunk digestdigest

intra-file

compression

inter-file

compression

delta

compression
hybrid delta

compression

duplicate

suppression

delta compression

between similar files

DCSF-SFP

delta compression

between similar files

DCSF-FP

chunk CAS

CAS Virtual CAS

whole-file

CASstream

compression

chunk digest

chunk digest

hash retrieval

chunk CAS

abstract

concrete

instance

reference

Relationships

concept

uses

chunk lists sketch

data algorithm

Figure 5.1: Similarity detection algorithms

80

Figure 5.1 illustrates the different similarity detection methods and their relationships

to dependent feature selection processes. The main methods we describe include digest hash

retrieval or whole-file hashing; chunk digest hash retrieval, or chunking, SF-FP or similar files

with fingerprinting; and SF-SFP or similar files with superfingerprints. Each method exhibits

different similarity detection properties.

5.2.1 Parameters used in similarity detection

Each similarity detection method we incorporate uses a set of different parameters to

maintain low storage and computational overhead.

virtual file an original file presented by a client.

virtual CAS object a virtual object stored in a content-addressable store.

real CAS object a real instance of data stored within virtual content-addressable store.

feature data the data from which a feature is computed. coverage

feature coverage size the size of data from which a single feature is computed.

coverage the fraction of data from which features are computed.

feature set (or feature vector) the set of features computed from the content of a virtual CAS

object.

feature set size the cardinality of a feature set.

fingerprint size the size of a fingerprint, usually represented in bits.

81

The virtual file is the original file presented to the CAS for storage. Because the virtual

file size can vary greatly in a data set, our storage system may subdivide it into a sequence of

virtual CAS objects in order to further detect similarity among blocks.

The virtual CAS object may be a whole file, or it can be smaller, like a chunk or delta

file. The virtual size measures the amount of the original instance of the file.

Real CAS objects always provide backing for the virtual CAS file image. The real

object size may be the same as the virtual size. The incremental real object storage cost may

be zero, in the case when file storage is suppressed because an exact copy of a file has already

been stored.

Features are computed from feature data, e.g. a whole file, variable sized chunk,

fixed-size chunk, sliding window.

Coverage varies from 100%, in the case of a whole-file digest, to a smaller fraction

in the case of a fingerprint sketch. A whole-file digest accounts for every byte in its file. In

contrast, a sketch may only cover k × feature coverage size ÷ file size. Although the coverage

for a sketch used to detect similarity between two files may be low, it does not significantly alter

the probability that deterministic feature selection algorithms will select the same features.

The feature set size is usually denoted in our work by k, the number of chunks from a

file subdivided into chunks or the number of fingerprints computed and stored in a shingle-based

sketch.

The size of fingerprints is established once during the design of the system and fixed,

for example, at 32 bits.

82

5.2.2 Comparing similarity detection properties

To illustrate the way similarity detection is used, in Table 5.1, we list some of the sim-

ilarity detection properties that are characteristic of each efficient storage method and compare

qualitative differences.

ESM feature coverage fp size k selection
1 Whole File file whole file MD5 16 1 hash file
2 Chunk chunk 128–8192 var. RF32 4 m hash chunk
3 Chunk chunk 128–8192 var. RF64 8 m hash chunk
4 Chunk chunk 128–8192 var. MD5 16 m hash chunk
5 Chunk chunk 128–8192 var. SHA-1 20 m hash chunk
6 Chunk chunk 4096 fix. SHA-1 20 K hash block
7 DCSF-SFP s.w. 8–32 fix. RF32 4 {2n,2m} H-SFP
8 DCSF-SFP s.w. 8–32 fix. RF32 4 {84,6} SFP
9 DCSF-FP s.w. 8–32 fix. RF32 4 K MWP
10 DCSF-FP s.w. 8–32 ch. RF32 4 K MWP

ESM efficient storage method
feature data (content) from which a feature is computed

file entire file
chunk variable- or fixed-sized chunk
s.w. Rabin fingerprint sliding window

coverage number of bytes covered by a single feature; may be variable-sized (var.)
or fixed-size (fix.)

fp fingerprint algorithm; digest or Rabin fingerprint RF32 (32-bit) or RF64
(64-bit)

size size of a feature in bytes; equal to fingerprint size
k feature set size; in superfingerprint, {k, l} represent the cardinality of the

initial sketch size k, followed by the cardinality of supersketch size l; (in
Section 4.4.6 group size g = k/l)

selection feature selection process
H-SFP harmonic superfingerprint
SFP superfingerprint
MWP min-wise independent permutations

Table 5.1: Comparing efficient storage methods and their similarity detection properties

83

Each efficient storage method (ESM) uses one similarity detection method. Since

PRESIDIO is a hybrid system, it aims to use the best properties of each method. We briefly

discuss the advantages and shortcomings of each method’s ability to detect similarity. The

methods in Table 5.1 are in approximate order of coverage size, starting with (1) whole file

hashing, and ending with (10), delta compression between similar files with fingerprinting.

5.2.3 Identical Data

Detecting identical data using probabilistically unique hash functions is straightfor-

ward: an input file is interpreted as a long binary string and the digest function computes a

single hash value over this input.

Whole file hashing (Table 5.1, line 1) computes a feature from a single coverage area,

the whole file. The advantage is that the hash value, using strong hashing, is easy to compute.

Its main shortcoming is that the probability of detecting an identical file is high (with very low

probability of a false collision), but its probability of detecting a similar file is zero.

The chunk ESM (Table 5.1, lines 2,3,4,5) is similar to whole file hashing, but first

subdivides the files into pieces. This has multiple advantages over whole file hashing. The first

is that by subdividing a file into smaller pieces, in the event of small differences between two

files, the probability of detecting identical chunks is higher than the probability of only detecting

identical files. A second benefit is that multiple chunks might be detected as identical within

the scope of a single file. The main drawbacks to this method are that the number of chunks

incur overhead, the methods for subdividing chunks deterministically are chosen arbitrarily but

must be used consistently across all chunk storage. Methods 2-5 differ only in the size of the

(strong) hash method.

A degenerate case of the chunk ESM occurs when chunks are of fixed size (Table 5.1,

84

line 6). In this case, fixed size blocks are selected, typically dividing files at constant intervals

starting from the first byte of the file. This is the method used by the Venti file system [125].

The difference between fixed-size and variable-size chunks is that the subdivision method is

trivially specified, and that use of the underlying storage system may be more efficient when

the same fixed size is used. The drawback is that insertions or deletions that are small (or more

precisely, not of exactly the size of the fixed size block) in a file prevent similarity detection

of changes subsequent to the position in the file. Because this block variation does occur in

practice [124], the chunk-based method is efficient when per-chunk overhead is less than the

space that is saved over fixed-sized blocks. Our CAS is implemented using large flat files, and

stands to gain little storage efficiency by using fixed-sized block storage.

5.2.4 Similar Data

Superfingerprints are fingerprints over features stored in a sketch of size k. Previous

work that detects web document similarity [15] used superfingerprints with a fixed group size by

fingerprinting s groups of g features. Other examples have permuted the k features to produce

megashingles or super-superfingerprints. In all cases, the group sizes, g, were fixed.

The DCSF-SFP method (Table 5.1, lines 7,8) depends on the generation of sketch

sizes of cardinality k. Features are Rabin fingerprints, computed over data in sliding windows.

The sliding window itself is chosen once and fixed for all time, from empirical data. Two

examples are shown, the first being harmonic fingerprinting, described below. In the example

of line 8, by selecting initial sketch size k = 2n, and superfingerprint sketch size l = 2m, m < n,

then searching for matching sketches is in a smaller space. The degenerate case, m = 0, or

superfingerprint sketch k = 1, produces a single superfingerprint which can detect highly similar

files with high probability. We evaluate harmonic superfingerprints in further detail below.

85

The parameters in Table 5.1, line 8, {84,6}, (sketch size and number of superfinger-

prints, respectively) were used to detect resemblance between web pages [15, 99] is provided for

comparison, but due to the large number of fingerprints (84) and subsequent storage overhead

in the initial sketch, we do not consider these parameters for our use because space efficiency is

of primary concern.

The DCSF-FP methods (Table 5.1, lines 9,10) are prerequisite computations to DCSF-

SFP (7,8), but in practice we compute both at the same time. In the case of DCSF-FP, searching

for fingerprints is an indexing problem. Searching multidimensional spaces may take consider-

able time or space.

5.2.5 Harmonic Superfingerprints

We further refine superfingerprints to progressively detect similar files with lower

resemblance using harmonic superfingerprints. For identical, and highly similar documents, a

small number of superfingerprints, s, is desirable because it reduces the search space. Earlier

work have matched one, two, or more superfingerprints to increase the specificity of detection,

but some data sets can be compressed significantly using small numbers of superfingerprints

covering an entire sketch. The result is that we use the superfingerprint covering the entire

sketch in lieu of a whole-file digest to perform a hash lookup, and other superfingerprints to

search in low-dimensional spaces.

First we precompute harmonic superfingerprints at the time we compute a sketch, then

we progressively search the superfingerprint space to find sketches of decreasing resemblance.

Let s = 1 and g = k, in other words, the superfingerprint is computed over all features in the

sketch. Next, compute s = 2, g = k/2, so that each superfingerprint is computed is computed

over half the sketch and continue in this manner, doubling s each time. (For convenience we

86

select s = 2, but it can be non-integral and scale arbitrarily.) Figure 5.2 illustrates the sketch

(k = 16), ranges of the superfingerprints and the resulting superfingerprint set.

fshingle(Wl)

fshingle(Wm)

fshingle(Wn)

fshingle(Wzz)

S
0
..

1
5

S
0

..
7

S
8
..

1
5

S
0

..
.3

S
4

..
7

s
=

1
,
g
=

1
6

s
=

2
,
g
=

8

s
=

4
,
g
=

4

k = 16

f s
u
p

e
r,

1
(S

0
..
1

5
)

f s
u
p

e
r,

2
(S

0
..
7
)

f s
u
p

e
r,

2
(S

8
..
1

5
)

f s
u
p

e
r,

3
(S

0
..
3
)

f s
u
p

e
r,

3
(S

4
..
7
)

f s
u
p

e
r,

3
(S

8
..
1

1
)

f s
u
p
e

r,
3
(S

1
2
..
1

5
)

Sketch
Harmonic

Superfingerprints

Figure 5.2: Sketch and harmonic superfingerprints

We can compute the probability that a file matches another file with resemblance at

least p. First we divide the sketch of k features into s groups of g. The probability of an

individual feature matching the corresponding feature in another sketch is p, the probability

of a superfingerprint over g (independently selected) features is pg. We have s groups, so the

probability of one or more groups matching is 1− (1− pg)s.

Each curve in Figure 5.3 shows the probability that a pair of files with a given re-

semblance (horizontal axis), is detected by a single superfingerprint out of s. The sketch size

overhead is fixed at k features (in this example, k = 32), resulting in k/s features per group. If

a single fingerprint is computed over all features in the sketch (rightmost curve), then 100% of

87

the files with high resemblance are detected while the leftmost curve; it also filters out pairs

with less than 90% resemblance, detecting less than 4% of them. (Note that the leftmost curve,

g = 1, has k = 32 features, the same as a feature set. The difference is that a superfingerprint

set will contain one fingerprint of a fingerprint. Comparing two sets of superfingerprints still

requires s = 32 tests requiring s = 32 comparisons between two sketches and a high probability

of detecting low as well as highly resembling files.)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Resemblance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

b
a
b
ili

ty
 o

f
d
e
te

c
ti
o
n s = 1, g = 32, k = 32

s = 2, g = 16, k = 32
s = 4, g = 8, k = 32
s = 8, g = 4, k = 32
s = 16, g = 2, k = 32
s = 32, g = 1, k = 32

Figure 5.3: Probability of detection with one superfingerprint, k = 32

For comparison, we evaluate the probabilities a single superfingerprint will match

files above a resemblance for a larger sketch size. When the sketch size is increased to 128

features (k = 128), the probability of detection takes on a different shape for the group sizes.

88

With large group sizes (g = 128), the probability of finding highly similar files is very high and

it also restricts matching files below 95% resemblance.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Resemblance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

b
a
b
ili

ty
 o

f
d
e
te

c
ti
o
n g = 128, s = 1, k = 128

g = 64, s = 2, k = 128
g = 32, s = 4, k = 128
g = 16, s = 8, k = 128
g = 8, s = 16, k = 128
g = 4, s = 32, k = 128

Figure 5.4: Probability of detection with one superfingerprint, k = 128

The computational cost to compute a superfingerprint is linear, O(k), in the size of

the sketch. Compare this with the complexity to compute a sketch using min-wise independent

permutation feature selection O(sk), where s is approximately the size of the file. Thus for

non-trivial files, the computational cost for superfingerprints is negligible.

Searching is straightforward: we first search with the s = 1 superfingerprint. Although

this is similar to whole-file hashing, it is tolerant of slight variations in the file. Conversely,

identical files will produce identical superfingerprints. Next, we search the superfingerprints in

89

the dimensional space s = 2 and so on until we find a sketch. Larger than these trivial cases,

the problem returns to a problem similar to an n-dimensional keyword retrieval. Traditional

methods using an inverted keyword index [170] requires large amounts of memory.

We use harmonic superfingerprints to progressively search the space by finding highly

similar files quickly and moderately similar files with more time. The time to find highly similar

files in our example is 1/k, which is significant. If the first harmonic superfingerprint fails, i

iterations with s = 2i−1 results in 2i−1 superfingerprint lookups. Increasing i by more than one

can reduce the total number of tests, for instance if s = [1,4], in the best case we speed up by

32 and in the worst case by 5.

If no sketch is found, we fall back to slower methods, such as comparing sketches.

5.2.6 File Resemblance

The wide diversity of archival data necessitates different storage compression meth-

ods to achieve a high level of space efficiency. In this chapter we first examine data compression

as it applies to archival storage, describe how different types of data and types of compression

make it difficult to use a single method for all data, and then evaluate the methods to contrast

the differences. Finally, we discuss how we can exploit these differences by integrating the

methods into a system that seeks to capture the best of each storage method.

5.3 Evaluation

5.3.1 Whole-file hashing

In practice, whole-file content-addressable storage is useful when it is likely that iden-

tical copies of the file will occur. A system such as EMC Centera [42] will detect such files.

90

The system performs a hash function such as MD5 or SHA-1 on the entire contents of the file,

and then checks to see if an identical hash already exists. If it does, then recording the file to

the storage device is suppressed, otherwise a new copy of the file is stored.

The resulting savings in storage is directly related to the probability of multiple iden-

tical copies of files. If they are common, then compression will be good, if they are rare then

little savings will be realized.

5.3.2 Chunking

When there is not an identical copy of the file, other methods can be employed, such as

chunk-based content-addressable storage (chunking). Whole-file CAS only finds exact copies.

Chunking divides files deterministically into variable-sized chunks of which single instances

are stored. The technique first used in the low-bandwidth file system (LBFS) [110] divides

files deterministically into chunks and then identifies chunks by hashing their contents. A file

is stored in two parts: a list of the chunk identifiers and the chunk data. Chunks are stored as

single instances of content-addressable objects. The fine-grained single-instance chunk storage

improves on the efficiency of whole-file CAS when files are similar but not identical.

Compromises in chunking implementation are its shortcoming. To ensure identical

chunks can be found when new files are added to a system, chunking behavior must be deter-

ministic, which in turn requires that parameters be selected once and for all data. Unfortunately,

a fixed set of parameters does not optimally compress all data. Chunking metadata (chunk lists)

increases storage overhead which makes it less effective than whole-file CAS when unique files

are stored.

91

5.3.3 Superfingerprint

The superfingerprint compression rate for a single group of size s = k is the same

as the compression for files compressed for resemblance r = 1.0 (excepting hash collisions).

A simple example using Linux source code versions 2.4.0–2.4.9 resulted in 84% of the files

matching exactly by superfingerprint.

5.4 Discussion

Our original intention for “finding data” was to find a solution to more general classes

of problems: how to store metadata information in a traditional file system to facilitate search;

how to identify clusters of data and then find similar clusters; how to index and retrieve similar

data using traditional information retrieval and web search techniques. These problems present

unique challenges and extensive areas of research have branched into peer-to-peer networks,

indexing the entire web, distributing storage capabilities across machines in widely distributed

areas, improving content-aware search in personal file systems, and so on.

We proposed using shingling and data clustering methods; the clustering algorithms

are numerous [75] and were used in a search engine, but in a system where storage frugal-

ity and incremental storage are primary goals, the clustering methods available today are not

well matched for our problem statement. Although we first envisioned clustered, or “associa-

tive” storage to be the solution, we have turned toward heuristic engineering solutions where

approximate metrics and low-cost and high-return will be most practical. In fact, harmonic su-

perfingerprinting only developed as an observation that a generalized indexed retrieval method

would be costly and that most of the benefit in data compression will come from highly similar

data.

92

An apparent disparity between chunking and delta compression forced us to pose the

question which direction we should take. On one hand, chunking was attractive due to its simple

data identification model and chunk retrieval model. Chunk hierarchies would offer benefit for

similar data by sharing chunk lists or trees. On the other hand, we had previous experience

that delta compression could express fine-grained differences very efficiently. Our comparison

between the two was intended to discharge one approach. Unfortunately, experiments were

inconclusive, leading us to embrace not just both these methods but any others into a common

storage framework. But before doing so, we would need ways to find similar data regardless

of the data compression method being used. The result of our design work resulted in the need

to identify the common, but implementation-dependent “finding data” step described in this

chapter.

93

Chapter 6

Compressing Data

In this chapter we focus on compression through redundancy elimination. Data com-

pression used in a large scale storage is dependent on identifying and finding data, and then later

records data into a low-level content-addressable store. Redundant data is identified as identical

or similar, using the methods described in previous chapters. Redundant data is eliminated by

encoding original data to occupy less storage than the source input or by suppressing storage

completely.

6.1 Overview

The PRESIDIO redundancy elimination phase, which uses a multitude of efficient

storage methods (ESMs), is a practical application of data compression algorithms. Our con-

tribution to the storage area is to use existing data compression algorithms in a manner that

produces compression benefits in a large-scale system. The main compression algorithms we

apply on whole or partial files are suppression of storage, stream compression, and delta com-

pression, or a combination of those methods.

94

Whole-file hashing and chunk-based storage suppress storage of multiple instances

of identical data. Delta compression stores reference files and delta files and relies on file

reconstruction to produce the original input. Although single-instance storage and delta storage

are space-efficient, they introduce new data dependencies not present in stream compressed

data alone. In turn, the data dependencies affect the reliability model. As a result, new data

protection designs will be needed to provide long-term storage reliability.

This chapter is organized in the following manner. First, we provide an overview of

data compression by eliminating redundancy in identical and similar data. Second, we describe

ways to eliminate redundancy within and across stored objects. Third, we evaluate compression

methods for their storage efficiency. Finally, we close with a summary of redundancy elimina-

tion within the context of our solution.

6.2 Redundancy Elimination

The second half of the data compression process is made up of the coder, a step

that creates a more compact encoding from the uncompressed data and then recorded. The

two methods we use to reduce or eliminate redundancy are through intra-file compression and

inter-file compression. Figure 6.1 illustrates the different compression methods used within the

redundancy elimination phase.

6.2.1 Intra-file Compression

Intra-file compression consists primarily of stream compression, as described in Sec-

tion 2.5.1. Data compression within a single file is a mature research area. Our system assumes

the availability of stream compression and decompression programs with suitable properties for

the content we wish to store.

95

Feature Selection

Efficient Storage Methods

Content-Addressable Storage

Redundancy Elimination

Similarity Detection

chunk digest

hash retrieval

digest hash

retrieval

fingerprinting

bit string

hashing

shingling

chunk

divisions

super-

fingerprint

similar files-

super

fingerprint

(SF-SFP)

similar files-

fingerprint

(SF-FP)

chunk digestdigest

intra-file

compression

inter-file

compression

delta

compression
hybrid delta

compression

duplicate

suppression

delta compression

between similar files

DCSF-SFP

delta compression

between similar files

DCSF-FP

chunk CAS

CAS Virtual CAS

whole-file

CASstream

compression

chunk digest

chunk digest

hash retrieval

chunk CAS

abstract

concrete

instance

reference

Relationships

concept

uses

chunk lists sketch

data algorithm

Figure 6.1: Redundancy elimination methods

When used together, inter-file compression may affect intra-file compression. For

example, when using chunking algorithms, the size of contiguous uncompressed data in a chunk

to be compressed is smaller than a file. Because stream compressors work to amortize the cost

of collecting and storing internal dictionary data across an entire file, when a file is subdivided,

the amortizing efficiency is lost. Hence, the sum of compressed chunk sizes may be larger than

the compressed size of the file comprised of those same chunks.

In other instances, such as suppressed storage of identical data or delta-compressed

data, intra-file compression is independent of inter-file compression.

96

6.2.2 Suppression of Multiple Instances

Data that is identified by content stores a single instance of data. When subsequent

operations to store data with the identical content, the same content address is used. The pro-

cess of suppressing storage and referencing the single instance multiple times compresses by

eliminating duplicates.

6.2.2.1 Whole-File Hashing

Whole-file content-addressable storage is useful when it is likely that identical copies

of the file will occur. A system such as EMC Centera [42] will detect such files. The system

performs a hash function such as SHA-1 on the entire contents of the file, and then checks to

see if an identical hash already exists. If it does, then recording the file to the storage device is

suppressed, otherwise a new copy of the file is stored.

The resulting savings in storage is directly related to the probability of multiple iden-

tical copies of files. If they are common, then compression will be good, if they are rare then

little savings will be realized.

Metrics The storage efficiency, u, is simply

u =
real storage size

virtual storage size
.

In the case of whole-file hashing, this efficiency is determined by a simple resem-

blance, r between two files. It is binary: either r = 1 or r = 0. For r = 1, this metric is a prob-

abilistic estimate: the probability of a strong hashing function collision of content addresses of

size k bits is less than approximately 2−k/2.

Thus if f is the size of an input file, the storage size is r f ; either it is full size of the

file (r = 1) when the file is first stored, or zero (r = 0).

97

6.2.2.2 Chunk-Based Storage

Chunk-based storage is the next logical step from whole-file hashing. First, chunk

boundaries are identified, and then whole chunks are stored uniquely, just like whole-file hash-

ing. The algorithm to compute chunk divisions and their content addresses was described earlier

in Section 4.4.3.

A file is stored in two parts: a list of the chunk identifiers and the chunk data. Chunks

are stored as single instances of content-addressable objects. The fine-grained single-instance

chunk storage improves on the efficiency of whole-file CAS when files are similar but not

identical.

The shortcoming of chunking implementation are due to the tradeoffs that occur when

fixing the parameters used to fulfill the requirement that the chunking algorithm be computed

deterministically across all data. This is to ensure identical chunks can be found when new files

are added to a system. Unfortunately, a fixed set of parameters does not optimally compress all

data. Furthermore, chunk metadata (chunk lists) increases storage overhead which makes it less

effective than whole-file CAS when unique files are stored.

Metrics Resemblance is piecewise, based on the new storage size.

storage efficiency = ∑
k
i=1 ri +qi

∑
k
i=1 vi +qi

where for chunk 1 ≤ i ≤ k, ri is the size of a compressed and recorded, vi is the size of of the

uncompressed input source chunk, and qi is the storage overhead.

6.2.2.3 Block-Based Storage

Fixed-size block-based storage, like Venti [125] is a degenerate case of chunk-based

storage. Because the block division algorithm is trivial, it is easier to implement. It may also

98

benefit from underlying storage system efficiencies when the fixed block sizes are identical to a

native file system block size. However, for read-only data, the variable-length block storage at

the end of blocks is wasted, and insertions and deletions within files will prevent identical data

from being detected.

Metrics Block-based storage is a degenerate case of chunk-based storage where the minimum

and maximum chunk size is a constant.

6.2.3 Delta Compression Between Similar Files

When chunking indicates a stored file shows little or no resemblance to an existing

file, or when the most space efficient method is desired, then delta compression should be used.

Unlike chunking, it encodes differences between files at the granularity of a byte. A delta

program like xdelta [95] or vcdiff [80] takes a reference and a version file as input, computes

the difference, and outputs a delta file. The delta file contains add and copy operations which

specify the bytes and region of bytes in the reference, respectively, that are output to form a

reconstructed version file from the reference file.

The system first finds a reference file before running delta compression. The method

used by our system computes a feature set for each reference and version file that is stored; we

use Broder’s definition of the resemblance metric, r in the range 0≤ r ≤ 1 and by using feature

(sub)sets, we estimate file similarity [12]. A feature set size, k in the range of 20 to 30 have

been shown to be effective at finding similar files [40].

To compute a complete feature set for a file, we compute fingerprints over shingles,

and then compute a feature vector from those shingles. This is described in Section 4.4.5.

The method for delta encoding resembling files is effective for eliminating redun-

99

dancy [40, 173]. Figure 6.2 is a graph of the efficiency of stored data, comparing gzip against

xdelta (including zlib, comparable to gzip stream compression) as a percentage of the uncom-

pressed files. The horizontal axis measures the discrete resemblance between a new file com-

pared to a stored file with the highest resemblance. The vertical axis measures the size of all

compressed data for a given resemblance against the original uncompressed data. The data set

is the Linux kernel source code, versions 2.4.0-2.4.9, 88,322 files, 1.00 GB in size, w = 30,

k = 32, and fingerprints are 32 bits long.

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Resemblance

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

B
y
te

s
 s

to
re

d
 (

fr
a
c
ti
o
n
 o

f
u
n
c
o
m

p
re

s
s
e
d
 d

a
ta

 f
ile

)

delta %
gzip %

Figure 6.2: Storage efficiency of xdelta vs. gzip

We also ran the experiment with different sketch size, k = 16, and varied the window

size, w = {8, 16, 32, 64, 128, 256}. The results, shown in Figure 6.3, show the different com-

100

pression rates. Better efficiency is exhibited at larger window sizes. However, the experimental

results, reported earlier in Section 4.4.5, showed the highest compression rate (smallest size) at

w = 64.

delta efficiency using resemblance as an estimator, source code

0%

5%

10%

15%

20%

25%

30%

35%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

resemblance (# matching features)

d
e

lt
a

 f
il
e

 s
iz

e
 (

%
 o

f
o

ri
g

in
a

l)

w=8

w=16

w=32

w=64

w=128

w=256

Figure 6.3: Storage efficiency for different shingle sizes

The delta compression algorithm is applied to one or more input files, resulting in a

dependency graph. The one input file degenerate case is to compress a version file against an

implicit “empty” file to compute an output delta file or delta encoding. The case of two input

files reference file and an version file. (Although “version” might imply a direct relationship, in

the general case no pre-existing relationship exists.) Multiple reference files with one version

can be used also.

Figure 6.4 illustrates the relationship between R, the reference file (or base file), V,

101

V
version file

R
reference file

D
(V->R)

delta file

Figure 6.4: Reference, version, and delta files

the version file, and D, the delta file. The nodes represent files that are presented in the input.

The edges represent data dependence, as well as a delta encoding file. These delta files are not

presented to the application but are used internally as a data compression method.

There are two operations used in delta compression: computing a delta file from

reference and version files, reconstructing a version file from reference and delta files. Note

that in the general case, a version file may depend on more than one reference file. A version

file may also be considered a degenerate case of an empty reference file. We use the notation

D(V→ R) to indicate the delta file D is an encoding and version file V depends on reference

file R.

6.2.3.1 Selecting a Reference File

Delta compression computes the difference between a version file against one or more

reference files; our implementation uses one. Files that are added to a system using the store

operation can be modifications of an existing file, such as the extension of a system log, or they

might be a modification from a common file, such as a document template.

In an ever expanding storage system, files will be added over time. Unlike systems

that perform static analysis of the file set to determine similarity across all files [100, 40], DCSF

102

selects a reference file incrementally. To do this, we select the best reference file or object from

which to compute a delta.

DCSF selects the best candidate reference file by using the following criteria in order:

• highest resemblance

• shortest delta chain

• highest degree of dependence

The delta chain length is computed at the version file. The dependency graph is a

directed acyclic graph, so no cycles may occur and the length is the maximum of all possible

paths from version to reference. In our experiments we restricted version files to depend on a

single reference file; therefore the dependency graph is strictly a tree and the length is computed

to the one reference file that does not depend on any other files. Figure 6.5 illustrates delta chain

lengths. R1, a reference file, has length 0; it is not a version. The same is true for all Ri. V2,

V3a, V3b, V4a, V4b, and V4c are all version files with chain length 1. V3c, V4d, and V4e all

have length 2. Version files like V3b and V4b are used as reference files.

R1

V2

R2

D
(V2->R2)

V3a

R3

D
(V3a->R3)

V3b

D
(V3b->R3)

V3c

D
(V3c->V3b)

V4a

R4

D
(V4a->R4)

V4b

D
(V4b->R4)

V4c

D
(V4c->R4)

V4d

D
(V4d->V4b)

V4e

D
(V4e->V4b)

Figure 6.5: Delta chains and degrees of dependence

103

Another measure of data dependence is the degree of dependence, the total number

of immediate version files that depend on the reference file itself. Version files can also be used

as reference files. In Figure 6.5 it is simply the count of incoming edges coming into a node.

No version files depend on R1, so its degree is 0; the same is true for V2, V3a, V3c, V4a, V4d,

V4c, and V4e. R2 has degree 1; V2 depends on it. R4, a reference file, has degree 3 because

version files V4a, V4b, and V4c all compute deltas against it.

File construction of any version file depends on its reference files. Since the reference

files may also be version files, e.g. V3b and V4b, they must be reconstructed first.

6.2.3.2 Resemblance

Resemblance, an estimate of file similarity, is a metric between pairs of files. The

delta operation forms a directed graph; shorter delta chains are beneficial. And the degree of

dependence on a reference file elevates the importance of certain files. Resemblance [12], or the

Jaccard coefficient, is computed as an overlap of documents by comparing shingles, or more

precisely, resemblance r between two files A and B is defined as

r(A,B) =
|S(A)∩S(B)|
|S(A)∪S(B)|

where S(A) is a set of features. When two sketches are identical, S(A) = S(B) then r = 1, and

when no features in sketches S(A) and S(B) match then r = 0. We use ordered feature sets, or

feature vectors so the resemblance between files A an B is discrete:

r(A,B) =
|{0≤ i < k : fi(A) = fi(B)}|

k

where fi(F) is a feature f of index i extracted from file F , and k is the size of the ordered sketch

(array). In other words, each matching pair of elements in the feature vectors are compared

104

and the total matching features are taken as a fraction of the total number of features. The

resemblance is in the range of 0≤ r(A,B)≤ 1.

6.2.4 Hybrid Methods

Hybrid storage methods are possible in PRESIDIO. For example, a large file might

be first subdivided into chunks. The progressive redundancy elimination, or PRE, algorithm is

then run on individual chunks, and the chunks can be stored as a delta representation on similar

data instead of only suppressing identical storage. This approach is unique to PRESIDIO.

6.3 Evaluation

Our evaluation of resemblance detection and redundancy elimination consists of a

series of experiments to show the effectiveness of different methods across a number of data

sets. First, we measure and evaluate the relative differences between two different compression

methods, namely chunking and delta compression between similar files. Next, we first measure

the relationship between resemblance and inter-file compression using delta compression.

6.3.1 Comparing Chunking and Delta Compression

We made the first direct comparison of the two main compression techniques pro-

posed in the literature, namely chunking and delta compression, and compare them against

intra-file compression. In general, both chunking and delta encoding outperform gzip, espe-

cially when they are combined with compression of individual chunks and deltas.

As noted above, storage efficiency is the determining factor for the applicability of an

inter-file compression approach. We report on the storage space required as a percentage of the

original, uncompressed data set size. For example, stored data that is 20% the size of the orig-

105

inal represents an efficiency ratio of 5:1. The functionality and performance of each approach

depends on the settings of a number of parameters. As expected, experimental results indicate

that no single parameter setting provides optimal results for all data sets. Thus, we first report

on parameter tuning for each approach and different data sets. Then, using optimal parameters

for each data set, we compare the overall storage efficiency achieved by each approach. The

required storage includes the overhead due to the metadata that needs to be stored. Last, we dis-

cuss the performance cost and the design issues of applying the two techniques to an archival

storage system.

One problem that comes up in the configuration of the chunking algorithm is setting

parameters that maximize storage efficiency. The experimental chunking parameters are listed

in Table 4.2 and represented graphically in Figure 4.3. The size of the hash identifiers computed

from the identifying (strong hash) algorithm increases the per-chunk storage. The original files

can be reconstructed from their constituent chunks. To do that, the system needs to maintain

metadata that maps file identifiers to a list of chunk identifiers. Furthermore, the chunk size (a

distribution) is inversely proportional to the chunk list overhead.

6.3.2 The chc Program

In order to measure chunking efficiency before we were able to construct a content-

addressable store, we wrote the chc program which compresses an input file to produce a “chunk

compressed” output file (.chc suffix); a separate option performs the inverse operation to

reconstruct the original input file. The chc program emits statistical information (chunk sizes,

sharing) and the .chc file contains the necessary overhead used to evaluate the experimental

data using the metrics we desired.

The file format shown in Figure 6.6 consists of the following: a list of chunk IDs that

106

identify the chunks, in order, from the original input file; and a sequence of chunkIDs, the size

of the chunk, and the variable-length chunk data.

The separate step of compressing the chunk file was performed by executing gzip,

passing the .chc file as input.

We validated chc by computing the intersection of chunk IDs from a .tar file and

from chunk IDs of individual files using the UCSC SSRC web directory (122.8 MB, 721 files,

d = 1024,m = 64,M = 1024) and 99% of the chunks detected in the tar file were identical to

the chunks in the individual files.

An optimistic estimate of the storage overhead comprises of a list of chunk identifiers

for each file, and for each chunk, the chunk identifier and the chunk size. A production system

might incur additional overhead from managing variable-sized blocks, in-memory or on-disk

hash tables, as well as file metadata.

chc

Array of Chunk IDs

uncompressed file

Array of Chunk IDs Unique Chunk data [id, size, data]

.chc (chunk compressed) file

Chunk ID size

Figure 6.6: The chc program file format

The data objects referenced were simply the stored chunks. Each data set was com-

bined into a single tar file and then the file was divided into chunks. (The use of the tar file was

used as an approximation to chunking each file individually.) Single instances of chunks were

stored using the parameters listed in Table 6.1.

Every chunk identified in the tar file was sent to the CAS to be stored. The first time

107

polynomial (1)a8948691
divisor 1,024
residual 0
min chunk 64
max chunk 16,384
windowsize 32

Table 6.1: chc parameters

delta/shingle parameter
w shingle window size (24 bytes)
k degree of shingle fingerprint (32 bits)
p(x) random irreducible polynomial for window
s feature set size (30)
t delta threshold (1)
l degree of feature fingerprint (32 bits)
L maximum length of a delta chain
qi(x) random irreducible polynomial for window

Table 6.2: dcsf parameters

a chunk was stored, its reference count was set to 1; subsequent store requests were suppressed

but the reference count was incremented. Finally, the CAS tabulated the reference counts over

all chunks.

6.3.3 Delta Encoding Similar Files

Delta encoding tools generally do not have any parameters even though there can

be algorithmic variations. Detecting similarity requires a number of parameters, as shown in

Table 6.2.

The fingerprint of a window (of size w) is represented as RF(An) using the following

expressions:

A(x), binary string representing the file

108

A0(x), binary string starting at byte 0, i.e. A[0..windowsize−1]

A1(x), binary string starting at byte 1, i.e. A[1..windowsize]

p(x), the random irreducible polynomial of degree k

RF(A0) = B0(x) mod p(x): fingerprint of the window (degree k)

Next, the feature set of size s is selected by computing fingerprints of the window

fingerprints as follows: An array containing s tuples will contain the following: 1. a random

irreducible polynomial qi(x) of degree l, 2. an input string f eaturei of size k and 3. the output

Rabin fingerprint f eatureprinti of degree l.

for i = 0 to i < s do

f eatureprinti(f eaturei) = f eaturei(x) mod qi(x)

end for

Each element in the array represents a different fingerprinting function for selecting

one feature. Each window fingerprint RF(An) that is computed is used as input into the s finger-

printing functions in the array. The input is selected by minimizing the output of the fingerprint,

i.e. when each fingerprint f eatureprinti is computed with the f eaturei set to RF(An), the out-

put is compared against the previously retained output and if it is lower, the new f eaturei and

f eatureprinti are retained. Comparing two sketches using the approximate min-wise indepen-

dent permutations [14] is evaluated by comparing corresponding elements in the two sketch

arrays.

6.3.4 Delta and Resemblance Parameters

Each sketch of s fingerprints f eaturei of degree l, for example l = 32 bits, is stored,

for a total of 4s bytes.

We choose two parameters, the feature set size, s = 30, and the window size, w = 24,

109

within ranges that have been shown to provide meaningful resemblance metrics—and more

importantly—a strong (inverse) correlation with the size of the delta encoding [40].

In order to determine whether a new file should be added as a new reference file or a

version (delta encoded) file, a resemblance is computed using a pairwise comparison of features

between two sketches. A delta encoding is computed if the number of matches is greater than

the t threshold (1).

The third problem is about calculating the actual delta, when a reference file within

the resemblance threshold is found. This is a well-explored area, with a number of available

tools, such as xdelta, zdelta and vcdiff. We used xdelta for this experiment. A pointer to the

reference file has to be maintained with every delta in the system. Such identifiers (e.g. , SHA

digests) as well as file sketches contribute to some storage overhead that has to be taken into

account. Again, a delta can be further compressed by using gzip. Our prototype consists of three

programs, one for each of the three above problems: feature extraction, resemblance detection,

and delta generation.

6.3.5 Data Sets

To establish a baseline for each data set, we created a single tar file from the data

set, and then compressed it with an intra-file compression program, gzip. As expected (and as

shown by the two first rows of the table), inter-file compression improves with larger corpus

sizes. This is not the case with gzip.

• HP Support Unix Logs Text, computer generated, multiple hosts, different hardware,

different network locations. Highly similar data.

• Linux Kernel 2.2 Source Four separate versions (2.2.0, .7, .14, and .25) of the Linux

kernel source code. Text, human generated, versions of the same files.

110

Data Set Size # Files tar &
gzip

Chunk Chunk
& zlib

Delta Delta
& zlib

HP Unix Logs 824 MB 500 15% 13% 5.0% 3.0% 1.0%
HP Unix Logs 13,664 MB 8,000 14% 11% 7.7% 4.0% 0.94%
Linux 2.2 source (4
vers.)

255 MB 20,400 23% 57% 22% 44% 24%

Email (single user) 549 MB 544 52% 98% 62% 84% 50%
Mailing List (BLU) 45 MB 46 22% 98% 53% 67% 21%
HP ITRC Web
Pages

71 MB 4,751 16% 86% 33% 50% 26%

PowerPoint 14 MB 19 67% 55% 46% 38% 31%
Digital raster graph-
ics

430 MB 83 42% 102% 55% 99% 42%

Table 6.3: Comparison of storage efficiency from different compression methods

• HP ITRC Support Web Site Text, human generated with some computer-generated

markup, some support page similarity.

• Microsoft PowerPoint Presentations Multiple presentations that have evolved over time

on related topics. Binary, human generated text plus PowerPoint art and some bitmap

imagery.

• Imaging DRG California Digital Raster Graphics. Binary/bitmap, stored in non-lossy

format, scanned from topographical maps. [27]

• Email Personal (single-user) email folder. Text, human generated.

• Mailing Lists Email mailing list archives. Text, human generated. [Kraftwerk music

interest, ImageMagick developer list, and BLU-Discuss (Boston Linux and Unix User

Group)].

The HP Unix Logs (8,000 files) show very high similarity. Chunk-based compression

on this similar data was reduced to 11% of the original data size, and when each chunk is

111

compressed using the zlib (similar to gzip) compression, it is just 7.7% of the original size.

Even more impressive are the reductions in size when using delta compression. When delta

compression is used alone, the data set is reduced to 4% of the original size, but when combined

with zlib compression, the compressed data is less than 1% of the original size.

Textual content, such as web pages, can be highly similar. However, in the case of the

HP ITRC content, gzip compression is more efficient than chunking or delta. More surprisingly,

gzip is better even when we do additional compression of chunks and deltas. The reason is that

gzip’s dictionary is more efficient across entire files than within the smaller individual chunks,

and chunk IDs appear as random (essentially non-compressible) data. But in the context of

an archival storage system, gzip’s advantage is not likely to be as effective in practice; this is

discussed below.

Non-textual data, such as the PowerPoint files with chunking and delta (especially

with gzip) achieve better efficiency than gzip alone. However, the achieved compression rates

are less impressive than those for the log data. For raster graphics, delta encoding with gzip

achieves modest improvement over gzip alone.

A single user’s email directory and a mailing list archive show little improvement

when using delta. Chunking is less effective than gzip, although we would expect it to reduce

redundancy found across multiple users’ data.

In most cases, inter-file compression outperforms intra-file compression, especially

when individual chunks and deltas are internally compressed. Chunking achieves impressive

efficiency for large volumes of very similar data. On the other hand, delta encoding seems

better for less similar data. We believe that this is due to the lower storage overhead required for

delta metadata. Typical sketch sizes of 80 to 120 bytes (20 to 30 features × 4 bytes) for a file

of any size are significantly smaller than the overhead of chunk-based storage, which is linear

112

with the size of the file.

Although compressing a set of files into a single gzip file to establish a baseline mea-

surement helps illustrate how much redundancy might exist within a data set, it is not likely that

an archival storage system would reach those levels of efficiency for several reasons. Most im-

portant is that files would be added to an archival system over time and files would be retrieved

individually. If a new file were added to the archival store, it would not be stored as efficiently

unless the file could be incorporated into an existing compressed file collection, i.e. the new file

would need to be added to an existing tar/gzip file. Likewise, retrieving a file would require first

extracting it from a compressed collection and this would require additional time and resources

over a chunk or delta-based file retrieval method.

Our experiments measured the size of an entire corpus, in the form of a tar file after it

has been compressed with gzip. Had we compressed each file with gzip first and then computed

the aggregate size of all compressed files, the sizes for gzip-compressed files would have been

much larger. For example, in the case of the HP ITRC web pages, gzip efficiency would have

been 30% of the original size, much larger than the 16% shown in table 6.3, and larger than the

26% that can be achieved by using delta compression with zlib. When delta compression (or to

a lesser extent, chunking) is applied across files first and then an intra-file compression method

second, it is more effective than compressing large collections of data because additional redun-

dancy can be eliminated.

Chunking Parameters Chunking efficiency varies with the different chunking parameters.

Chunking, which divides and addresses blocks of data using hashing techniques, relies on de-

terminism for stateless and consistent distributed behavior: data that is chunked by one host

does not need to see the data from another host in order for common chunks to be identified.

113

This constraint imposes the restriction that the parameters for chunking must be determined

once, and for all, data that is intended to be stored efficiently.

In Figure 6.7, we see that universally optimal parameters do not exist. In the case of

highly similar data, “logs-10”, a 10 file subset of the HP Log data, chunking efficiency improves

with smaller chunk sizes, which is determined by the divisor parameter. The irregular curvature

of the graph is due to effect of chunking overhead. The figure also shows that when similarity

is low, compression efficiency is poor and the overhead can increase the storage requirements

above the size of the original corpus.

23.1% 23.1% 23.3%
23.5%

26.8%
24.9% 25.7%

36.0%

31.9% 33.3%

29.1%

47.4%
45.6%

42.2%

38.8%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

8 12 16 32

divisor 64

divisor 256

divisor 1024

divisor 4096

co
m

pr
es

si
on

 (
%

 o
f o

rig
in

al
)

“LBFS” window size

Chunk-based compression
(Logs-10, chc32, min chunk=32-128B, max chunk=65536B)

Figure 6.7: The space efficiency of chunk-based compression at different window and expected
chunk sizes

114

The chunking parameters for the effect of the window size on chunking is shown in

Figure 6.8. With larger chunk sizes, larger window sizes, w can improve storage efficiency with

no additional cost. In this example of the text-based “log” data, a window size of 128 bytes

provided the best efficiency (35.7%) for an expected chunk size of 4096 bytes (d = 4096).

23.5%

38.1%
35.7%

47.6%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

8 12 16 32 64 128 256 512 1024

min=32 div = 64

min=128 div=4096

min=1024 d iv=4096

co
m

pr
es

si
on

 (
%

 o
f o

rig
in

al
)

“LBFS” window size

Chunk-based compression
(Logs-10, chc32, min chunk=32-128B, max chunk=65536B)

Figure 6.8: The space efficiency of chunk-based compression at different window sizes

Chunking Overhead In the case of chunking, the expected chunk size is a key configuration

parameter. It is implicitly set by setting the fingerprint divisor as well as the minimum and

maximum allowed chunk size. In general, the smaller it is, the higher the probability of detect-

ing common chunks among files. For data with very high inter-file similarity (such as log files),

115

small chunk sizes result in greater storage efficiency. However, for most data this is not the case,

because smaller chunks also mean higher metadata overhead. Often, because of this overhead

the storage space required may be greater than the size of the original corpus. As Figure 6.9

shows, the optimal expected chunk size depends on the type of data; using 128-bit identifiers,

the best efficiencies range from 256 to 512 bytes.

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

32 64 128 256 512 1024 2048 4096

List-KW List-Magick List-BLU
Paper Archive (PDF) DRG 32114 PowerPoint
Linux 2.2.x logs-500

Chunking efficiency by divisor
128-bit chunk IDs, min=32 bytes, max=65536 bytes

divisor size (bytes)

ef
fi

ci
en

cy
 (

%
)

Figure 6.9: Chunking efficiency by divisor size

Comparing Similarity and Chunking Overhead For storage efficiency, delta encoded data

works well at both ends of the spectrum: when data is highly similar, the total efficiency of

delta-encoded storage is nearly the same as chunking when both are combined with gzip com-

pression. But for data that is less similar, or even completely dissimilar, delta encoded data

116

does not exhibit nearly as much overhead since a sketch of 120 bytes for a file of any size is

significantly smaller than the overhead of chunk-based storage which is linear with the size of

the file. (Furthermore, with a small loss of efficiency, a sketch size of 80 bytes is nearly as

effective [40].)

For example, chunks that have an expected size of 1024 bytes (chunking parameter

d), a chunk ID size (CIDsize) of 128 bits will incur approximately (f ilesize/1024)× 16 bytes,

plus additional overhead for storing the chunks themselves of 20 bytes.

6.4 Evaluating Methods for Improving Compression

6.4.1 Delta compression between similar files

Delta encoding [4], an excellent inter-file compression method, is a compelling mech-

anism for reducing storage within a corpus that stores similar files. Delta compression is used

to compute a delta encoding between a new version file and a reference file already stored in the

system. When resemblance, an estimate of the similarity between two files, is above a prede-

termined threshold, a delta is calculated and only that is stored in the system. There are three

key steps that need to be designed and implemented for efficiency to delta compress between

similar files (DCSF).

First, features are selected from files in a content-independent and efficient way. We

use the shingling technique (DERD) by Douglis et al. [40], which calculates Rabin finger-

prints [11] over a sliding window on byte boundaries along an entire file. The window size, w

is a preselected parameter. The number of intermediate fingerprints produced is proportional

to the file size. To reduce it to a manageable size, a deterministic feature selection algorithm

selects a fixed size (k) subset of those fingerprints (using approximate min-wise independent

117

permutations [14]) into a sketch, which is retained and later used to compute an estimate of

the resemblance between two files by comparing two sketches. This estimate of similarity is

computed between two files by counting the number of matching pairs of features between two

sketches. Douglis has shown that even small sketches, e.g. sets of 20 features, capture sufficient

degrees of resemblance. Our experiments also show sketch sizes between 16 and 64 features

using 32-bit fingerprints to produce nearly identical compression efficiency. Using the same

hardware as above, we measured our feature selection program at 19.7 MB/s, k = 16, reading a

100 MB input file.

Second, when new data needs to be stored, the system finds an appropriate reference

file in the system: a file exhibiting a high degree of resemblance with the new data. In gen-

eral, this is a computationally intensive task (especially given the expected size of archival data

repositories). We are currently investigating feature-based hashing to reduce the search com-

plexity. Our method differs from DERD by allowing delta chains of length greater than one, by

storing and detecting similar files incrementally to more closely match a growing archive. We

used sketch sizes of 16 features (k = 16) and sliding window size of 24 bytes (w = 24).

Third, deltas are computed between similar files. Storage efficiency from delta is di-

rectly related to the resemblance. Highly similar files are more effective at reducing storage

usage than mildly similar ones. Fortunately, it is possible to reduce the comparison between

pairs of fingerprints in feature sets (16 or more fingerprints each) down to a smaller number of

features that are combined into “super” features, or superfingerprints/supershingles [15]. Each

superfingerprint is a hash of a subset of the features. If one or more superfingprints match, there

is high probability of a high similarity. REBL [83], by Kulkarni et al. , computed superfinger-

prints over chunks with 1 KB to 4 KB average size to yield large numbers of superfingerprints

to detect files with high resemblance. Because our design constraints such as the number of

118

expected files and real memory prevent this method from being directly applicable, we are eval-

uating a solution to meet those requirements. We measured xdelta at 8.7 MB/s (20 MB total

input size, 2.29 seconds) for worst case performance: a 10 MB input file of zeros and a 10 MB

file of random data, producing a 10 MB output file. Delta compression programs with higher

performance are known to exist [162] and can be used in practice.

The fourth step, common to all efficient storage methods, is storing the compressed

data. In DCSF, the delta file is recorded to the CAS.

6.4.2 Measurements

To evaluate our expected storage efficiency, we compressed six data sets using stream

compression (gzip), chunking (chc32), and delta compression between similar files (dcsf), mea-

suring the total (not just incremental) compressed size. Figure 6.10 shows these measurements

as a percentage of the original data.

To illustrate the range of redundancy in data, we selected data sets that are likely to

be archived, binary and textual data, and small and large files, and dissimilar as well as highly

similar data. Table 6.4 lists for each set its total size in megabytes, number of files, and average

file size in bytes.

Name size (MB) # files avg. size (B) s.d
PDF papers 239 754 331,908 802,035
PPT presentations 63 91 722,261 944,486
Mail mbox (3 dates) 837 383 2,291,208 9,397,150
HTML 545 40,000 14,276 27,317
PDF statements 14 77 186,401 120,146
Linux 2.4.0-9 1,028 88,323 12,209 31,528

Table 6.4: Data sets

We briefly describe the content in these data sets. PDF papers are PDF documents

119

of technical papers (conference proceedings, journal articles, and technical reports) in a bib-

liographic research archive. PPT presentations are Microsoft PowerPoint presentation files of

related work. Mail mbox are email folder snapshots for a single user on three separate dates.

The HTML set comes from the zdelta benchmark [162]. PDF statements are monthly financial

statements from investment institutions. And Linux 2.4.0-9 is ten versions of the Linux kernel

source code, 2.4.0 through 2.4.9.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gzip each 79.0% 72.0% 56.0% 24.5% 21.0% 27.5%

chc32 -d 512 -z 83.6% 42.7% 22.6% 18.4% 8.6% 10.7%

dcsf -L 1 78.5% 51.0% 47.0% 24.9% 7.0% 28.3%

dcsf 75.0% 37.0% 20.0% 7.7% 6.0% 4.3%

PDF
papers

PPT
presentatio

ns

Mail mbox
(3 dates)

HTML
(40,000)

PDF
statements

Linux 2.4.0-
9

Figure 6.10: Storage efficiency by method

Sizes were measured in the following manner. The gzip compressor was applied

on each file with default parameters, and all file sizes were added to produce the compressed

size. The chc program read a tar file containing all input files and produced a single chunk

archive, using a divisor of 512 bytes (D = 512), compressing each chunk with the zlib stream

120

compressor; the total size is a sum of the single instances of compressed chunks and a chunk

list. The dcsf method computed delta using xdelta (version 1.1.3 with standard options that use

the zlib compressor), selecting the best file with a threshold of at least one matching fingerprint

in the sketch; reference and non-matching files were compressed with gzip and the measured

size was the sum of all of these files. The -L 1 option sets a maximum delta chain length of

one, i.e. deltas are only computed against reference files. This avoids chains of reconstruction,

but at the expense of lower space efficiency.

6.4.3 Measuring the benefit of high resemblance data

To help understand the importance of file similarity on the storage efficiency, we

conducted experiments to compute the relationship between resemblance (an estimate of file

similarity) and the actual amount of storage that is used. The amount of data similarity varied

widely, and so did the amount of compression. However, some behaviors were common, such

as the relationship of storage resemblance and the inter-file compressibility of data. Using the

Linux source code data set (ten versions, 2.4.0–2.4.9), we ran dcsf to assess the importance of

high resemblance data. Our experiments would store all files from version 2.4.0 first in order,

then 2.4.1, etc. evaluating each file individually against previously stored files. The file size

after gzip (intra-file compression only) was compared against xdelta (both intra- and inter-file

compression) and total storage was tabulated by resemblance.

In Figure 6.2, the horizontal axis lists the (discrete) resemblance: a number of features

that were matched and for each corresponding number of matching features (out of a sketch size

k = 30). On the vertical axis, the amount of space that was necessary to store the files with that

resemblance. The delta graph shows the storage efficiency improving (decreasing) as the resem-

blance increases. This confirms the relationship between resemblance (an estimate) and delta (a

121

computed difference between two files). By comparison, the gzip graph is relatively flat, rang-

ing from approximately 25% to 30%. The reduction in storage illustrates the complementary

benefit of intra-file and inter-file compression.

Linux kernel sources: file data stored
(by resemblance, cumulative)

0,000

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

0 5 10 15 20 25 30

Resemblance (30 features)

B
yt

es
 s

to
re

d
 (

in
 t

h
o

u
sa

n
d

s)

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

fi
le

 c
o

u
n

t

file count CDF

uncompressed CDF

gzip CDF

delta CDF

uncompressed total: 100% (1.0GB)
gzip total: 27%
delta total: 4%

Figure 6.11: Cumulative data stored, by resemblance comparing gzip and delta compression;
1.00 GB cumulative uncompressed size

Using the same data, Figure 6.11 shows a different view of the storage efficiency that

demonstrates the importance of finding identical or highly similar data. The resemblance is still

on the horizontal axis, but two sets of data are superimposed. The file count (bar graph) shows

the number of files that are in the workload with a given resemblance. The other lines show

both uncompressed size, the size of the data set when each file is compressed with gzip, and

finally the delta-compressed size using xdelta. File counts and sizes are cumulative of all files

with lower resemblance.

122

With 88,323 files and one gigabyte of data, a significant number of files have very

high similarity, in fact many are identical. The amount of storage required for gzip is only 27%

but with delta, the total amount of storage is 4% of the original, uncompressed source code. The

relative flatness of the delta plot near 30 of 30 features shows only a slight increase in storage

space despite the large numbers of copies that were stored.

What is important to note is that the major benefit comes from files that have high

resemblance (30 out of 30 matching features, which is equivalent to all superfingerprints match-

ing). PRESIDIO’s progressive feature matching process would first attempt to match identical

files, then highly similar files, and then finally somewhat similar files. The time to search the

first two categories is relatively fast and requires direct lookup of whole files or chunks instead

of a full pair-wise feature resemblance across a large set of files.

Linux kernel sources: file data stored

(by resemblance, cumulative)

-

50,000

100,000

150,000

200,000

250,000

300,000

0 5 10 15 20 25 30

Resemblance (32 features)

B
y

te
s

 s
to

re
d

 (
in

 t
h

o
u

s
a

n
d

s
)

2.4.0 uncompressed

2.4.0 gzip

2.4.0 dcsf

2.4.0-2.4.9 uncompressed

2.4.0-2.4.9 gzip

2.4.0-2.4.9 dcsf

Figure 6.12: Cumulative data , by resemblance; Linux 2.4.0 vs. 2.4.0–2.4.10; 1.00 GB cumula-
tive uncompressed size

123

method bytes size of 2.4.0 % of uncompressed
2.4.0 2.4.0–2.4.9 vs. 2.4.0–2.4.9 2.4.0 2.4.0–2.4.9

uncompressed 99,944,270 1,078,316,273 9.27% 100.00% 100.00%
gzip 27,527,744 296,475,233 9.29% 27.54% 27.49%
dcsf 26,005,285 44,446,197 58.51% 26.02% 4.12%

Table 6.5: Cumulative data stored by dcsf, one version of source versus ten versions

Another experiment compares DCSF on a single set of source code, Linux 2.4.0,

against DCSF on ten sets of source code, versions 2.4.0 through 2.4.9. This experiment used

a sketch size of k = 32 and produced nearly identical compression results to the previous ex-

periment k = 30 for ten versions. The results are shown in Table 6.5. As would be expected

of incremental source code development, the uncompressed data size for one version is 9.27%

or about one-tenth of ten versions. Likewise, the total size of all files in a single version indi-

vidually compressed by gzip is 9.29%, also close to one-tenth of all ten versions of source files

gzipped individually.

This experiment reveals discriminating behavior when DCSF is applied to both dis-

similar and highly similar data. While a single version of source files are individually com-

pressed with gzip to 27.54% of their total uncompressed size, DCSF compresses slightly better,

to 26.02% of total size. The slight improvement is due to the slight favor of delta compression

to gzip between files with non-zero resemblance. The more dramatic result is that storing ten

versions of source requires 44.4 million bytes versus 26.0 million bytes—an increase of 70.91%

to store an additional 979% more data.

Figure 6.12 illustrates the the effect of resemblance on compression. Each file is

computed to have a resemblance to at least one other file previously stored. The height of a

data point represents the cumulative amount of data stored for all files less than or equal to

the resemblance on the x-axis. Solid data points indicate a single version; outlined data points

124

are for ten versions. The shape of uncompressed and gzip-compressed curves are similar, but

reduced by a nearly constant factor for gzip. The difference between uncompressed (circles)

and DCSF (squares) is very different for all ten (2.4.0–2.4.9) versions of source: most data

in uncompressed form is highly similar, as indicated by the data point at 1,078,316,273 bytes,

off the chart. However, for both single-version and ten-version curves, the additional storage

require to store highly similar data is very small due to the high efficiency of delta compression.

By experimenting with DCSF and varied parameters, we have measured a number of

data sets which have high variation in the amount of inter-file and intra-file redundancy. High

levels of compression are possible, including computer-generated data that was measured to

less than 1% of the original size [173]. By not attempting to fit a single compression scheme

to all data, and providing a framework for one or more schemes, the Deep Store architecture

benefits a wide range of data types.

6.4.3.1 Delta Chain Length

Delta compression creates dependencies between files. These dependencies form

graphs that affect the size of stored data, storage and retrieval performance, and reliability.

It is important to select shorter reference files with delta chains.The cost of retrieving a file by

reconstructing data from reference and delta files is directly related to the length of the delta

chains. It is important to select an appropriate delta chain length. We have measured the effect

of short and long chain lengths.

Delta chains of length greater than one benefit compression significantly. Previous

work using delta compression to store data efficiently have not used delta chains [40, 83] and

only used a single delta file to compress against a reference file and not another version file,

i.e. chain length L ≤ 1. The measurements listed in figure 6.10 show the potential difference

125

between bounded (dcsf -L 1) and unbounded (dcsf) delta chains. When the maximum

chain length is unbounded, storage can be reduced by nearly seven times down to a storage rate

of 4.3% (in the case of Linux 2.4.0–2.4.9).

Figure 6.13 shows the cumulative distribution of files against the degree of depen-

dence on base files. Each data set is graphed twice, once using delta chains of maximum length

1, e.g. html -l -r -L 1 in dashed lines, and again using delta chains of unbounded length.

Limiting the delta chain length also limits the degree of dependence. Higher numbers of files

with lower degrees of dependence (L 1) indicate lower instances of delta compression, which is

in turn reflected by lower storage efficiency. In contrast, unbounded delta chains allow higher

levels of data dependence. One reason for this effect is that files are introduced into the system

one at a time.

The Linux data set contains ten similar versions of source code. The lowered data

points below 95% for degrees less than 9 indicate the high level of delta encoding against similar

files, including high degrees of dependence as high as 8. One can picture a single file (version

2.4.0) being introduced to the system, followed 9 identical or similar files being detected (2.4.1

through 2.4.9). Delta files are computed against the original.

But this restriction is a simplifying assumption and relaxing it to allow arbitrary length

increases storage efficiently significantly. This is in part due to the problem that a file can only

be a reference file or version file. Once a file is committed to storage as a version file (i.e. the

file is considered a version file and a delta is stored in its place), it can no longer be used as a

reference. A low resemblance threshold compounds this problem by allowing more files to be

considered as versions of existing reference files than when a high threshold is used. When no a

priori knowledge of future files is known, highly similar files might become version files. Our

measurements show this is true, rendering a highly similar set of file data to compress no better

126

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 5 10 15

degree

%
 f

il
e
s
 s

to
re

d
 w

it
h

 d
e
p

e
n

d
e
n

c
e
 <

 d
e
g

re
e

html -l -r html -l -r -L 1

linux -l -r linux -l -r -L 1

Mail -l -r Mail -l -r -L 1

pdf -l -r pdf -l -r -L 1

ppt -l -r ppt -l -r -L 1

pdf statements pdf statements -L 1

Figure 6.13: Cumulative distribution of files stored by degree of dependence

than gzip on a per-file basis.

Delta chains can be detrimental to storage performance and resource usage. Reference

files can be virtual, meaning that they must first be reconstructed. When reference files, or

version files that are used as delta references, must be retrieved or reconstructed, disk and

computation are used first to reassemble and then store the fully instantiated reference file.

We mitigate reconstruction cost from delta chains in a number of ways. The first

and most important step is to reduce the delta chains when it is possible. If the reference file is

selected arbitrarily, long delta chains can form. A simple change to associate a single delta chain

length remedies the situation significantly, as seen in Figure 6.14. In this example, the reference

127

file with the highest resemblance is selected. The first line listed in the legend minimizes the

delta chain in selection; all things being equal, a reference file with the lowest delta chain

length is selected. This resulted in an average chain length of 5.83. The second line attempts to

compute delta against the maximum degree, but produced an average chain length over double

(12.91) of the previous method. The third method selected an arbitrary reference file, with an

average chain length of 24.26. The last case is the same as the first, with the exception that

the maximum chain length was 8 (-L 8). This may be useful for analysis of reliability models

at a small expense of storage space. With high levels of resemblance seen in this data set,

careful base file selection can reduce chain length or increase degree of dependence with low

cost. The difference between minimum and maximum compression between these methods is

approximately 3%, which is negligible compared to the 23.5:1 compression ratio.

A possible improvement is to rewrite some version files as reference files. When the

system detects a large degree of dependence on a version file, the version file can be retrieved

and stored as a reference.

Caching might further mitigate the effect of delta chains. The issues in delta chains

are largely related to performance, so file caching techniques, including predictive prefetching,

may be useful. To date, we know of no research that has been conducted on caching in delta

compressed archival storage systems.

6.4.3.2 Data Dependent Compression

We measured the storage efficiency of dcsf over a number of data sets. In Figure 6.15

we show the amount of storage required to compress several data sets. The vertical axis indicates

the total amount of space used when delta compression is applied above a threshold, indicated

on the horizontal axis. (For illustration, last data point on the data graph indicates the cumulative

128

linux kernel source, versions 2.4.0-2.4.9

0

5,000

10,000

15,000

20,000

25,000

0 20 40 60 80 100 120

delta chain length

fi
le

s

delta: max res., min length, max degree, avg. len = 5.83, size = 213155840

delta: max res., max degree, avg. len = 12.91, size = 213114880

delta: max res., random base, avg. len = 24.26, size = 212602880

delta: max res., min length (max=8), max degree, avg. len = 5.53, size = 219607040

Figure 6.14: Delta chain length and storage efficiency

storage when each file is compressed with gzip.) For example, the Linux source data set (ten

versions) shows on the far right that if delta compression were applied to files showing perfect

resemblance of two sketches (at r = 1.00, equivalent to a single superfingerprint when s = 1),

the compression reduces storage to 6% of the total, a saving which would be realized by one

supershingle. The data set labeled Statements would be reduced to 14.8% of uncompressed data

(r = 1.00), but more significantly, down to 2.5% (r = 0.77). With high probability, the harmonic

superfingerprints at s = 8 would be able to detect those matching pairs. Finally, the PowerPoint

data set shows a range of 58% compressed size for r = 1.00 down to 37% for r > 0, indicating

that superfingerprinting would not detect redundancy, which is still significant.

129

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0
.0

0

0
.0

3

0
.0

7

0
.1

0

0
.1

3

0
.1

7

0
.2

0

0
.2

3

0
.2

7

0
.3

0

0
.3

3

0
.3

7

0
.4

0

0
.4

3

0
.4

7

0
.5

0

0
.5

3

0
.5

7

0
.6

0

0
.6

3

0
.6

7

0
.7

0

0
.7

3

0
.7

7

0
.8

0

0
.8

3

0
.8

7

0
.9

0

0
.9

3

0
.9

7

1
.0

0

g
z
ip

resemblance, r

to
ta

l
c

o
m

p
re

s
s

e
d

 s
iz

e
 (

p
e

rc
e

n
ta

g
e

 o
f

u
n

c
o

m
p

re
s

s
e

d
)

linux source 2.4 (10 versions)

PDF papers

Statements

MP3

PowerPoint

Figure 6.15: Storage used when delta applied: resemblance (F1,F2) < r vs. gzip

6.4.4 Performance

In practice, space efficiency is not the only factor used to choose a compression tech-

nique; we briefly discuss some other important systems issues such as computation and I/O

performance.

The chunking approach requires less computation than delta encoding. It requires

two hashing operations per byte in the input file: one fingerprint calculation and one digest

calculation. In contrast, delta encoding requires s + 1 fingerprint calculations per byte, where

s is the sketch size. It also requires calculating the deltas, even though this can be performed

efficiently, in linear time with respect to the size of the inputs. Additional issues with delta

130

encoding include efficient file reconstruction and resemblance detection in large repositories.

To write chunks to the CAS, a hash table or distributed hash table must be first exam-

ined to determine placement of a chunk based on its chunk ID. Unlike traditional file systems,

which can place object data based on directory, file name, or block number within a file, the

chunk ID is intended to be globally addressable. During the file store operation, a write can

be placed anywhere according to the mapping function provided by the CAS. However, during

retrieval, chunks must be collected and retrieved. Over a distributed store, the random distribu-

tion of the chunk IDs lowers the probability that any single storage node contains all the data.

However, the small sizes of chunks can make performance similar to a completely fragmented

traditional file system. Wise engineering, such as clustering or ordering requests for a file, can

improve performance.

The delta encoding method requires more compute resources than chunking and is

made up of three main phases: computing a file sketch, determining which file is similar, and

computing a delta encoding. Currently, the most costly phase is computing the file sketch due

to the large number of fingerprints that are generated. For each byte in a file, one fingerprint is

computed for the sliding window and another 30 fingerprints are computed for feature selection.

The shingling performance in our prototype (CPQ hardware, Table 4.5) was approximately

1.6 MB per second, far less than the 30 MB per second disk read performance. We felt this

performance was unacceptable, so through substantial coding optimizations, we were able to

improve throughput to 11.4 MB per second, and later when running on the PL (Table 4.5)

hardware, to 19.7 MB per second.

Fortunately, we believe that improvements in the fingerprinting implementation, the

ability to parallelize the operation, and some heuristic modifications can easily increase the

shingling performance by a factor of ten.

131

The second operation, locating similar files, is more difficult. Our prototype imple-

mentation was not scalable since it compares a new file against all existing files that have already

been stored. Scalability in searching for a similar file is a particularly interesting area of our

research. We are also optimistic that large-scale searches are possible given the existence of

web-scale search engines that index the web using similar resemblance techniques [15].

The two techniques exhibit different I/O patterns. Chunks can be stored on the basis

of their identifiers using a (potentially distributed) hash table. There is no need for maintaining

placement metadata and hashing may work well in distributed environments. However, recon-

structing files may involve random I/O. In contrast, delta-encoded objects are whole reference

files or smaller delta files, which can be stored and accessed efficiently in a sequential manner,

though the placement in a distributed infrastructure is more involved.

A couple additional issues exist for delta encoding that are not present with chunking.

Because delta encodings imply dependency, a number of dependent files must first be recon-

structed before a requested file can be retrieved. Limiting the number of revisions can bound

the number of reconstructions at a potential reduction in space efficiency. Another concern that

might be raised is the intermediate memory requirements; however, in-place reconstruction of

delta files can be performed, minimizing transient resources [23]. At first glance, it would ap-

pear that the dependency chain and reconstruction performance of delta files might be lower

than reconstruction of chunked files, but since reference and delta files are stored as a single file

stream and chunking may require retrieval of scattered data—especially in a populated chunk

CAS—it is unclear at this point which method would produce worse throughput.

132

6.4.5 Relationship Between Resemblance and Storage Efficiency

We validate our hypothesis that using inter-file compression between highly similar

files is more efficient than compression between dissimilar files. Before engineering a system

that uses significant computing or storage resources, we first show that the gains are significant,

and that they are directly related to resemblance.

Our evaluation proceeds as follows. First, we manufacture a synthetic data set from

two random starter files such and compute intermediates that are partially different between the

two files. With this set of files, we run the dcsf algorithm and compute the amount of storage

each file would take if it were to be compressed using delta compression against the most similar

file already stored. We repeat the experiment with user data.

Figure 6.16 illustrates the direct relationship between delta compression on similar

files. Using a synthetic data set of 201 files, we used dcsf to first detect similar files and then

used xdelta to compute against the most similar file detected. The resulting delta file size on the

vertical axis is plotted as a fraction of the size of selected reference file.

We created a synthetic data set using the algorithm and code used to evaluate the

zdelta delta compression tool [162]. Random data was written into two starter files, f0 and f1,

each of size 1,048,576 bytes (1 MB), to ensure zero resemblance. Next, intermediate files, also

1 MB in size were “morphed” by “blending” data from each of the two starter files using a

simple Markov process parameterized by q and forming non-linear similarities. As stated in the

zdelta technical report: “[The] process has two states, s0, where we copy a character from f0,

and s1, where we copy a character from f1, and two parameters, p, the probability of staying in

s0, and q, the probability of staying in s1.” Within our experiments, we set q = 0.5 and vary p

from 0 to 1 at 0.005 increments.

133

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Resemblance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
e
lt
a
 f
ile

 s
iz

e
 r

e
la

ti
v
e
 t
o
 u

n
c
o
m

p
re

s
s
e
d
 f
ile

 s
iz

e

Figure 6.16: Relationship between resemblance and delta compression against uncompressed
data

6.5 Discussion

Data compression aims to eliminate redundancy. In a system where many potential

forms of redundancy might exist, applying the largest granularity of data compression will result

in the largest efficiency gains. In addition, compression efficiency is strongly data dependent. It

can be useful to think about the domain of data compression as applying to a spectrum. At one

end, file data entropy is very high, and information theory will say it would be difficult to find

any redundant data. Files of this type exist, either as random or seemingly random data, or as

previously compressed data. For these files, virtually no similarity detection will help; however

134

redundancy can still exist when multiple copies of files exist. In this case, large-grained feature

extraction results in small numbers of features that can be detected quickly and accurately. At

the other end, files are stored that are slight variations of others; content such as human-readable

text, computer-generated data, or modifications of previously stored data exist widely. In these

cases, when data similarity exists, feature selection must be more fine grained.

Redundancy is highly data dependent, and so methods to eliminate redundancy will

vary greatly. While the scope of data compression has typically worked within a limited context

such as a file, data compression in storage has a much larger context to work within. Unfortu-

nately, suppression of duplicate storage is not an optimal solution. Likewise, delta compression

against single files is not either. The logical next step is to use the best solution possible when

there is low cost. Because the act of compressing data, i.e. encoding it, is separate from model-

ing the compressed data, i.e. detecting the opportunity for compression, we aim to incorporate

data compression in an opportunistic manner.

Modeling data compression can be difficult. When using heuristic methods, it’s not

always possible to produce results with the highest accuracy or with optimal results. Further-

more, our methods to detect similarity depend on a number of parameters that must be tuned,

but it is not an practical matter to fix all parameters a priori. While we have shown that there

is some tolerance to widely varying parameters, for instance sketch size, the size of the sliding

window for shingling, and expected chunk sizes, there is no guarantee that these will work well

for all data. The common result that good window sizes are within a range of tens of bytes is

empirical in nature and may depend largely on a particular class of documents.

The reliance on some estimates may yield non-optimal results. In the case of sketches,

a compression model relies on the resemblance, which is strictly an estimate for document

similarity. The coverage of the selected feature data is a small fraction of the overall data set,

135

yet the expectation that surrounding data will be similar may not be a good assumption. Our

experiments have shown that estimates for resemblance correspond proportionately to more

efficient data storage, but these results are born from empirical data.

6.6 Summary

In this chapter we have described several ways to improve storage efficiency through

data compression. Data compression, which can occur within a single file stream, or across

files, eliminates redundancy.

The whole-file hashing method suppresses storage for identical files i.e. unity resem-

blance. The chunk-based storage method subdivides files and suppresses storage of individual

chunks, with some overhead storing lists of identifiers. Delta compression between similar files

computes sketches and compares them against sketches for stored files. Resemblance is a good

indicator of the potential for file storage.

We developed a chunk compression program, chc to compress a single file into chunks

by suppressing multiple storage of chunk data. The evaluation of this prototype provided results

including chunk size distribution, and storage efficiency as a function of the distribution.

In DCSF, data compression rates vary as a function of many parameters including

fingerprint window size, the delta chain lengths, and the degree of dependence. We evaluated

several parameters and have shown that delta chains with length equal to zero or one are not

as efficient as longer chains. We also evaluated the effect of delta chain length and degree of

dependence on total space efficiency and have shown that differences in reference file candidate

selection can dramatically change delta chain modeling, which may be useful for improved

reliability models.

We compared chunk-based storage and delta compression storage. Delta compression

136

provides finer grain differences between similar data. These results pointed to the need for an

integrated storage architecture that would allow both chunk and delta storage to be used to

maximize the best of both methods.

137

Chapter 7

Storing Data

Once redundancy has been eliminated, data is ultimately stored in a unified content-

addressable storage, or CAS, subsystem. In this chapter we describe the PRESIDIO Virtual

CAS, or VCAS, which presents a unified storage interface externally but stores and recon-

structs data using virtual content-addressable objects. First, we provide an overview of CAS

systems and our contribution, the Virtual CAS. Second, we examine a number of properties in

turn, namely the CAS objects, metadata, storage operations, reliability, and our prototype im-

plementation. Third, we evaluate our VCAS design and prototype implementation. Finally, we

summarize our design and results.

7.1 Overview

Content-Addressable Storage (CAS) provides many advantages for storing and ac-

cessing immutable data and recent industrial adoption shows that it is fast becoming a con-

ventional means for recording archival data. Programs to compute a content address (CA), a

hash or digest over a variable-length file, can do so at higher throughput than the bandwidth of

138

common magnetic disks. Cryptographic or one-way hash functions improve tamper-resistance

because modifications to contents invalidate the address. Content addresses, which take up 16–

20 bytes in our system, are smaller than filenames, and do not require directory organization to

disambiguate names. For large volumes of data, the random distribution of content addresses

allows storage system designers to create scalable addressing architectures so that file data is

easily distributed across storage nodes or devices.

CAS systems also have a few shortcomings. Computing the content address is an

operation that does not occur on block-based file systems; as a result, an entire file must be

scanned before the address can be computed thus introducing a serialization dependency. Some

CAS systems are designed with the assumption that low probabilities of collision of content

addresses (hash values) are acceptable. Thus if a new file that is being stored hashes to an

existing one, the storage operation is suppressed even though new content has not yet been

recorded. The collision avoidance property of hash functions distributes addresses across the

entire CA space, but by doing so, it eliminates any locality of name or reference, so CAS

storage organization based purely on content addresses may cause more random access than

linear access, thereby decreasing performance on disk-based systems.

Our contributions to CAS storage are the following. We extend the CAS model to

combine virtual content addressing with a unified storage model and we also present a low-

overhead VCAS storage implementation that provides further benefit by using temporal locality.

Figure 7.1 illustrates the relationship between the content-addressable storage sub-

system and the efficient storage methods that depend on it.

139

Feature Selection

Efficient Storage Methods

Content-Addressable Storage

Redundancy Elimination

Similarity Detection

chunk digest

hash retrieval

digest hash

retrieval

fingerprinting

bit string

hashing

shingling

chunk

divisions

super-

fingerprint

similar files-

super

fingerprint

(SF-SFP)

similar files-

fingerprint

(SF-FP)

chunk digestdigest

intra-file

compression

inter-file

compression

delta

compression
hybrid delta

compression

duplicate

suppression

delta compression

between similar files

DCSF-SFP

delta compression

between similar files

DCSF-FP

chunk CAS

CAS Virtual CAS

whole-file

CASstream

compression

chunk digest

chunk digest

hash retrieval

chunk CAS

abstract

concrete

instance

reference

Relationships

concept

uses

chunk lists sketch

data algorithm

Figure 7.1: Content-addressable storage within the PRESIDIO framework

7.2 Content-Addressable Storage

We start with an abstract model of content-addressable storage. File content is iden-

tified by its content address (CA). A client program makes a store request to the CAS and is

returned its CA. Later, another program sends a retrieve request with the CA and the original

contents are returned.

We simplify the data storage model by separating file metadata from its contents. File

metadata, which can include filename, ownership, location, and other, is serialized into a single

stream. The metadata is also stored in the CAS and is identified by its CA. To improve the ease

140

of implementation, we use the same content address namespace for both file content and file

metadata.

7.2.1 Addressing Objects

CAS systems share common addressing properties. Content stored in CAS are im-

mutable. This permits the system to address by content instead of by location. Variable-length

content can be reduced to a probabilistically unique identifier or address by hashing their con-

tents using functions with very low collision rates. In many systems, one-way hashing functions

are used in order to prevent intentional collisions of hash values.

Content addresses might refer directly or indirectly to a stored block of data. In other

words, a hashing function like MD5 might compute its digest just over the block of data that is

stored, or it might be computed over a handle that incorporates metadata that includes a content

address within its structure that refers to raw content.

In order for a content address type to be reusable across a large storage corpus, its

size, the function that computes values, and the bit representation of both the content as well as

the address must be determined once and fixed for all time. Typical content address sizes start

at 128 bits using cryptographic hash (digest) functions like MD5, which take a variable-length

byte strings as input and produce a small fixed-length hash value.

Because addresses can only be computed once the entire contents of a file are known,

the performance of the hashing function is a matter of practical importance. Although some

fast hashing functions are known to produce low probability of collision with arbitrary input,

they might not satisfy a system design requirement to prevent tampering of data by substituting

stored contents with manufactured data that hash to the same address. In other words, cryp-

tographic hashes are often a design requirement, but they can reduce performance, as we have

141

f number of files
l f ile average file length, in bytes
lvcas average size of VCAS object, e.g. chunk
c = l f ile/lvcas number of VCAS objects per file
m = c× f number of objects to be stored in the global VCAS
n = 2cabits number of addressable objects in the VCAS
q = log2(m) log2 of the number of objects, m
r = cabits = log2(b) number of bits in the content address

Table 7.1: VCAS design parameters

seen in Table 4.4.

7.2.1.1 Hash Collisions

Although probabilistically infrequent, hash collisions can occur. We design our sys-

tem to incur a low collision rate such that they are likely never to occur. We first set some

design assumptions for the likely case as well as a conservative case, listing the main design

parameters of interest in Table 7.1.

We start by designing a system to hold about 230 or about 1.1 billion files. This

is approximately equivalent to 210 (or 1,024) storage nodes each with about 220 (about 1.07

million) files each. We assume the average file size in a file system is less than 214 bytes (16

KB) [154]. We have previously determined that a lower practical limit for files divided into

chunks is at least 27, or 128 bytes. These parameters are listed in Table 7.2.

We represent content addresses as a fixed-length bit string, thus represent a space of

n = 2cabits identifiable objects, where cabits is commonly 128–160 bits in CAS systems. How-

ever, for file objects with bit string length of 8l f ile, the actual space of unique objects is 28l f ile

and cabits� 8l f ile. Although the universe of possible unique objects is large, we are interested

in the probability of collision in the hash (content address) space.

142

f l f ile lvcas c m n q r p description

1 230 NA NA 1 230 2128 30 128 2−69 MD5, 1 billion files,
whole file objects

2 240 NA NA 1 240 2128 30 128 2−49 MD5, 1 trillion files,
whole file objects

3 230 214 28 26 236 2128 36 128 2−57 MD5, 1 billion files, 256
byte objects

4 240 220 27 213 253 2128 53 128 2−23 MD5, 1 trillion files, 128
byte objects

5 240 220 27 213 253 2160 53 160 2−55 SHA-1, 1 trillion files,
128 byte objects

6 240 220 27 213 253 2256 53 256 2−151 SHA-256, 1 trillion files,
128 byte objects

Table 7.2: Approximate collision probabilities, p, for specific VCAS design values

An object space of n objects does not have n−1 probability of collision; we consider

the birthday paradox to evaluate collision instead. In other words, we compute p, the probability

of collision as a function of m (the number of objects to be stored), n (the number of addressable

objects) [65] with the formula:

p≈ 22q−(r+1) (7.1)

whose derivation follows. The probability of success, i.e. no collisions occurring, is given by:

prob(success) = e−(m(m−1))/2n

= e−2q(2q−1)/2(2r)

≈ e−22q−(r+1)

Since for 1− e−x ≈ x for small x, then the chance of failure is p≈ 22q−(r+1).

143

Assuming uniform distribution of the hashing function, the collision rates are com-

puted as probabilities of collision with a given set size. The different storage scenarios listed in

Table 7.2 illustrate the effect on collision probability when the number of stored objects, content

address size, and other related factors are varied.

Line 1 lists parameters one might find in a traditional whole-file CAS. We assume

a requirement to store about one billion (230) files with using 128-bit CAs (like MD5) would

yield a very low probability of p≈ 2−69. In line 2, we increase the file count to one trillion (240)

files and the collision rate across the entire CAS is extremely low, p≈ 2−49 ≈ 1.8×10−15 that

two files will collide.

In the next scenario (our target design) on line 3, we store about one billion files, each

having average size of 16 KB, and an average sub-file object size of 256 files. These objects

might represent small chunks or they could represent delta files. In either case, using 128-bit

content addresses, we increase the number of objects stored in the CAS by a factor of l f ile/lvcas.

We see that the probability of collision is still quite low, at 2−57.

Line 4 represents a more conservative set of assumptions: one trillion files, 128 byte

objects (not a very likely scenario due to the increased overhead of small objects), and a prob-

ability of collision of 2−23. Lines 5 and 6 reveal how increasing the CA size to 160 bits (e.g.

SHA-1) and 256 bits (SHA-256) further reduce the probability of collision significantly.

One last question remains: what probability of collision is satisfactory? A common

design philosophy is to match or exceed the undetected disk bit error rate on magnetic storage

which is typically 10−12 to 10−15 [131, 71, 62]. One might argue that this is a reasonable error

rate, however there is a difference: in magnetic disk devices, undetectable errors occur at the

block level. CAS storage systems like ours typically hash entire files and then identify the files

by their CA. It would be more appropriate to evaluate sub-file hashing, for instance by first

144

subdividing the blocks. Comparing block-level hashing collision rates with undetectable block

error rates is perhaps a more appropriate metric.

One criticism of CAS is its lack of strict correctness. Henson argues [60] that CAS

systems that rely on hash equivalence for object equivalence is fundamentally the same as an

error in design or implementation of hash tables in which a hash function is used to compute

hash keys, but not comparing values when there is a collision in the keys. Systems like Centera

compare the entire contents of files for correct operation at the expense of transmitting entire

copies in all cases. One side benefit of CAS and network storage systems is that using hash

identity suppresses transmission when data objects on both ends are hashed identically, even if

their contents are not; network throughput rates can increase dramatically.

Another criticism of CAS is the use of an argument that compares of hash collision

probabilities against the bit error rates [131] after device-based error-correction codes (ECC)

are applied. Collisions are a metric of key collisions for CAS objects of arbitrary size and not

the error rate for the recovery for a single bit. If the storage of a CAS object was suppressed

due to a collision, then retrieval would likely be incorrect for a whole block whereas undetected

ECC failure may only return slightly corrupted data. Furthermore, when we seek to eliminate

redundancy by sharing common data through chunks or delta storage, the effect of a single error

is magnified by the number of CAS objects (files) that depend on it. The failure modes between

CAS and device are different, so comparing probabilities of error are difficult.

The study of CAS correctness is a topic of future work. Because of the exceptional

instances of collision, we believe collision resolution can be handled in a manner by detecting

collisions, definitively determining whether data is different, and then storing additional meta-

data in CAS subsystems (or in our case, CAS storage groups) to indicate objects with colliding

addresses.

145

7.3 Metadata

The PRESIDIO CAS stores metadata, adjunct information related to file contents. We

distinguish file metadata, primitive file system-level information about the raw content of the

file, from rich metadata, application-level information. While file metadata, like the size of file

and modification date, are ubiquitous and can be specified easily, rich meta information like

keywords, indexes, thumbnails, or other representations of a file, are specific to applications.

Our storage system is designed to store the most primitive metadata necessary. Be-

cause the mechanism to store any kind of file data—including metadata—is designed for low

overhead and low redundancy, applications and storage layers built on top of the PRESIDIO

VCAS can create their own metadata formats.

7.3.1 Archival metadata formats

File archives contain both file content as well as file metadata. We examined some

Unix file formats for their size overhead in order to assemble a simple metadata format that

could be used to archive and restore commonly used files.

Two Unix uncompressed archiving programs ar and tar, and two compression pro-

grams, gzip and xdelta, are common examples of programs that retain file metadata. We mea-

sured files with one byte length and then disassembled the file format to determine what would

constitute a minimal set of file attributes.

In 7.3, we list two files, a and b to show the relative file overhead for each single-byte

file. Because the ar file format was small, we extracted the fields that would be commonly used.

/usr/include/ar.h: (FreeBSD 4.8)

struct ar_hdr {
char ar_name[16]; /* name */
char ar_date[12]; /* modification time */

146

filename size (bytes) command to create file
a 1 echo -n a > a
b 1 echo -n b > b
a.a 70 ar -q a.a a
b.a 70 ar -q b.a b
a.a.gz 69 gzip a.a
b.a.gz 69 gzip b.a
a.tar 10,240 tar -cf a.tar a
a.tar.gz 122 tar -zcf a.tar.gz a
a.tar.gz 128 tar -cf a.tar a; gzip a.tar
ab.tar.gz 143 tar -zcf ab.tar.gz a b
b.delta 209 xdelta delta a.a b.a b.delta

Table 7.3: Archive file metadata sizes

char ar_uid[6]; /* user id */
char ar_gid[6]; /* group id */
char ar_mode[8]; /* octal file permissions */
char ar_size[10]; /* size in bytes */

#define ARFMAG "‘\n"
char ar_fmag[2]; /* consistency check */

};

Next, we converted each field into a corresponding XML entity using a representation in text,

thus producing a suitable replacement that is easily interpreted:

<?xml version="1.0"?>
<file>
<name>presentations.tar</name>
<ca>9797f2de010e6244cc39081ceeb0d447</ca>
<mode>00740</mode>
<uid>1005</uid>
<gid>513</gid>
<size>15083520</size>
<mtime>1091490486</mtime>

</file>

Metadata was separated from file content and then converted into a text representation that was

then stored as another content-addressable object. Figure 7.2 illustrates the storage of content

and metadata and the data dependency.

147

<?xml version="1.0"?>
<file>
 <name>deepstore-icde2005-20040701.pdf</name>
 <ca>378089202069c7540a7b7775f0559f88</ca>
 <mode>00444</mode>
 <uid>1005</uid>
 <gid>513</gid>
 <size>169908</size>
 <mtime>1099977500</mtime>
</file>

7191f482b94929b7
fac006b69ef53a6f

378089202069c754
0a7b7775f0559f88

File Handle

File Metadata

378089202069c754
0a7b7775f0559f88

File (Virtual Data)

Contents Handle

Figure 7.2: Metadata and file content

7.3.2 Rich metadata

Metadata will undoubtedly play an essential role in managing information throughout

its lifetime. Data by itself is fragile over the long term because it may be hard to interpret after

many years, especially when the systems that created it no longer exist. Future interpretation

and presentation of data require rich metadata describing it. Descriptive metadata for each file

captures information for enabling diverse search capabilities [38, 98]. Unfortunately, storing the

rich metadata substantially increases file size overhead, when space efficiency is an important

goal in reference storage.

Our work has shown that rich metadata storage may have different storage require-

ments than the archival data it references [174]. The first difference is that the metadata might

not have the same immutability requirement. This is because features such as keywords may

be extracted from the file based on changing criteria. Another reason is that file security per-

missions may change even though the file’s contents remain immutable. The second main dif-

ference is due to the structure of metadata content. When using a representation such as XML,

148

increases in size due to metadata versioning can cause a linear increase in total file storage size

when delta compression is used, while other content-specific compression mechanisms, like

XMill for XML [86], have much higher space efficiency [16].

7.4 Storage Operations

Storage operations are implemented in the CAS program, a Unix library written in

C++, and by an external interface written in C++ and Perl. The storage operations are declared

abstractly with a modest set of functions, the most basic being the following two operations:

• Store object

• Retrieve object

The Store object operation takes as input a whole object, which is often a file, and

returns a content address (CA). The Retrieve object operation takes a CA as input and returns

the original file.

Locality of reference is not guaranteed. Content addresses are hash values with the

goal of minimizing collisions, so the address by itself indicates no relationship to other stored

data. On the other hand, the VCAS interface does not preclude the implementation from infer-

ring locality of reference through caching or temporal relationships, e.g. deriving a closeness

from the time files are stored into the archive.

Operations might be idempotent. Multiple instances of similar or identical files might

not be stored multiple times. This is important so that applications that create duplicates or

backup copies do not assume that storing more copies improves reliability.

Neither VCAS nor Deep Store nodes interpret stored content. Document preservation

and interpretation of digital data is another difficult problem that is approached from a related,

149

but separate area of research of digital preservation. Our system stores the data that enable

preservation strategies to be implemented more easily.

7.4.1 C++ Interface

A fragment of the C++ class declaration for the implementation follows. Most no-

table are the parameters for the first Store member function: the address is returned once the

object is stored. Likewise, the Retrieve member function takes a single parameter for the

address of the object and returns the data in buffers specified by output variables, outData

and outLength.

For convenience, our object-oriented C++ implementation used polymorphic behav-

ior to provide different “back-end” implementations. Because the TCAS interface is abstract,

we were able to experiment with the underlying CAS by first implementing a file-system based

solution and then later using a Berkeley DB implementation by overriding the factory method

CreateCASStore. Overloaded functions provided additional benefit by allowing us to write

partial blocks with a given address, necessary to handle large block writes.

class TCAS {
public:

TCAS();
...

protected:
virtual TCASStore* CreateCASStore() = 0; // factory method

public:
virtual TContentAddress

Store(const void* data, size_t length);

virtual void Store(const TContentAddress& ca,
const TContentType& ct,
const void* data, size_t length,
size_t offset);

virtual void Retrieve(const TContentAddress& ca,
TContentType& ct,

150

void* outData,
size_t& outLength);

virtual void Retrieve(const TContentAddress& ca,
TContentType& ct,
void* outData,
size_t& outLength,
size_t offset);

};

A C++ function that writes a file of size casdatasize bytes starting at the pointer

casdata and a content type ct would make a call and return a content address object, ca:

static TContentAddress CASStore(TCAS& cas, const TContentType& ct,
const void* casdata, size_t casdatasize)

{
try {
TContentAddress ca = cas.Store(ct, casdata, casdatasize);

} catch(TCASException& exc) {
printf("CASStore Exception occured: %s\n", exc.GetString());
throw;

} catch(...) {
printf("CASStore Exception\n");
throw;

}
return ca;

}

The WriteObject member function implements the low-level non-virtual CAS

function:

void
TCASDBStore::WriteObject(TContentAddress ca, TContentType ct,

const void* data, size_t length, size_t offset)

The algorithm to write a new object into the underlying storage is straightforward:

Two other operations that would complete the set are Delete object and Verify object.

These were not implemented. Deletion of VCAS objects might not cause data to be deleted from

the store if files are still referenced. Hence, referenced file handles must be stored separately

151

Algorithm 1: Write data to CAS

this← content-addressable-store

ca← content-address

ct← content-type

data← pointer-to-data

length← length-of-data

offset← offset-from-start

(ca-header, ca-exists)← this.ObjectExists(ca)

if ca-exists then

update the ca-header reference count

else

recno← index-database.GetLastRecno() + 1

(key, value)← (ca, recno)

index-database.Put(key, value) write out megablock

megablock-record-id← cas-database.Append()

(key, value)← (recno, megablock-record-id)

block-database.Put(key, header)

end if

and the file content (CAS objects) must be reference counted. The verification operation, had

it been implemented, would test objects by first reconstructing them and then checking them

against their content addresses.

152

0 dependencies

1-2 dependencies

>= 3 dependencies

1

43

22

11

3

n chain length n

0 0 0

2

Figure 7.3: Delta dependency graph

1 1 1 1 12 2 5

files

chunks

references

Figure 7.4: Chunk dependency graph

7.5 Reliability

We briefly discuss the effect of data dependency on reliability. The problem of relia-

bility becomes much more interesting when data is stored in a compressed format. How do we

reintroduce redundancy (for reliability) after we have worked so hard to remove it? Now that

files share data due to inter-file compression, a small device failure may result in a dispropor-

tionately large data loss if a heavily shared piece of data is on the failed component. This makes

some pieces of data inherently more valuable than others. In the case of using delta compression

for stored files, a file may be the reference file for a number of files, and in turn those may be a

reference file for another set of files.

We measured data dependencies in both delta and chunking experiments. Using a

common data set of highly similar data, we ran dcsf (delta compression) and chc (chunk com-

153

pression) to determine the extent to which dependencies were introduced. With delta chains, a

single file may quickly become the root of a large dependency graph, as shown in Figure 7.3.

If a file is lost, the integrity of all dependent files is at risk. Figure 7.5 shows the chain lengths

for a set of highly similar data (ten versions of Linux kernel sources) stored using PRESIDIO

with only delta compression. The average chain length for the set of files was 5.83, but more

interestingly, there were only five root reference files (chain length zero) for this file set. In

other words, in the set of 88,323 files, all of the files depended on five files.

Dependency chain length for 10 versions of Linux kernel source

1

10

100

1000

10000

100000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

chain length

n
u

m
b

er
 o

f
fi

le
s

Number of files: 88,323
Average chain length: 5.83

Figure 7.5: Delta chain length

Sub-file chunking also introduces inter-file dependencies, as depicted in Figure 7.4.

If a large set of files all contained the same chunk, for example a regularly occurring sequence

in a set of log files, the loss of this small chunk would result in the loss of a large set of files.

Figure 7.6 shows the number of files dependent on shared chunks for the same set of files used

in Figure 7.5, stored using PRESIDIO with only chunk-based compression. The large peak for

chunks with one reference shows the number of unique chunks, and the peaks seen at 10, 20, 30

154

File dependencies on file chunks for 10 versions of the Linux kernel

source

1

10

100

1000

10000

100000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

number of references

n
u

m
b

e
r

o
f

c
h

u
n

k
s

Number of files: 88,323

Number of chunks: 200,635

Expected chunk size: 1024 bytes

Average number of references: 4.87

Max number of references: 2,765

>41

Figure 7.6: Chunk dependencies

and 40 occur since the files are 10 versions of the Linux kernel source. Of the 200,635 chunks

stored, only 89,181 were unique, with an average of five files referencing a chunk. The data

extends out to 2,765 references to a single chunk; however, it was truncated to 41 for the graph

in the interest of space. There were 72 chunks not shown with more than 41 references, 17 of

which were over 100.

A new reliability model for chunk- or delta-based compression would place increased

value of a stored object based on the uncompressed data, and not a unit value for each com-

pressed value. So we would consider the five reference files in our first example and our chunk

with 2,765 references from our second example to be more valuable than less referenced data.

To protect the more valuable data we would like to store it with a higher level of redundancy

than less valuable data in order to preserve space efficiency while minimizing the risk of a

catastrophic failure.

Another issue that must be considered for preventing catastrophic failure is that of

155

data distribution. Consider files and/or chunks distributed randomly across devices in a storage

system. If a device in the system were lost due to failure, the effect on the files stored would

be devastating. Depending on the number of devices and the degree of interdependence of the

data, it would be likely that a file in the system would have a chunk of data lost, or a missing

file in its delta chain, preventing future reconstruction.

Storage systems that distribute data for security or for reliability exist but they assume

data has unit cost. Distributed storage systems such as Petal [84], OceanStore [82], Interarchival

Memory [54, 35], FARSITE [3], Pangaea [138, 139], and GFS [51] address the problem of

recovering data from a subset of all stored copies. In these systems, both plaintext and encrypted

data are distributed, and recorded with simple replication or error-correcting coding schemes.

However, they do not distinguish between degrees of dependent data.

It is clear that reliability guarantees for a system storing data with inter-file depen-

dencies is a particularly difficult problem. Building a model that derives the value of data and

developing a strategy for data placement are the subject of future work.

7.6 Implementation

We implemented a CAS server that operates on a single host. It is a basic design

aimed at storing a large number of variable-length data blocks. Primary considerations were to

index each block by its content address, to minimize storage overhead per block, to present a

small set of functions, and to improve performance with easily implemented modifications.

We start with a summary of our block storage strategy. First, the CAS divides an

input file into create smaller pieces of data over which to identify duplicate or similar data.

This data may potentially be shared with other files, so re-write of previously written data is

suppressed. Second, the CAS data are written in order to storage segments, called megablocks.

156

Third, the megablocks are indexed to internally address the VCAS storage. Fourth, the indexed

megablocks form groups, which can be distributed across the storage system. The implemen-

tation uses these principles to record variable length block data using flat files and databases

storing key-value pairs.

7.6.1 Design Overview

Reducing storage overhead in an immutable content-addressable store is a simpler

problem than in read-write file systems. In a fixed-content CAS, objects are written but never

modified; this immutability property allows a system to organize data in a way such that the writ-

ten data does not need to be moved or resized to accommodate append or truncate operations.

In contrast, read-write file systems need to allocate extra space when files are appended and

most designs use fixed-sized blocks, which exhibit internal fragmentation when not completely

full. Furthermore, file system performance goals typically require extents or other sequential

grouping strategies to better utilize the highly beneficial sequential throughput that hard disks

exhibit as opposed to high latency when random block placement is used.

Like many storage systems, our design assumptions were aimed at balancing space

efficiency against read and write performance. To reduce per-file and per-block overhead that

are commonly found in storage systems using fixed block sizes, we used variable-length blocks.

To facilitate high write throughput, we used a lazy write placement model by writing sequential

data. To help reduce read latency, we indexed our data by using two levels of indexing, the

first containing primary indexes to record offsets similar to the indexed-sequential files [169]

or indexed sequential access method (ISAM), and second, to use a hash table to map content

addresses to the primary indexes.

157

7.6.1.1 Sequential Block Storage

Another problem is to improve storage read and write performance by exploiting

locality of reference. In file systems, files or directories may sometimes be placed together

actively or as a matter of the write patterns. In contrast, content-addressable storage is designed

to use addresses with random distribution of values, making locality of reference by address

impossible.

A common theme in file system design is to improve sequential block storage layout

by grouping blocks or files together such that related data are accessed quickly. File system

actions exhibit many behaviors. For instance, files can be related in their address (namespace),

or they can be related by time. Fortunately, file access patterns are typically related by time and

ordering, making it possible to improve performance by using temporal locality.

The Log-structured File System (LFS) [134] opportunistically writes blocks linearly

onto a storage device as they arrive, having the effect of grouping temporally related blocks

together. Results from HighLight, a hierarchical storage management (HSM) system extending

LFS, suggest that by using a migration policy to group by access time instead of namespace, the

storage system can achieve high bandwidth and low latency by using secondary caching with

tertiary storage [78].

7.6.1.2 Megablocks: Sequential Block Storage

Megablocks are user-level container files containing temporally-grouped variable-

length data. The underlying block storage implementation is similar to chunks used in the

Google File System (GFS) [51], large flat files for containing parts of other files. In our im-

plementation, the large container files are also flat files with no special metadata attributes and

range in size from 16 MB (represented by 24 bits of offset) or to 4 GB (represented by 32 bits

158

of offset). We selected this range for the following reasons. Small numbers of large file sizes

require less overhead per file than larger numbers of small files. Clustered file systems like GFS

and GPFS [142] improve access by multiple clients when using larger block allocation sizes

larger than 64 KB (versus file system allocations typically at 4 KB) due to the lower per-block

overhead for managing the block storage and associated file allocation tables across multiple

storage nodes. Very large files would not be limited to these boundaries because of the nature

of the VCAS storage object model, which supports arbitrarily large files through composition.

In other words, a very large original file could be stored and reconstructed from concatenated

blocks.

MB = 0

MB = 1

MB = 2

MB = 3

...
megablock (MB) size = 16 MB to 4GB

O = 64

Figure 7.7: Megablock (MB) storage

In Figure 7.7, megablocks zero (MB = 0) through three (MB = 3) are shown as hor-

izontal rectangles representing flat files. File content is shown as dark gray rectangles, which

represent single VCAS objects. The object with the heavy outline is located with an offset of

64 bytes from the beginning of the file (O = 64).

Objects are placed within megablocks sequentially to reduce storage overhead from

unused portions of blocks and to maximize contiguous writes. Stored data (white boxes) are

159

stored contiguously. Unused data (dark gray boxes) may be present. Megablock fragmenta-

tion can be temporary; a periodic cleaner operation (not yet implemented) will reclaim unused

space. A fixed megablock size from 16 MB to 4 GB is selected for uniformity across nodes

and the ability of group migration. Compared to file systems, which typically have block sizes

in kilobytes, this range of megablock sizes is better matched for large-file storage on cluster

file systems such as GPFS and GFS. Files larger than the size of a megablock are divided into

chunks smaller than or equal to the size of a megablock and stored as virtually, as a Concate-

nated Data Block.

7.6.1.3 Group Storage

G = 01

see inset

G
ro

up
 (

G
)

si
ze

G = 53 G = 98 ...

Figure 7.8: Group (G) and node storage

A storage group, shown in Figure 7.8, contains a number of megablocks, placed on

a recording device using a storage mechanism such as a cluster file system. In this example,

the group numbers are 01, 53, and 98. Each group is stored on the node of a server cluster.

For reliability, groups can be recorded with varying levels of replication or coding. A small

160

distributed hash table is maintained on each Deep Store node to allow a single node to look-up

a node number from the group number. Groups can be migrated from existing nodes to newly

added nodes to distribute load. The simple group and megablock structure is easily ported to

new large-scale storage systems, and allows group migration to yield efficient storage for a

wide distribution of file sizes, including small objects such as file metadata, with very small

object-naming overhead. The group also serves to contain a naming space that is unique across

a cluster.

7.6.1.4 VCAS and Object Types

We introduce the PRESIDIO virtual content-addressable store (VCAS). The main

data types in PRESIDIO are illustrated in Figure 7.9.

Handle: a file handle that contains a content address (CA), such as an MD5 or SHA-1

hash. Our prototype stores only an MD5 hash (16 bytes), but we anticipate that we will augment

the handle with a small amount of metadata to resolve collisions.

Constant Data Block: a content-addressable data block of variable size containing a

string of bits that is stored literally (i.e. raw binary data).

Virtual Data Block: a content-addressable data block. Each block contains a type

code such as “constant” (signified by K), “concatenation” or “chunk list” (Σ), and “differential”

or “delta,” ∆). Each block has a content address; the contents are reconstructed polymorphically

but stored virtually. Handles can be embedded within other blocks of data. The polymorphic

behavior is flexible because it allows a single address to map transparently to multiple instances

or alternate representations.

Objects are stored by content; each lettered box indicates the content address type: C

for “chunk,” R for “reference file” (virtual or real object), and D for a “delta file” (also virtual

161

R

D
Constant

Data

Concatenated
Data

Differential
Data

R

D

Differential
Data

R

R

Single reference
(base) file

Multiple reference
(base) files

List of chunks

PRESIDIO Class Definitions

Traditional CAS
content; literal data

H

H

Handle

Virtual Data

Constant Data

PRESIDIO Classes

Object Identification

Content Addressable
Objects

H

C
C
C
C
C
C

Κ

Σ

∆

∆

Figure 7.9: PRESIDIO data classes

or real). Embedded handles, H, contain the hash for the whole file.

Our simplified content-addressable storage uses simple storage objects and addresses

to those objects.

CAS objects are untyped data made up of a sequence of bytes. These objects are used

to persistently store a wide range of data including whole files, partial files, delta files, chunks,

sketch data, metadata, and so on. Because our CAS uses only one type of storage object, storage

operations are specified and implemented easily.

To locate a single content-addressable object, first a handle is presented to the Virtual

Object Table. The handle’s content address is used as a hash key to look up the storage location

of the Virtual Data Block that is referenced by the table. The Virtual Data Block is retrieved

and the handle is compared for its identity.

Reconstruction of the real image of the data block follows. The framework currently

allows for three different types of reconstructible data, or any combination of them.

162

Constant Data (K) If the Virtual Data Block is a Constant Data Block, then the reconstruction

is complete and the data block is returned. A variation of this is the Compressed Constant Data

Block (Z type, not shown), which is compressed using the zlib stream compression library.

Concatenated Data (Σ) If the Virtual Data Block is a Concatenated Data Block, reconstruc-

tion consists of iterating through the list of handles and retrieving them recursively. The con-

catenated data is returned serially to the storage service interface. This type is used to store and

reconstruct files from chunks, but not strictly limited to chunk storage. For example, very large

files can be divided into smaller files and represented as Concatenated Data.

Differential Data (∆) If the Virtual Data Block is a Differential Data Block, then reconstruc-

tion consists of first reconstructing the Reference Block (R) and the Delta Block (D). A delta

reconstruction, using a delta-based compression program such as xdelta, applies the delta file

to compute the resulting Version Object which is returned to the storage service interface. Note

that Version Objects can refer to multiple Reference Blocks.

The framework can be extended to different types of Virtual Data Blocks; for instance,

a single version (instance) of a file’s metadata can be extracted from a data block storing the

entire version history for that file.

Figure 7.10 illustrates the simple relationship between constant data CAS objects and

virtual data CAS objects. Object data (files and internal metadata) are stored as small objects. A

single handle can be used to store object data. Each entry in the Virtual Object Table consists of

a group number (G), a megablock number (MB), and an offset in the megablock (O). (Additional

information, such as the block type and length, are not shown.) Our prototype, which uses 16

bit group and megablock identifiers and a 32 bit offset, addresses a maximum of 16 exabytes

(18×1019 bytes).

163

Virtual
Object Table

G MB O

G MB O

G MB O

G MB O

G MB O

G MB O

G MB O

G MB O

∆

Κ

Σ

Σ

Κ

Κ

∆
CAS

Objects

Figure 7.10: PRESIDIO content-addressable object storage

7.6.2 Indexing

Once data is recorded, we provide an index to map content addresses to megablock

positions. Our implementation uses two level indexing: a Berkeley DB Recno database [149]

(record number as keys) that maps a sequential index to a variable-length block (record) location

and then a simple Berkeley DB Hash (B-tree hash table) database that maps the CA to the

sequential index. These two levels of indirection achieve two goals: to allow sequential data to

be written quickly, and for CA retrieval to be fast by using very small hash entries consisting of

CA and recno.

7.6.2.1 Single-Level Hash Table

We started with the most straightforward implementation, a Berkeley DB Hash table

of key and value pairs. The content address (CA) was the key and the content or data block was

164

the value.

Although the Hash implementation was simple, we immediately discovered several

problems. The first, and most important, was that Berkeley DB stored the combined keys and

values pairs in memory. With expected block sizes in the range of several kilobytes, the ratio of

the size of value to the size of key would be very high. This caused the number of keys stored

in memory to be low.

The second problem we discovered was that random access read and write patterns

did impose a large performance penalty. Content addresses are implemented as hash values

computed from randomized functions; because of their random distribution, we used the con-

tent addresses as the Berkeley DB key. During both file store and retrieve operations, blocks

and their CAs were written to and read from the Berkeley DB CAS. During writes, after the

large hash tables exceeded available RAM, the database began to thrash and performance suf-

fered greatly. Similarly, during reads, random access retrieval (due to the CAs with random

distribution) severely degraded database performance due to no locality of reference.

The simplest implementation was not going to provide acceptable performance or

scalability so we developed an approach to construct an additional level of indirection next.

7.6.2.2 Indirect Table

In the second iteration of the design, we examined the likely behavioral pattern of

the data that was to be stored and retrieved from the system by observing the results of the

first implementation and the expected storage operation usage. The first observation was that

Berkeley DB random access read operations should avoid touching disk if at all possible. The

second observation was that writes should be written as they arrive.

Berkeley DB Hash storage method gives the best random access performance if all of

165

the keys and values are in memory [144]. The reason is that the implementation, based on linear

virtual hashing (linear hashing or LH) will spill hash table buckets to disk when the memory

buffer limit is exhausted. Therefore during a database lookup, if the hash subtable is not in

memory, it must first be read from disk. When all accesses are random, i.e. all content addresses

have random distribution, and the set of content addresses accessed grow, then eventually a

single Berkeley DB hash table will grow beyond available real memory. The solution is to

maximize the number of entries that can be stored by minimizing the combined key-value pair

size. The obvious design change was simply to store the content address as the key and a

secondary index (a 32- or 64-bit ID) to a separate storage database.

Next, block contents were organized by writes. We surmised that write performance

would be highest if data was written sequentially in the order it was received. Like log-based file

systems (LFS), write performance can be enhanced if data is appended sequentially instead of

first taking the step of allocating data first and then writing it next. In our simple block storage

scheme, we appended blocks as they arrived into a megablock file; when each megablock file

reached a limit, it was closed and a new megablock was started.

7.6.2.3 Comparing Hash and Recno Writes

We compared the performance and storage overhead of the two types of Berkeley DB

4.2 database, Hash and Recno. Using the ProLiant (“PL”) hardware listed in Table 4.5, we

wrote 10 million entries of size 96 bytes (16 bytes for key and 80 bytes for value).

The cache size was set to 256 MB on a 2,048 MB RAM machine. Each record was

written sequentially using an MD5 hashed key (not used in Recno). Once the database was

closed, the resulting cas.db file size was measured. Notably, the hash performance of random

access was hampered significantly as the 2.39 GB file exceeded both cache size and total RAM,

166

Hash Recno
10,000,000 10,000,000 entries

16 16 bytes/key
80 80 bytes/value

24,735.78 103.167 seconds
0.002473578 0.00001032 seconds per entry

2.473578 0.0103167 milliseconds per entry
cas.db cas.db database size

2,574,974,976 892,649,472 bytes
96 96 key+value size

257.5 89.3 average record size
161.5 -6.7 overhead per record (bytes)
168% -7% overhead per record (%)

Table 7.4: Berkeley DB Hash versus Recno writing 10 million entries

key value
content address (CA) block-recno

Table 7.5: PRESIDIO CAS Content address (CA) Hash index

causing disk thrashing. The results of this experiment show how it was necessary to change to

design to an indirect table.

In summary, we introduced an indirect table consisting of a mapping from CA to

recno (using the Berkeley DB Hash method) and then a separate mapping from recno to a

megablock record (using method Recno). These correspond to the key-value pairs shown in

Tables 7.5 and 7.6, respectively.

We also took the opportunity to add a very small amount of easily-interpreted meta-

data into the (Recno) block table, as seen in 7.6. This achieved two things: the first was to reduce

key value
block-recno (content type, refcount), (group-ID, megablock-ID, offset, length)

Table 7.6: PRESIDIO CAS Block index Recno table

167

the number of operations to access the megablock’s content type (class), reference count, group

ID, megablock ID, offset (offset from the start of the megablock file to the block), and block

length. The second was to restrict megablock files only contain block data. Note that Table 7.6

is an implementation example of the abstract content-addressable object storage scheme illus-

trated in Figure 7.10. A key consisting of block-recno, is a recno value for the block, and the

value is a combined mutable tuple of content type and refcount with the group-ID, megablock-

ID, block offset into the megablock file, and block length.

7.6.2.4 Content Types

The content type is one of the following: Raw Content, raw, uncompressed data;

ZLibData, zlib-compressed data; Concatenated Content a list of CA; XDelta1 Content a

file reconstructed from a reference file and a delta file using xdelta 1.1.3; and Metadata, CAS

metadata. These are the example set from which we can reconstruct content and metadata in

our initial implementation.

7.6.2.5 Content Addresses

The content address type is a binary scalar, 128 bits or larger in size. For convenience

and because it is a well-specified hashing function, we use the MD5 algorithm.

7.7 Discussion

Although our problem generally solves a file storage problem, there is a need to es-

tablish a foundation for storing data. Content-addressable storage systems present a different

interface than traditional file systems: instead of using location and meta naming as the means

to identifying a file, its name is derived from the file content. From this idea we expanded the

168

idea that the name, or rather a content address, is more important than the representation of the

object itself.

Once we determined naming was the first class object of the system, we modified the

idea that storage efficiency should be dependent on data representation such that a client of the

system should only be concerned with the naming and its virtual representation; furthermore,

file compression methods should be able to represent their large-grained objects within a single

storage architecture. By creating the VCAS, all needs could be met.

Although our initial prototype is sufficient for investigation and experimentation, we

believe there is room for improvement. What traditional file systems do better than our sys-

tem is to exploit locality of reference, whether it be from storing files in directories together,

sharing i-nodes, using block extents, or using temporally-related or access-dependent caching

or prefetching. In contrast, our goal for improving storage space efficiency improves locality of

associativity, which does not clearly align with high performance. As such, it will be important

for future work to incorporate inherent locality even when the content addressable architecture

does not directly reveal such relationships.

7.8 Summary

In this chapter we have described content addressable storage (CAS) and virtual CAS

(VCAS) systems and their properties, including the use of hashing for addressing, the impact of

hash collisions on CAS storage design, file and object metadata and their overhead. The VCAS

architecture is an underlying storage system piece which can be used onto which redundancy

elimination storage methods including chunk-based storage, delta-based storage or hybrids can

be implemented.

We have described design and implementation of a sequential large-block storage

169

facility into which we can store large numbers of VCAS objects with low overhead and with

high write throughput by using a multilevel indirect storage mechanism employing both record-

based and hash-based tables.

The overview of the PRESIDIO implementation includes the programming inter-

face and operations for storage and retrieval and implementation notes for developing a high-

performance content-addressable object store.

Finally, we have identified new problems in archival storage reliability due to the the

increased dependence due to the elimination of redundant data.

170

Chapter 8

Progressive Compression

The Progressive Redundancy Elimination of Similar and Identical Data In Objects

framework, or PRESIDIO, is a combination of an algorithm and framework to compress data

across files in an archival store using progressively improved methods. In this chapter we bring

together the compression framework with the object storage framework, and an adaptive algo-

rithm to select compression methods to yield high compression of highly redundant data and

low overhead for highly unique data.

8.1 Overview

The space efficiency of lossless data compression is highly data dependent. Often the

most important compression metric is space efficiency: how little memory is required to store

encoded data compared to the original unencoded data. Two other metrics are compression

performance and decompression performance, the rates at which data can be converted be-

tween uncompressed and compressed forms and vice-versa. Metrics of secondary importance

include computer resource requirements and utilization including computation, memory, disk,

171

and network usage. Resource requirements play an important role in determining the design

and implementation of storage systems.

Data compression properties also depend on each compression algorithm’s effective-

ness in detecting and eliminating redundancy. Unfortunately, the best algorithms today do not

work optimally in all respects. For example, the whole-file hashing technique used to detect

identical files (with high probability) requires only a small fixed-size block of RAM, modest

CPU resources, but reads arbitrarily large amounts of data serially from disk in order to com-

pute an identifying hash value. Digests are computed with high throughput, often higher than

disk read/write throughput, but they do nothing to help reduce redundancy seen in similar files.

In contrast, binary differencing between all pairs of files could be used to compute the smallest

encodings between files, but the computational complexity of order O(n2) would be too high to

make it feasible in a production environment.

A more practical solution exists: progressively apply data compression algorithms

which yield high efficiency and high performance first and only when they do not provide a

satisfactory result, apply lower efficiency and lower performance algorithms.

PRESIDIO is designed as follows. Each data compression algorithm is modeled to

provide an approximate data compression efficiency yield as a function of the resemblance of

input data. The properties of the model include expected data compression storage efficiency,

the input read rate, and the output write rate. When a candidate file is presented to PRESIDIO, it

evaluates the data and compression models to compute scores for each algorithm. The algorithm

with the best score is applied. If the result of the data compression achieves the compression

threshold for the model for both storage space and performance, the algorithm is used, otherwise

the next-highest algorithm is applied. The evaluation process is repeated until the available

compression algorithms are exhausted.

172

The PRESIDIO framework also incorporates a content-addressable store into which

objects are stored including whole files, subsections of files, file metadata, and delta files. Every

virtual object can be addressed by its content address (CA).

Figure 8.1 illustrates the relationships between the different efficient storage methods

and the compression methods they use.

Feature Selection

Efficient Storage Methods

Content-Addressable Storage

Redundancy Elimination

Similarity Detection

chunk digest

hash retrieval

digest hash

retrieval

fingerprinting

bit string

hashing

shingling

chunk

divisions

super-

fingerprint

similar files-

super

fingerprint

(SF-SFP)

similar files-

fingerprint

(SF-FP)

chunk digestdigest

intra-file

compression

inter-file

compression

delta

compression
hybrid delta

compression

duplicate

suppression

delta compression

between similar files

DCSF-SFP

delta compression

between similar files

DCSF-FP

chunk CAS

CAS Virtual CAS

whole-file

CASstream

compression

chunk digest

chunk digest

hash retrieval

chunk CAS

abstract

concrete

instance

reference

Relationships

concept

uses

chunk lists sketch

data algorithm

Figure 8.1: Efficient storage methods in the PRESIDIO architecture

This chapter is organized as follows. First, we describe the PRESIDIO storage frame-

work. Second, we detail the PRESIDIO algorithm, the use of efficient storage methods, and the

use of the VCAS.

173

8.2 The PRESIDIO Storage Framework

The PRESIDIO Storage Framework consists of a layered architecture with the fol-

lowing major components:

• the progressive redundancy eliminator (PRE) compression algorithm,

• efficient storage methods (ESMs),

• virtual coding methods (VCMs),

• and a virtual content-addressable store (VCAS)

Figure 8.2 illustrates the main storage components, the mid-level PRESIDIO frame-

work, and the low-level VCAS and CAS storage subsystem. Each of these components supports

two main storage operations, store and retrieve.

PRESIDIO presents its storage interface to detect, select, and employ the most space-

efficient storage method. Its progressive redundancy eliminator algorithm (PRE) links against

a set of known ESM classes; from each class and object instance is created. PRE calls methods

in each ESM object in turn, using polymorphic object-oriented to select features and to detect

resemblance. Once PRE selects an ESM, it is called to compress a file into the VCAS.

The VCAS storage subsystem is made up of two parts: virtual coding methods, which

use content addresses to represent virtual but not internal representation, and the CAS, which

uses content addresses to represent real content. A low-level VCAS interface is used to write

objects into a content-addressable store by encoding them using a small number of virtual cod-

ing methods. Each method is made up of a coder and decoder; the virtual coding methods are

codecs. The CAS implementation we use consists of a simple CAS database and megablock

log file store, as described in Section 7.6.

174

VCAS

CAS

cas db
megablock

store

ESM
Whole File

ESM
DCSF-FP

ESM
DCSF-SFP

ESM
ChunkingPRE

(Progressive
Redundancy
Eliminator)

PRESIDIO

Store

RetreiveStore

virtual
coding
methods

decodercoder

Retreive

Figure 8.2: PRESIDIO ESM and CAS

There are some notable differences in this design when compared to existing CAS

systems. The first is the use of multiple methods for detecting similarity and eliminating re-

dundancy unlike pure CAS systems like Centera that use a single method such as whole-file

hashing, or chunk-based hashing. The second is the use of a virtual content-addressable store

instead of a traditional CAS. The third is the use of an algorithm to detect and use efficient

175

storage in a progressive manner. The last is the use of a storage system design that combines

multiple compression methods into a hybrid archival storage system.

8.3 Efficient Storage Methods

coder driver
(Z, K)

feature
selection

feature-set = feature-select(file, content-address)

(r, resemblance-state) = detect-similarity(file, content-address, feature-set)

similarity
detection

compress-file(file, content-address, feature-set)

feature-select

detect-similarity

compress-data

similarity
metric

database

VCAS

Efficient Storage Method (ESM)

Figure 8.3: Efficient storage method operations

The PRESIDIO architecture defines ESMs as a combination of data and algorithms—

or simply, a class of objects—whose purpose is to select features from a file, determine the

effectiveness of a specific compression method for a given file, and then to marshal the param-

eters used to drive the input to a VCAS coder. ESMs are expressed as class definitions with the

176

objective of compressing a single type of CAS compression.

Each ESM implementation uses the same common programming interface made up

of three algorithms, implemented as independent or inherited functions. Additionally, some

state may be shared between multiple ESMs. The following describes each part:

Feature selection: an algorithm taking a file as input and selecting features from the raw data,

returning a feature set as output.

Similarity detection: an algorithm taking a file as input, the file’s feature set, and returning r, a

resemblance metric and resemblance-state which may be used to help encode (compress)

the file.

Coder driver: an algorithm to marshal parameters that will be passed to the VCAS to encode

a file.

Similarity metric database: an optional persistent state containing information needed to de-

tect similarity of a file against previously stored files.

Figure 8.4 illustrates the different ESMs we have developed. Each ESM box rep-

resents a different implementation. Some ESMs may share state, for example in the case of

DCSF-FP and DCSF-SFP, the sketch database contains fingerprints per file. On the right, the

coder driver will call the VCAS with specific parameters. Following we list the C++ declaration

for the ESM implementation, class TVirtualFile and then describe each of the ESMs in turn.

8.3.1 class TESM: the ESM class interface

The ESM interface contains two types of information: a pointer to a polymorphic

TVirtualFile object and PRE evaluation state. The internal state consists of the following.

177

ESM: Whole File

similarity
detection

ESM: DCSF-FP

ESM: DCSF-SFP

coder driver
(Z, K)

coder driver
(∆)

coder driver
(∆)

sketch DB

ESM: Chunking

similarity
detection

coder driver
(Z, Σ , K)

[file, CA]

[file, CA]

[file, CA]

[file, CA]

CA = store([K, file])
or

CA = store([Z, file])

CA = store([Σ , K1, K2, ..., Kn]),
CA1 = store([K, K1]]),
CA2 = store([K, K2]),
...
CAn = store([K, Kn]),

CA = store([∆, CAref, CAdelta]),
CAdelta = store([K, D])

CA = store([∆, CAref, CAdelta]),
CAdelta = store([K, D])

store(address, VCAS type/data)

similarity
detection

similarity
detection

feature
selection

feature
selection

feature
selection

feature
selection

Figure 8.4: PRESIDIO Efficient storage methods

The virtual length, lv, is equal to the length of the file in bytes presented in a store request. The

real length, lr, is the approximate or exact storage size in bytes of the file, including storage

overhead for intermediate VCAS structures.

We define efficiency as the incremental storage size of a newly presented storage file

as a fraction of the virtual storage size, where 0 is perfect efficiency, no additional bytes stored;

and 1 is no efficiency, all input data is stored uncompressed.

PRE scoring is computed from real storage efficiency, ureal , and biased storage effi-

ciency, ubiased . Bias, b, is a coefficient to modify the efficiency score. Efficiencies are simply:

ureal = lr/lv (8.1)

178

ubiased = bureal (8.2)

Low u reflects data that is more compressed.

Bias is a factor to help offset the introduction of storage overhead for ESMs that have

the potential benefit but not during initial evaluation. For example, the whole-file hashing ESM

will introduce no virtual storage overhead in the VCAS because the entire file can be stored a

single CAS object. A chunk-based ESM would introduce a list of chunk CAs, a slight increase

in storage. One reason to use bias is if chunks were never stored in the first place, then there

would be no opportunity to share chunks later. By introducing bias, slightly inefficient ESMs,

e.g. chunking, can be selected opportunistically despite that method’s higher, non-biased u. Our

implementation uses a constant bias, but adjusting bias dynamically is a potential area to further

improve storage efficiency.

The interface for class TESM is as follows.

class TESM
{
public:

TESM();
˜TESM();

public:
TVirtualFile* fVirtualFile; // alias to file object
double fBias; // efficiency bias

size_t fVirtualLength; // bytes for source data
size_t fRealLength; // bytes for actual storage
double fEfficiency; // real/virtual length
double fBiasedEfficiency; // bias*efficiency
double fDuration[kTotalPhases];

};

8.3.2 class TVirtualFile: the virtual file interface

The TVirtualFile class embodies the object-oriented implementation for each ESM.

We chose to use an object-oriented design (OOD) for several reasons: first, we used abstraction

179

to advance the definition of protocol and data relationships over implementation details; second,

we relied on class inheritance to reuse and build on common ESM data and behavior; and third,

we used polymorphism to allow the PRE algorithm to invoke methods on each ESM object’s

methods without internal knowledge.

Abstraction allowed us to use classes such as TContentAddress, the object rep-

resenting content addresses, to define its own internal format and size, as well as to allow the

object to read and write itself.

Class inheritance afforded method reuse and helped define common object data. For

example, raw data and (zlib-) compressed raw data possess the same content address and their

whole-file hash features are computed identically, namely a single digest computed over the en-

tire uncompressed file, but their internal real stored object representations are different, namely

uncompressed versus zlib-compressed CAS objects.

One shortcoming using C++ as an object-oriented programming (OOP) language is

that introspection and enumeration of dynamically defined subclasses is not automatic. So each

ESM is listed statically in a small structure over which PRE iterates. Because of the small

number of classes and the control a system designer would want to exercise over the specific

ESMs used, we do not see this as a practical drawback.

class TVirtualFile
{
public:
TVirtualFile();
TVirtualFile(const TContentAddress& ca,

MetaFlags metaFlags = kMetaNone);

virtual size_t SelectFeatures(TFile& sourceFile);
virtual size_t DetectResemblance(TCAS& cas,

TFile& sourceFile) = 0;

virtual TContentAddress Store(TPRE& pre,
TCAS& cas,
TFile& sourceFile) = 0;

180

virtual size_t Retrieve(const TContentAddress& ca,
TCAS& cas, TFile& destFile) = 0;

protected:
TContentAddress fCA;
MetaFlags fMetaFlags;
size_t fVirtualLength;

};

The main member functions used from this class are:

SelectFeatures(TFile& sourceFile)

SelectFeatures computes or selects features from an input file and returns the length of the

virtual content addressable storage object. The class derived from TVirtualFile instance may

retain feature state.

DetectResemblance(TCAS& cas, TFile& sourceFile)

DetectResemblance computes the best resemblance based on space efficiency and return the

exact or approximate real length for the object that would be stored using this method.

Store(TPRE& pre, TCAS& cas, TFile& sourceFile)

Stores the file object using the ESM method by making calls to the real CAS. The virtual coding

method may recursively call the PRE algorithm to further improve storage efficiency.

Retrieve(const TContentAddress& ca, TCAS& cas, TFile& destFile)

Retrieves an object named by the content address, using the CAS and return its virtual length,

writing to the destination file.

181

8.3.3 ESM: Whole-file

The Whole-File ESM implements the standard content-addressable store, correspond-

ing to the schematic in the upper box in Figure 8.4. This ESM has the highest possible com-

pression when content addresses match exactly. When identical files are presented to the ESM,

it can easily detect the existence of a file through a hash lookup in the VCAS database quickly.

Compression is actually implemented as suppression of any storage operation to the VCAS.

The feature selection algorithm returns the hash of the file; our prototype uses the MD5 hashing

function.

The similarity detection method is implemented by testing for the file existing in

the VCAS using the content address. Efficiency ureal is 0 when the file exists or 1 if not.

(Resemblance r is binary: r = 0 when the file is not found in the VCAS, or r = 1, the hash for

the file already exists in the VCAS.)

The coder driver function named TConstantFile::Store marshals the “con-

stant data” operation, K, and the file data file using the following pseudocode:

esm[i].fVirtualFile = new TConstantFile(ca);
...
// PRE evaluation selects an esm numbered ’i’
...
TContentAddress ca = esm[i].fVirtualFile->Store();

In virtually all cases the compressed data size is smaller than or equal to the com-

pressed size, and since the feature selection operation computes into a temporary file, the Z

VCAS operation (Zlib compression) is used. The specification for the file is identical, except

for the following

esm[i].fVirtualFile = new TZlibConstantFile(ca);

182

8.3.4 ESM: Chunking CAS

Chunking divides a file into blocks using a deterministic algorithm. The concept al-

lows for a wide variety of file-division algorithms including fixed-sized blocks like Venti [125],

or using blocks whose lengths are determined by randomized algorithms like LBFS [110] or

DERD [40].

The feature selection is the list of CA for chunks. Our algorithm uses the following

parameters, previously described in Table 4.2: w = 32, m = 64, M = 4096, d = 1024, r = 0,

RFsize = 32, RFpoly = 0x1A8948691, CIDsize = CAsize = 128. The feature set that is returned

is a sequence of content addresses CA1,CA2, . . . ,CAn corresponding to the chunks K1,K2, . . .Kn

such that the concatenation of chunks Ki is the input, file.

Similarity detection computes the potential real storage size by iterating over the can-

didate chunks in two steps. First, for each chunk it determines whether the chunk has already

been stored, in which case the incremental real chunk size is zero, otherwise the real chunk size

is computed from the similarity detection using PRE. In other words, an entire chunk itself is

evaluated recursively for its potential real size. Second, each chunk Ki is added to the chunk

lists and then that list is evaluated for its size, using recursive PRE.

The recursive method for similarity detection has one major benefit: if a chunk list

has already been stored, or if resemblance can be detected from the chunk list, then it too will

be stored efficiently.

Our current recursive implementation statically computes the intermediate results, in

effect performing many of the compression steps to compute the actual VCAS real (compressed)

object size. Heuristic evaluations of the virtual content may be able to yield qualitatively similar

results without incurring the read/write or computational overhead.

The coder driver marshals parameters: a concatenated “chunklist” (Σ) of chunks.

183

Each chunk is submitted back to PRE so that it can also be stored efficiently, generally either

as constant chunks (K) or compressed chunks (Z). In practice, only compressed chunks are

written. To record the files, the chunklist is written to the VCAS followed by chunks that have

not already been written.

8.3.5 ESM: DCSF-FP

Both the delta compression of similar files using fingerprints (DCSF-FP) and delta

compression of similar files using superfingerprints (DCSF-SFP) start with identical feature

sets, but use slightly different similarity detection algorithms. Computing DCSF feature sets

is a computationally expensive operation, so it is only computed once. However, once it is

determined, it is easy to compute additional features, e.g. harmonic superfingerprints, that make

similarity detection faster due to a smaller number of feature lookups. Separating the DCSF-FP

and DCSF-SFP algorithms into two ESMs makes it possible to share common data and to find

highly similar data quickly.

Feature selection computes a sketch of fingerprints. Each sketch is an vector of k = 32

features selected from the file using k functions to independently select features from a sliding

window of size w in the file using the min-wise independent permutations.

Similarity detection is a comparison between a file with a sketch and all sketches in

the database. The comparison function returns resemblance r (r = max(n/k) for all sketches,

where n is the number of features that match).

Our implementation does not currently use information retrieval (IR) techniques to

retrieve from feature vectors of size k. The implementation can be performed using methods

such as inverted word lists, where each word is represented by a fingerprint or by using Bloom

filters. In both cases, the in-memory and on-disk usage are high and such overhead may not

184

offset potential compression gains.

The coder driver writes a delta (∆) between a reference file (R) and a delta file (∆); a

delta file is also written as constant data (K) and the contents of the delta file itself (D).

8.3.6 ESM: DCSF-SFP

At the time a sketch is computed, the harmonic superfingerprints are also easily com-

puted. Superfingerprint features give high probability of matching sketches with high resem-

blance using a much smaller set of fingerprints.

DCSF-SFP similarity detection is a comparison between one or more superfinger-

prints. Instead of comparing entire feature sets (or feature vectors), one or more superfinger-

prints are compared. When harmonic superfingerprints are used, one superfingerprint covering

all features fi,0 ≤ i ≤ k can be indexed directly. Retrieval and comparison of harmonic su-

perfingerprints covering a subset of sketch S(A) require additional indexing and retrieval. The

coder driver for the DCSF-SFP is identical to DCFS-FP.

8.4 Content-Addressable Storage (CAS) and Virtual CAS (VCAS)

We use CAS as a common abstraction. We further use VCAS to allow us to further

abstract the storage mechanism from the storage interface. VCAS allows us to reconstruct data,

it also allows us to rewrite the data; meanwhile CA lets us ensure that the data is unchanged.

VCAS also allows us to store more than one copy—useful for caching—and with different

coder representations—-useful for keeping alternate versions of cached fully reconstructed files

to improve performance.

Content-addressable storage is a basic storage system. Application programming in-

terfaces (APIs) for both CAS and VCAS interfaces use content addresses for identifying fixed

185

content data. This differs from file system APIs, which create, delete, read, and write files and

their content based on a file’s location and position within a file. CAS, unlike file systems, use

an underlying storage implementation that can include a file system, database, or other storage

structures.

Since the goal for our solution is to improve space efficiency, the low-level CAS

storage must also be space efficient. We design and measure storage efficiency to account for

additional overhead. In particular, per-block overhead and database structures for indexing must

be considered. File systems use block-aligned storage to satisfy dynamic allocation and high

performance read/write operations, but introduce overhead storage in unused storage at the end

of blocks, extents, i-nodes, and volume structures. Cluster file systems must also maintain

additional structures for distributed access. Reliable storage also introduces some redundant

data. These last two are design considerations for future investigation in the Deep Store project,

but the overall design goal to minimize overhead storage still exists.

8.4.1 Virtual Content-Addressable Storage (VCAS)

All file content stored is stored in the virtual content-addressable storage subsystem.

CAS objects are stored as either real data or virtual data and are described in detail in Chapter 7.

The architecture of the VCAS incorporates a set of codecs, or coder/decoder pairs.

The following describes how the VCAS design solves several problems.

The VCAS is a low-overhead virtual object (VO) storage mechanism. Object over-

head is a small number of bytes. The absence of block allocation eliminates internal fragmen-

tation common in many file systems.

VCAS object encodings (VOEs), the metadata that specifies how to reconstruct files,

are stored within the VCAS itself. Each VOE is written as a single serialized stream of bytes

186

that can be stored in a CAS and addressed by its CA. VOEs can also be stored as virtual objects

themselves, but in practice they are small (size� 1 KB) and stored simple as constant (literal)

data.

Polymorphic object storage lets us reconstruct based on methods that are stored with

the data. Each VOE is a single method that can be used within a recursive VO definition. VO

reconstruction is a recursive reconstruction of the underlying data. The polymorphic behavior

exists due to a common definition for a class of objects (VOEs) that defined by concrete imple-

mentations that define a specific set of operations. Instances of the objects specify the methods

required to reconstruct real objects based on a recursive definition.

VOE coder and decoder methods are separated from the efficient storage methods

(ESMs). Once files have been stored, only the decoder implementations are required. To help

ensure permanence by lowering software maintenance, the more complex similarity detection,

redundancy elimination methods, and efficient storage methods are not needed once the data

has been recorded. To further simplify the need for maintenance, only the VOE decoder imple-

mentation is needed.

8.4.2 Progressive Redundancy Elimination

PRESIDIO incorporates the progressive redundancy eliminator (PRE) algorithm. Its

purpose is to use a collection of ESMs to first determine the best method for eliminating re-

dundancy, and then to encode the data into virtual object encodings. Next, the encodings and

original file content are passed to the VCAS where the data is written.

In practice, implementation or design improvements such as programming optimiza-

tions for the fingerprinting function, clustering or ordering requests for a file, can improve

performance The delta encoding method requires more compute resources than chunking and

187

Algorithm 2: Progressive Redundancy Eliminator (PRE)

initialize feature selection and resemblance detection

k← size of ESM list

for i = 0 to i < k do

TVirtualFile* vf← TVirtualFile::CreateVirtualFile(type)

TESM& e = esm[i]

e.fVirtualFile← vf

e.fVirtualLength← vf->SelectFeatures(sourceFile)

e.fRealLength← vf->DetectResemblance(cas, sourceFile)

e.fEfficiency← e.fRealLength / e.fVirtualLength

e.fBiasedEfficiency← e.fBias × e.fEfficiency

if e.fRealLength = 0 then

break found maximally efficient file (exact match)

end if

end for

Start PRE evaluation

bestESM← 0

bestBiasedEfficiency← 1.0

for i = 0 to i < k do

if esm[i].fBiasedEfficiency < bestBiasedEfficiency then

bestESM← i

end if

end for

188

made up of three main phases: computing a file sketch, determining which file is similar, and

computing a delta encoding. Currently, the most costly phase is computing the file sketch due

to the large number of fingerprints that are generated. For each byte in a file, one fingerprint

is computed for the sliding window and another 20 fingerprints are computed for feature selec-

tion. The shingling performance in our initial prototype was approximately 0.5 MB per second

(Table 4.4), far less than the approximate 30–50 MB per second disk read performance. Fortu-

nately, through careful programming, we were able to rewrite the fingerprinting and shingling

code to improve throughput dramatically, increasing throughput to just under 20 MB per second.

The second operation, locating similar files, is more difficult. Our current implemen-

tation is not scalable since it compares a new file against all existing files that have already been

stored. Scalability in searching for a similar file is a particularly interesting area of our research.

We are also optimistic that large-scale searches are possible given the existence of web-scale

search engines that index the web using similar resemblance techniques [15].

Chunk storage and delta compressed storage exhibit different I/O patterns. Chunks

can be stored on the basis of their identifiers using a (potentially distributed) hash table. There

is no need for maintaining placement metadata and hashing may work well in distributed en-

vironments. However, reconstructing files may involve random I/O. In contrast, delta-encoded

objects are whole reference files or smaller delta files, which can be stored and accessed effi-

ciently in a sequential manner. But, placement in a distributed infrastructure is more involved.

A couple additional issues exist for delta encoding that are not present with chunking.

Because delta encodings imply dependency, a number of dependent files must first be recon-

structed before a requested file can be retrieved. Limiting the number of revisions can bound

the number of reconstructions at a potential reduction in efficiency. Another concern that might

be raised is the intermediate memory requirements; however, in-place reconstruction of delta

189

files can be performed, minimizing transient resources [23]. At first glance, it would appear that

the dependency chain and reconstruction performance of delta files might be lower than recon-

struction of chunked files, but since reference and delta files are stored as a single file stream

and chunking may require retrieval of scattered data—especially in a populated chunk CAS—it

is unclear at this point which method would produce worse throughput.

8.5 Summary

In this chapter we have integrated a unified archival data storage model with algo-

rithms for storing data efficiently in PRESIDIO. The the progressive redundancy eliminator

(PRE) compression algorithm, applies multiple efficient storage methods (ESMs) to find iden-

tical or similar data, then employs virtual coding methods (VCMs) to record data into a virtual

content-addressable store (VCAS).

Efficient storage methods are objects which implement three protocols: a method to

select features, a method to detect similarity, and encoding/decoding functions to compress data.

A virtual C++ file class interface is the mechanism by which these protocols are implemented.

The PRE algorithm computes efficient rank from the likely real storage compression

size compared to the (virtual) input file size biased by an adjustment to overcome storage over-

head.

190

Chapter 9

Conclusion

We conclude this dissertation with a summary of our contributions, a short discussion,

limitations of our solution, and directions for future work.

9.1 Contributions

To meet the growing need of storing increasing volumes of fixed-content or archival

data, the development of archival disk-based systems have improved accessibility and to in-

creased storage efficiency. Immutable read-only archival data offers the opportunity to use

content-addressable storage, disk-based storage affords low-latency and random access, and

complementary forms of data compression make use of these technologies possible. However,

the cost of using magnetic disk is higher per byte than traditional archival media, therefore

storage space efficiency in archival disk systems is one of the most important problems to be

solved.

Since the introduction of content-addressable storage systems, there have been many

developments to continue to improve storage efficiency. Research in bandwidth reduction tech-

191

niques and algorithms to divide files into smaller pieces allow unique data to be identified and

for the storage of duplicate data to be suppressed. These methods are optimal. Subdivided

files incur overhead storage cost with potentially no storage reduction, and similar data consti-

tutes potential space efficiency increases. Furthermore, existing data reliability models do not

account for increases in failures to large numbers of files that are compounded by data depen-

dency.

Improved storage efficiency is possible by detecting similar data and reducing redun-

dancy by delta encoding versions of files. Similarity detection can require intensive use of

resources such as CPU, memory, and disk. These similarity detection algorithms are not neces-

sarily compatible with pure content-addressable storage systems which depend on detection of

identical data in order to suppress duplicates.

The difficulty with existing storage systems is that they do not provide optimal space

efficiency over all content and do not use a common architecture that allows the efficiency

benefits of one compression technique to be used within another efficient storage technique.

The main contribution of this dissertation is to unify archival storage solutions to max-

imize space efficiency. To achieve this goal, we have described the design and implementation of

the Progressive Redundancy Elimination of Similar and Identical Data in Objects (PRESIDIO).

The premise of the development system is threefold: the storage architecture presents a simple

content-addressable storage interface, a unified virtual content-addressable store encodes data

using polymorphic methods that use multiple storage methods, and an internal storage frame-

work in which to express and evaluate multiple efficient storage methods.

192

9.1.1 Problems addressed

With PRESIDIO, we have developed a storage system to address problems that exist

across content-addressable and archival storage systems today:

• Efficient storage architecture. We described common phases in an archival storage sys-

tem. In Chapter 4, we listed data identification algorithms and evaluated their use on file

content. Chapter 5, describes methods to detect similar and identical data between a new

file and a previously stored file. And in Chapter 6, we listed and evaluated two methods

for storing data more efficiently by eliminating redundancy across files. Our contribu-

tion in these areas have been to identify common behavior in storage systems and divide

them into separate phases so they can be used in a common storage and compression

framework.

• Unified CAS. In Chapter 7, we described a novel technique for storing data using a virtual

content-addressable store in which virtual data is identified by its content address, and

real data is encoded polymorphically.

• Progressive compression. Chapter 8 describes the design, implementation, and evalua-

tion of the Progressive Redundancy Eliminator (PRE) algorithm, and its use with VCAS

storage to make the PRESIDIO framework.

9.1.2 Technology benefits

Our contributions translate into a number of benefits. Our solution shows that we

can improve the storage efficiency of an archival storage system using progressively higher

levels of compression when it is available. This makes it possible to consider improved data

193

compression methods, like delta compression that may show marked efficiency improvements,

and still benefit from other cheaper, but less efficient methods like chunking.

The unified content addressable storage system offers unique benefit. The virtual CAS

creates a level of abstraction that separates file contents (and file metadata) from internal storage

data and storage metadata. Furthermore, the virtual representation presents other opportunities,

such as the ability to store more than one representation of a file, e.g. both whole file and delta

file for reliability, redundancy, and retrieval efficiency. A more significant improvement is that

some internal data can be stored in more than one way. For example, chunk lists can be stored

as delta-compressed data and vice-versa.

The simple nature of virtual content methods decouple the coder from the decoder. A

simple set of virtual encoding primitives mean that long-term data retrieval does not depend on

encoding operation. One of harder problems in archival storage is ensuring permanence of logic

as much as the permanence of data. By implementing the VCAS simply, we feel it contributes

to the long-term viability of the data it stores.

The PRESIDIO framework–and frameworks by their very nature—defines a structure

into which additional methods can be introduced. Both VCAS file encoding implementations,

as well as PRE analysis methods can be overridden or implemented from scratch. This offers

additional opportunity for further research and improvement.

9.1.3 Minor contributions

Some minor contributions include the chc chunk compression program, which elimi-

nates chunk-based redundancy within files in a manner that is complementary to stream-based

compression. We have evaluated different chunk compression against delta compression to

show the relative efficiency of each. In the case of chunk compression, dividing files into

194

chunks and identifying chunks by hash-based features is a fast operation while delta compres-

sion requires similarity detection and delta compression.

We have introduced harmonic superfingerprints, a variation of superfingerprinting that

allows progressively higher levels of recall and precision by increasing the coverage of superfin-

gerprints in a feature sketch. Finally, we have implemented an initial version of the PRESIDIO

framework that include the VCAS (virtual content addressable store), ESMs (efficient storage

methods), and the PRE (progressive redundancy eliminator) algorithm.

9.2 Discussion

PRESIDIO is a departure from the design of traditional file systems. Although simi-

lar to some more recent disk-based archival storage systems, the design requirements for Deep

Store and the PRESIDIO framework are substantially different from high-performance file sys-

tems. The first and most notable difference is the analysis of files. Whereas file systems do

not typically analyze files for content, archival storage systems—in particular, efficient archival

storage systems—require multiple types of content analysis to detect and eliminate redundancy.

Another significant difference in our work is to abstract a file’s contents from the un-

derlying mechanisms from which it is stored. While content may not be the only way to identify

data, automatically selecting features and performing similarity detection across many files of

arbitrary types creates the opportunity to think about file storage in other ways. Additionally,

our design advances the idea storage and data retrieval should be easily separated by creating

self-descriptive data structures from which contents can be retrieved.

During our development, we we discovered that there are new ways of visualizing

storage behavior, whether it be parametric in nature or measurements in performance. Much

work in file systems is focused on increasing throughput or reducing latency. For that, trace

195

analysis and instrumentation are useful. In our investigations, other tools are needed to help

visualize similarity and the relationships between objects. Extensive data dependencies, not

common in files in traditional file systems, are prevalent in an environment where inter-file

data compression is a means to the goal. While aggregate statistics are useful, many types of

investigative questions are not easily answered by viewing numbers or tables; we found two-

and three-dimensional representations of dependency graphs and graphs showing similarity or

resemblance invaluable. However, with large numbers of data points, many tools did not scale

well enough to give both “big picture” and detailed information.

The solution to our problem is different from the design we originally anticipated.

One main concern for Deep Store was to store large amounts of data reliably over a large

number of storage nodes, but we chose to focus our work on space efficiency over scalable

storage. Despite the narrower focus of our problem space, we have kept the design of distributed

storage system in mind. In particular, we decided that the flat namespace of a CAS system

would permit data distribution more easily by partitioning a hash space, for example by using

distributed hashing like LH [87, 89, 88] to partition and distribute the tables.

Another change from our original solution strategy was not to use data clustering of

similar data [75, 29, 33, 43, 109, 176]. Although its use might still be feasible, we found that

data clustering might not scale well when clusters are grown incrementally by adding new files

and their feature sets. In addition, the performance of managing clusters and searching through

them would depend greatly on the similarity of the data. For example, highly dissimilar data

would produce either many singleton clusters, or clusters with dissimilar data.

Perhaps the most significant realization to us is that our understanding of data storage

models has changed greatly throughout the development of our solution. The first discovery

is that storing data efficiently is less of a storage or compression problem than an exercise in

196

system design employing data fingerprinting and information retrieval methods incorporated

into an architecture that would meet cost and resource constraints. To this end, we would

need to incorporate research and solutions from other disciplines. The second discovery is

that data dependency has a significant impact on archival storage whereas it would have little

impact in a file system. As is obvious to those making contributions in the data compression

field, compression is completely data dependent; this is perhaps more true for large-scale data

compression. The third discovery is that disk-based archival data storage is still an open field.

Although we have tried to address one problem, that of space efficiency, many hard

problems still exist. Engineering mechanical devices and designing storage reliability for data

permanence will continue to be a difficult problem. In addition, satisfying the data permanence

problem is increasingly a logic permanence problem. Most data today is encoded in one form

or another; our virtual encoding is no exception. Without other mechanisms to ensure correct

interpretation of bits in perpetuity, the bits themselves will become meaningless.

The future may even more promise for highly interdependent data storage. Our so-

lution was developed for magnetic disk, but its application may find better use with solid state

memories. Disk, even with its lower latency than tape, offered the first possibility for content-

addressed storage. However, disk performance is still a limitation when random access is the

rule, not the exception. With solid state memories that offer lower latency, interdependent data

storage will be more attractive due to the lower random access cost. With this, PRESIDIO

would offer higher reconstruction throughput and potentially higher performance for retrieval

of feature data that are used for similarity detection. In this case, low latency could open further

opportunity for additional gains in storage efficiency.

197

9.3 Limitations

Our work is limited in a number of ways. Data compression is an information theory

problem in which an optimal solution may be intractable. Our solution uses many heuristic

techniques and engineering compromises to detect data similarity. Feature selection parameters

that improve resemblance detection through smaller window sizes or larger feature sets increase

the probability of detecting similarity with better accuracy, but at an increased storage overhead

cost that conflicts with the primary goal of space efficiency. Parameters for chunk size are a

compromise—some parameters for one data set may not be as efficient for another. In order for

a single storage system to be used consistently for all input, we select one set of parameters,

such as fingerprint size, window size, or expected chunk size parameters.

We use metrics that provide approximate storage improvements. Because no a pri-

ori tests can be applied to data compression techniques to determine its efficiency, an optimal

solution demands comparing multiple possible storage encodings; in the case of inter-file com-

pression, resources are not sufficient to afford these comparisons. Because evaluation may

require reads of full files, operations like delta compression may be expensive. Our solution

favors the use of redundancy elimination with lower resource cost and higher efficiency over

higher cost methods that provide lower efficiency gains.

Like other forms of data compression, our engineering solution is restricted to stor-

age, computing, and bandwidth resources that are not infinite. We used data fingerprinting

algorithms that are efficient for our purpose, within a single-machine storage unit. We constrain

our solution to use minimal primary and secondary storage. We have used data structures that

are linear in the size of the input, and a simple database structure that provides low operational

complexity for retrieving feature and content data quickly. Computing and selecting features

that provide a high quality representation of internal data within a file can be computationally

198

expensive, but in order to provide sufficient throughput, we needed to limit feature sizes and

also improve the implementation. The PRE algorithm uses additional storage read bandwidth

because the multiple phases and multiple efficient storage methods (ESMs) cause some amount

of re-processing, although much less than if separate storage systems evaluated and stored data

independently.

Our solution is not an entire large-scale distributed storage system, but a foundation

subsystem designed for a single machine. The simple CAS interface abstracts the requirements

for input but may also reduce the ability to redistribute internal low-level data across storage

service on other services. In addition, we do not provide distributed hashing or data place-

ment algorithms. However, we developed the architecture with distributed storage as one of

the primary goals, and have attempted to not preclude the design for a larger system. In par-

ticular, unlike many storage systems which impose structure with the storage of content, ours

does not make such association. The virtual content-addressable storage system offers further

opportunity to reconstruct data by separating the virtual representation of a file from its real

representation.

9.4 Future Work

The solution we have put forth is a starting point for further research and exploration

in archival data storage. The thesis of storage large volumes of data efficiently within a single

content-addressable storage node is a critical part of the larger problem of storing data within

a distributed storage system. Our content-addressable storage architecture does not rely on the

metadata used to organize storage systems. It was the goal of this work to fit within the larger

goals of the Deep Store project, a large-scale archival storage system.

199

9.4.1 Distributed Storage, Replication, and Reliability

Distribution and replication are two major areas of research that would extend the ex-

isting storage system. Unlike hierarchical and directed acyclical graph directory organizations,

our architecture decouples naming and addresses from content, making it possible for data to

be distributed widely. In addition, the architecture is agnostic to file content and metadata for-

mat, allowing different system and programming interfaces to be layered on top of the system.

Distributed file storage, using distributed hashing or peer-to-peer architectures, can be built on

top of PRESIDIO.

Distributed file storage introduces additional problems. In order to scale, a system

would grow ideally with low overhead as more storage nodes are added to increase storage

capacity and workload. Locality of reference—which is not inherent in data organized by con-

tent address—would need to improve in order to reduce data dependencies across many storage

nodes. In addition, individual storage nodes incorporating PRESIDIO would then be able to

refer to data on other storage nodes, so reducing inter-node references and minimizing recon-

struction costs would need to be considered.

Data reliability in an efficient storage system will require new ways of thinking about

reliability models. Reliability models which assume probabilities of failure per byte or per block

do not address changes when data dependency in shared chunks or delta compressed data. When

compounded with distributed data storage, the reliability models may be difficult to describe.

Using cluster storage like Ursa Minor [2] that provide per-data object reliability settings address

this somewhat, but do not currently express data dependencies as a requirement. Replication is

not the only possibility; erasure coding offers additional benefits such as availability and data

integrity over a distributed system [167]. Additionally, distributed archival systems may need

to ensure confidentiality and verifiability over long periods of time [171].

200

9.4.2 Improving Compression

As has been the case with other areas of data compression research, more efficiency

can be gained if properties of content type that is being compressed is known. Our system aims

treats all binary data without discrimination but doing so may yield further storage benefits.

Feature selection of well-known features such as file name, file type, file extension, or n-grams

can further aid similarity detection.

For example, BSDiff [121], a platform-independent binary differencing program for

executable programs produces patch files less than half the size of xdelta and comparable to

platform-specific programs. One shortcoming of introducing arbitrary or extensible data for-

mats to an archival system is the increased reliance on programs whose existence must be en-

sured for future retrieval.

Recent work to detect similarity of non-textual data [93] transform images into com-

pact data structures to reduce the search space; although its strategy is intended for a particular

domain of problems, the methods used to improve the performance of searching may be appli-

cable to a general-purpose similarity search mechanism that can be used within PRESIDIO.

A shortcoming of an extensible system is that the ability to decompress programs in

the future also depends on the existence of the software, operating environment, and hardware

required to execute the decompressors. This argument has motivated the development of the

Adobe Acrobat PDF/A archival standard away from extensibility and towards a common set of

standards [85, 67, 119].

File formats for text can be encoded in one format and transcoded into another easily

with little or no loss of fidelity. Large collections of textual data created today in native language

encodings such as ISO 8859-1 (Latin-1 for Western European languages) or JIS X 0208:1997

(Shift-JIS for Japanese) might eventually be stored in the ISO 10646 (Unicode) standard. If file

201

differences are stored as transcoding operations, then alternative version of a file can be stored

and retrieved with very little space overhead.

9.4.3 Performance

Store and retrieve are the two primary operations of the PRESIDIO storage frame-

work. Storage performance is measured by the rate of ingest, and retrieval performance is mea-

sured by both latency and read bandwidth. Our solution is not required to provide append or

rewrite semantics; all files are written in their entirety and immutably. Consequently, file store

requests can be made asynchronously of retrieval requests. The rate of ingest is still dependent

on throughput when the request rate for data is higher than the internal rate of ingest. Thus,

the PRESIDIO steps to identify and detect similar data must also satsify the high throughput

requirement.

Searching for data may be resource intensive, either computationally or in memory

usage, when high dimensionality searches are used. Indexes and inverted indexes are memory

inefficient. Our initial solution was to use low-dimensional spaces—for example, through har-

monic superfingerprinting—to keep search complexity low. Other methods may help reduce

search, for example with multidimensional extendible hashing [117, 116], or with approximate

nearest neighbors [72].

File reconstruction requires that dependent data is first reconstructed. As we have

shown, efficiently stored delta-compressed data form dependency chains can be longer than

one. Reconstruction of any delta would require that dependent data would require data reads

and writes of order O(ln) where l is the average chain length and n is the size of each file,

as opposed to reading or retrieving a file of order O(n). However, some reference files may

also exhibit high degrees of dependence and they may be cached. Due to the sizes of delta

202

files being small in practice, in-place reconstruction of data may require much less than O(ln)

intermediate storage and computation, as shown in earlier work [22, 23]. File dependencies

imply direct dependencies and file prefetching would also aid performance [81].

9.4.3.1 File Aging and Access Patterns

File access patterns for file systems have been measured [52] and repeating the ex-

periments for archival storage would help future designs. Gibson et al. profiled on-line disk

systems, which are likely to have different characteristics from long-term archival storage. An

attempt to reproduce the experiments faces a number of challenges, most notably that mea-

suring accesses with accuracy would span years, generations of systems, and the growth and

migration of data. Archiving serves a wide range of purpose, as is evident from government

records management guidelines [143] as well as the variations in regulatory compliance which

have been driving many of the archival storage industry.

203

Appendix A

Rabin Fingerprinting by Random Polynomials

Rabin fingerprinting by random polynomials [127] (or simply Rabin fingerprinting)

is a useful method for computing collision-resistant hashes over binary strings. It is used widely

in the research literature of content-addressed and archival storage but technical details of its

use are often omitted. Rabin’s original technical report and Broder’s note on applications of the

method [11] are the primary works from which an implementation may be developed. During

development of our fingerprinting library, we discovered technicalities that were important to

understand before we could fully realize the benefit of the method and deploy it in our system.

The two main shortcomings with Rabin fingerprinting are that there is no common

specification from which to implement different libraries that produce identical results, and that

important implementation details have been omitted in the literature. Our goal is not to develop

a specification here, but to provide key design decisions from which to create one.

Unlike functions that hash strings of arbitrary length, such as MD5 [133], SHA-

1 [113] and derivatives SHA-256, SHA-384, and SHA-512 [114], the parameters and assump-

tions used to implement Rabin fingerprinting functions are underspecified in the literature, often

only mentioning the size of data type used to store the fingerprint. We describe the Rabin fin-

204

gerprinting assumptions and parameters more explicitly so that a practitioner could establish a

specification with little or no ambiguity.

Another shortcoming of Rabin fingerprinting is the lack of implementations and im-

plementation advice that can improve execution performance dramatically. Differences in per-

formance can make are significant enough to make a program correct but unusable, due to the

large number of fingerprint computations necessary for analyzing content. Also, the Rabin fin-

gerprint function per se is simply a single function; in practice, we have found that a library of

related functions is more useful.

This appendix is organized into the following sections: first, a summary of properties

of the Rabin fingerprinting method; second, a description of the representations of string (data)

and fingerprints; third, implementation details; and fourth, related work.

A.1 Properties of the Rabin fingerprinting method

The basic Rabin fingerprinting by random polynomial function computes a hash of

a fixed size from a binary string of arbitrary length [127]. The functions are of a class of

randomized functions that exhibit uniform distribution of results when selecting a function at

random from the set [31].

Broder identified many useful properties of Rabin fingerprints, which offer signifi-

cant benefit in practice [11]. Many instances of hash functions for a selected fingerprint size

can be selected at random to yield a set of of randomized hash functions, a useful mechanism

for selecting features from a large file. Also, operations for fingerprinting a binary string can

be composed of functions that fingerprint a byte or a word at a time by precomputing tables

for an instance of a hash function. And another useful property is the low computational com-

plexity and resulting efficiency computing fingerprints over sliding windows into strings and

205

fingerprints of concatenated strings.

A.2 Modulo Polynomial Fingerprinting

The Rabin fingerprint function is simply the following expression:

f (A) = A(x) mod p(x)

where f (A) is the fingerprinting function, an irreducible polynomial of degree k over the finite

field GF(2).

A.2.1 Binary Polynomials

We use the term binary polynomial to describe the specific case of using the finite field

GF(2n) where n = 1. A(x) is a polynomial of arbitrary degree whose coefficients are in Z2[x]

and p(x) is an irreducible polynomial of degree k, p(x) ∈ Z2[x]. Modulo polynomial arithmetic

operations, including operations modulo an irreducible polynomial, are simple enough to be

easily implemented in hardware and have been used in algebraic coding for many years [7]. We

describe how this affects the implementor of a fingerprinting library.

1. A fingerprint is computed by taking a bit string A(x) and computing the residual by taking

A modulo an irreducible polynomial p(x).

2. The fingerprint is represented by a polynomial f (A) of degree k and whose coefficients

are in Z2[x], i.e. the coefficients are from the set of (0, 1), and each one can be stored in

a bit. So the fingerprint representation is simply a bit string of k +1 bits representing the

k +1 coefficients of f (A).

206

3. Like f (A), polynomials A(x) and p(x) ∈ Z2[x] and therefore directly representable as

binary strings.

4. A polynomial p(x) of degree k can be represented by k+1 bits. Note that the argument x is

not evaluated by substituting its value into the polynomial p(x). Instead, the fingerprinting

operation is evaluating one polynomial A(x) modulo another polynomial p(x).

5. Similarly, A(x) is a polynomial of degree l and represented as l + 1 bits. Or in other

words, the coefficients to polynomial A(x) is simply the bit string to be fingerprinted. In

a computer that stores data in octets (bytes), l is an integer multiple of eight.

6. The modulo polynomial operation is the residual from dividing polynomial A(x) by p(x).

It is not the same as the arithmetic modulo operation in which the residual (or remainder)

is the remainder from integer division. However, addition and subtraction are modulo

arithmetic, effectively using the exclusive-or bitwise operation for both addition and sub-

traction instead of integer arithmetic and subtraction. Good descriptions of the operations

can be found in elsewhere [7, 102].

7. The polynomial p(x) is irreducible, which is a property described below. It may be

selected at random from a large, but finite set of irreducible polynomials of degree k.

When non-irreducible polynomials are used, hash results have non-uniform distribution

and are therefore not collision-resistant.

A.3 Properties of Rabin fingerprinting functions

Rabin functions are a type of randomized hash function that can be used to digest

strings. They possess collision resistance, but not cryptographic invertibility. They are easily

207

represented in binary form.

A.3.1 Randomized Functions

Rabin fingerprinting functions are known as randomized functions. Randomized

functions are useful for application over arbitrary data to produce results with uniform dis-

tribution. A random function can be selected from a set of functions, such as the set of all

irreducible polynomials of a fixed degree. The selection process ensures low probability any

adversary can provide input data to produce non-uniform distribution of output results. In the

scope of our work, we randomly select an irreducible polynomial to create a new fingerprint-

ing function. Once a fingerprinting function is selected, it is retained to produce deterministic

results.

A.3.2 Collision Properties

The usual collision properties for hashing functions apply to Rabin fingerprinting

functions. Let p(x) be an irreducible polynomial, and A(x) and B(x) represent polynomials

whose coefficients can be represented by binary strings. Let f (A) mod p(x) be the fingerprint

over string A. Then

f (A) 6= f (B)→ A 6= B

Pr(f (A) = f (B) |A 6= B) is very small

Broder distinguishes between fingerprinting and hashing. A more detailed description

can be found in Section 4.3.

208

A.3.3 Binary Representation

An instance of a Rabin fingerprint function f (A) is determined by its specific irre-

ducible polynomial pi(x). Each polynomial has a constant binary representation that can be

stored in a file, declared as a constant in a source code file or generated dynamically. A general

f (A) = A(x) mod pi(x) can be implemented for arbitrary i.

A.3.4 Concatenation

Rabin fingerprints exhibit the nice property that fingerprints of concatenated strings

can be easily computed from the fingerprints of substrings, specifically:

f (concat(A,B)) = f (concat(f (A),B))

A.3.5 Number of Hash Functions

For any given degree, there is a large number of irreducible polynomials. Rabin [126]

states that the density of monic polynomials in Zp[x] (where p = 2 for binary irreducible poly-

nomials) is approximately 1/k where k is the degree of the polynomials. This means that with

k bits of representation, there are 2k/k hash functions.

Practically speaking, k = 2w, a power of two, to easily fit into a computer memory

word. We used k = 32 (w = 5) and k = 64 (w = 6). The number of hash functions are 2k/2w =

2k−w; for k = 32, this is 227 and for k = 64, 258.

This compares favorably to the Karp-Rabin string search, which matches substrings

by hashing using modulo integer arithmetic. With integer arithmetic, prime number density

is approximately 1/log(k) for words of size k, but there are 1/k irreducible polynomials. An

additional disadvantage to integer modulo arithmetic is that it is not easy to compute the integer

209

modulo result without extending to words of 2k in size. This makes Rabin fingerprinting by

random polynomials more efficient because its implementation requires registers of size k and

subsequently only requires register-memory datapaths of size k.

A.3.6 Invertibility

Unlike cryptographic, or “one-way,” hashes, the Rabin fingerprint is easily inverted

due to polynomial arithmetic. For detecting similar data with fingerprints, we rely on collision-

resistance; for addressing by content (content-addressable storage) we rely on cryptographic

properties to make forgery difficult.

A.4 Data representation

A.4.1 Representing Polynomials

Polynomial representation may be chosen arbitrarily, however since the “Rabin finger-

print” is used widely, it is useful to define conventions that can be applied to its use consistently.

The endianness, bit ordering, use of the high-order degree, and prefixed bitstrings will all have

an effect on the real representation of fingerprints.

A.4.1.1 Endianness

Memory, such as RAM, is addressable as binary terms as bytes or words. Polynomials

whose coefficients are binary terms, can be represented in arbitrary ways, but typically either a

big-endian or little-endian convention is used. Our implementation uses big endian polynomials

i.e. 0x8000000000000007 (64 bits of coefficients) represents

x64(implied)+ x63 + x2 + x+1

210

A.4.2 Fingerprint of the “null string” or “empty string”

The fingerprint of the “empty string” depends on the convention used to store bits. We

define a convention for interpreting strings that are all zero. The string to be fingerprinted, A(x),

and the fingerprint f (A) can be treated in a similar manner in which their high-order coefficients

are implied.

An in-memory representation of all zeros can be represented as a polynomial. Two

common interpretations are possible:

1. all coefficients are represented by bits in memory, and

2. only low-order coefficients are represented by bits in memory

In the first case, each bit memory represents one coefficient, ai. This convention has

two shortcomings: strings of all zeros make it impossible to distinguish bit strings by their

polynomials, and an extra bit is used to encode the high-order coefficient. The first problem is

that a bit string “0” would hash to the same hash value as “00000000” and every other bit string

with many zeros. Bit strings with many zeros are common, so hash collisions would occur

often. The second problem is that computing a Rabin fingerprint with a polynomial of degree

k = 31 (which fits into a memory word of k+1 bits, e.g. a 32-bit value) results in a fingerprint of

degree k−1 = 30, or 31 bits of storage (and the high-order bit is zero). So in effect, the output

of the hash function is reduce by one bit unnecessarily.

In the second case, each bit in memory represents a low-order coefficient and the

high-order coefficients are implied. Broder’s definition is the simplest case, the high-order

coefficient for a polynomial A(x) of degree is simply ak = 1, where k is the degree of A. There

is no in-memory representation for ak = 1; it is simply a one-bit ghost prefix implied for all

computation. In the more general case, it is possible to use an arbitrary polynomial, or n-bit

211

ghost prefix.

There are three easily defined memory representations for all strings:

high-order bit = 0 [a32 = 1][a31][a30] . . . [a0]
high-order bit = 1 [a32 = 0][a31][a30] . . . [a0]
arbitrary prefix string [PREFIX][a31][a30] . . . [a0]

where [ai] is a bit, and PREFIX is a bitstring of arbitrary length. In the first case, strings with an

arbitrary number of zero bits are indistinguishable from each other. Clearly this is inadequate

as zeros are commonly found in binary data stored on disk.

A better interpretation of the binary string is to use that given by Broder [11] which

is that all strings are prepended with a “1”. What this means is that the “empty string” does not

evaluate to have a fingerprint of zero. The Broder definition of an empty string should always

have a high-order bit of 1. Then the fingerprint of the empty string would be

f (emptystring(x))≡ 1

Note that the fingerprint for the empty string can be anything, using all 64 bits of coefficient.

Alternatively, an arbitrary string can be used to be the “header” or “prefix” that is prepended to

each binary string. This only needs to be computed once using the “extend” function.

In this last case, we use a convention

A(x) = concat(PREFIX(x),M(x))

which allows us to prepend an arbitrary string so as to seed every string with a fingerprint.

In implementation, this is identical to initializing a fingerprint so that the “empty string” has

fingerprint

f (0) = f (PREFIX(x))

212

and not zero. This eliminates the equally degenerate case when a superfingerprint is computed:

g(F) = F(x) mod q(x)

q(x)is an irreducible polynomial

F(x) = f (x) = f (A) mod q(x)

where the fingerprint f (x) is then reinterpreted as a binary string F(x).

We return to the original question of determining the fingerprint of an empty string.

It is simply the fingerprint of a bit string of the prefix. If the prefix is zero, then the fingerprint

is zero. If the prefix is 1, then the fingerprint of A = PREFIX is

f (A) = A(x) mod p(x) = 1 when A(x) = 1

Other interesting properties fall out from this. If a word is zero, and f (PREFIX) = 1,

then the fingerprint will be equal to the irreducible polynomial itself.

A.4.3 Implications of the Prefixed String

If strings are not prefixed implicitly before the fingerprint is computed, the fingerprint

of any polynomial f (x) = 0 would always be 0. So a single byte of zero or a one-megabyte file

with all zeros would have the same fingerprint!

The empty string is actually just a specific instance of a more general case of finger-

printing a string that contains a prefix string within it. When fingerprinting a string that just

contains the prefix itself, the fingerprint will be 1. This is somewhat degenerate in that repeated

sequences of the prefixed string can cause a fingerprint to be produced for the following case:

f (concat(PREFIX ,PREFIX ,PREFIX)) = f (PREFIX)

213

A.4.4 String Concatenation with Prefixed Strings

Suppose we want to concatenate the strings “A” and “B” that contain hidden pre-

fixes. To do this, one must first compute the fingerprint for A, the fingerprint for B, and then

as a shortcut, we can use the expression f (A)xt + f (B), t = bitlength(B). However, the finger-

printing functions are really computing f ′(concat(A,B))) = f (concat(PREFIX ,A))xt + f (B).

Note that the fingerprint that is computed for B (using extend, for example) will really be

f (concat(PREFIX ,B)). To correctly compute the concatenated string, we first compute each

part separately:

f ′(A) = f (concat(PREFIX ,A))

f ′(B) = f (concat(PREFIX ,B))

Then we need to combine the strings to effectively compute

f ′(concat(A,B)) = f (concat(PREFIX ,A,B))

and not

f ′(concat(A,B)) = f (concat(PREFIX ,A,PREFIXB)).

So to do that the concatenation function must remove the prefix from B first. In order

to do that, the fingerprint for the prefix is simply subtracted from the fingerprint. (Note that we

are using modulo polynomial arithmetic in Z2, so f (x) =− f (x) and f (x)+g(x) = f (x)⊕g(x))

where ⊕ is the exclusive-or binary operation.

A.4.5 Sliding Window with Prefixed Strings

When computing fingerprints in a sliding window, two steps must occur: first the

old word must be removed from the string (and respectively updating the fingerprint), leaving

214

a fingerprint that appears to be the string with the oldest word removed from the string, i.e.

windowsize = 3, A0 is a word (conveniently the size of the fingerprint)

A = concat(PREFIX ,A0,A1,A2)

then to remove A0 from the front of the string:

A′ = concat(PREFIX ,A1,A2)

and append A3 (note: this is exactly the same operation as extending by one word)

AA = concat(PREFIX ,A1,A2,A3)

To remove the presence of substring concat(PREFIX ,A0) from the fingerprint,

f (A) = f (concat(PREFIX ,A0,A1,A2)

t = xwindowsize−1word size, in bits

f (A′) = f (A)− f (concat(PREFIX ,A1))xt + f (PREFIX)xt

A.5 Constructing a Rabin fingerprinting library

The goal of a Rabin fingerprinting library is to compute fingerprints (polynomials)

over arbitrarily sized polynomials. To a programmer, this is simply to compute fixed-sized bi-

nary fingerprints over fixed- or variable-length binary data. The representation of polynomials

map directly to binary representations and vice-versa. Other parameters, such as the degree of

polynomials, must be specified in order to retain the determinism that is necessary of finger-

prints.

Computing fingerprints efficiently is also important. Although it is straightforward

to compute fingerprints using polynomial operations, with today’s microprocessors, it is still

215

essential to improve performance by using precomputed tables such that fingerprints can be

computed by bytes or words at a time.

Specialized fingerprinting operations, such as computing a fingerprint over a single

word, might be used many times, as in the case of certain feature selection operations. Writing

operations to precompute can dramatically improve the analysis of data.

A.5.1 Computing Irreducible Polynomials

We list some of the steps necessary to implement the function to compute random

irreducible polynomials.

Random Numbers The pseudo-random number generators vary greatly in quality. For ex-

ample, the FreeBSD (4.7) of rand() does not generate very random numbers in the low order

bits so using higher-order bits and shifting them seems to make a big difference.

assert(RAND_MAX >= 0x00ff0000);
// use higher-order bits for more randomness, e.g. in FreeBSD
return ((rand() & 0x00ff0000) >> 16);

Testing for Irreducibility Rabin described a test that can be applied to polynomials to deter-

mine their irreducibility [126]:

LEMMA 1. Let l1, · · · , lk be all the prime divisors of n and denote n/li = mi. A
polynomial g(x) ∈ Zp[x] of degree n is irreducible in Zp[x] if and only if

g(x)|(xpn− x),

(g(x),xpmi − x) = 1, 1≤ i≤ k

where (a, b) denotes the greatest common divisor of a and b.

Note that for Rabin fingerprinting, p = 2. A similar algorithm, which is fairly easy to imple-

ment, is described in the Handbook for Applied Cryptography [103], Algorithm 4.69, p. 155.

“Testing a polynomial for irreducibility.”:

216

Algorithm 4.69

p = 2 [p is a prime, we use p = 21]

polynomial: xm +am−1xm−1 + · · ·+a0

this is a monic polynomial (leading coefficient for xm is 1)

m = degree of the polynomial in Z2[x]

1. set u(x)← x

2. for i from 1 to f loor(m/2)

2.1 compute u(x)← u(x)p mod f (x)
2.2 compute d(x) = gcd(f (x),u(x)− x)
2.3 if d(x) 6= 1 then return “reducible”

3. return “irreducible”

Invariants of Irreducible Polynomials The lowest coefficient of (binary) irreducible polyno-

mials is always 1. The number of non-zero coefficients for (binary) irreducible polynomials is

always odd. It is easy to count the number of bits in the binary string representing an irreducible

polynomial to determine if the high-order coefficient is implied. For example, an irreducible

polynomial of degree k = 32 would be represented by 33 bits, but because the polynomial is

always monic. The high-order coefficient a0 (in the term a0x32) is always 1 and therefore may

be omitted. However, the number of expressed coefficients is then always even. In the imple-

mentations of Rabin fingerprinting functions that use polynomials of degree k−1, one less bit

is used, which diminishes the range of the hash function, i.e. instead of 2k possible hash values,

only 2k−1 are returned. In practice, testing for these two invariants are helpful for determining

the correctness of the function for testing irreducibility.

Density of Irreducible Polynomials Rabin proves the density of irreducible polynomials of

degree k is approximately 1/k [126]. Applying a simple statistical test for sufficiently large

sample size helps validate whether the test for irreducibility generates an approximate density.

217

Primitive Polynomials Primitive polynomials are a subset of irreducible polynomials.

Endianness When determining a convention for computing polynomials, choosing an endi-

anness for the representation of the coefficients has a small impact on the computation perfor-

mance. Choosing a convention is necessary since a requirement of the archival storage system

is to be able to reproduce the computation of the fingerprints regardless of the endianness. Han-

dling cross-platform issues with respect to endianness is not a new problem, but in particular

this is not just a matter of “byte-swapping” (which is usually how endian-neutral implementa-

tions interpret data) since depending on how the coefficients for a polynomial are written, bit

strings may be written in either direction.

The byte ordering of a processor architecture will have a small impact on the speed of

computing fingerprints. Once a byte orientation is chosen, i.e. big-endian or little endian, and

the algorithm for computing fingerprints is selected for optimal computation when sliding over

words using that byte orientation, then computing fingerprints on processors using the ”other”

endianness will be more expensive.

Other implementations code chooses to use a little-endian orientation, which is most

useful on Intel processor architectures, which are also little-endian machines. Using this con-

vention, in any binary word, the highest order coefficients for a polynomial (coefficients in Z2)

are stored in the lowest order bits. One can picture the binary coefficients in memory or in a

register in descending order of magnitude by writing the memory or register backwards from

the normal convention (in the sense that computer memory is normally written most-significant

bit to least-significant bit from left to right):

Register b0 b1 . . . b63
Memory, as bytes b0 b1 . . . b7, b0 b1 . . . b7
Memory, as 64-bit words B0 B1 . . . B7, B0 B1 . . . B7

218

Where “bn” is bit n and “Bm” is byte m.

Bit operations to test individual bits and to shift bytes or words are done opposite of

the conventional operations. For instance, in the C language to test whether the “1” (lowest

order coefficient) is set, the word size must be known and then the last position in the word

must be tested, e.g.

#define WORDSIZE 64
if (f & 1 << (WORDSIZE-1))

...

Or to multiply a polynomial f(x) by x to raise the terms by one degree, the coefficients

would normally be “shifted left.” However since the binary terms are all written in reversed

order, they must be shifted right instead, e.g.

/* multiply f(x) by x */
f >>= 1;

One advantage to big-endian is that the binary operations on bytes and words are

identical to language operations. We choose to use big-endian because the bit representation for

a polynomial is easier to understand.

A.6 Related work

Rabin fingerprinting by random polynomials uses a specific instance of the Galois

field GF(2n) where n is 1. When fingerprints of fixed size that are also a power of two are used,

it is possible to use the more general field GF(2n) [90].

219

Bibliography

[1] Google Desktop. http://desktop.google.com/.

[2] M. Abd-El-Malek, W. V. Courtright II, C. Cranor, G. R. Ganger, J. Hendricks, A. J.
Klosterman, M. Mesnier, M. Prasad, B. Salmon, R. R. Sambasivan, S. Sinnamohideen,
J. D. Strunk, E. Thereska, M. Wachs, and J. J. Wylie. Ursa Minor: Versatile cluster-based
storage. In Proceedings of the 4th USENIX Conference on File and Storage Technologies
(FAST), pages 59–72, San Francisco, California, Dec. 2005. USENIX Association.

[3] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cermak, J. R. Douceur, J. Howell,
J. R. Lorch, M. Theimer, and R. Wattenhofer. FARSITE: Federated, available, and reli-
able storage for an incompletely trusted environment. In Proceedings of the 5th Sympo-
sium on Operating Systems Design and Implementation (OSDI), Boston, Massachusetts,
Dec. 2002. USENIX Association.

[4] M. Ajtai, R. Burns, R. Fagin, D. D. E. Long, and L. Stockmeyer. Compactly encoding
unstructured inputs with differential compression. Journal of the ACM, 49(3):318–367,
May 2002.

[5] B. S. Baker, U. Manber, and R. Muth. Compressing differences of executable code.
In ACM SIGPLAN Workshop on Compiler Support for System Software (WCSS), pages
1–10, Apr. 1999.

[6] T. Batu, F. Ergün, J. Kilian, A. Magen, S. Raskhodnikova, R. Rubinfeld, and R. Sami.
A sublinear algorithm for weakly approximating edit distance. In Proceedings of the
Thirty-Fifth Annual ACM Symposium on Theory of Computing (STOC ’03), pages 316–
324, June 2003.

[7] E. R. Berlekamp. Algebraic Coding Theory. McGraw-Hill, Inc., New York, New York,
1968.

[8] M. W. Berry, Z. Drmač, and E. R. Jessup. Matrices, vector spaces, and information
retrieval. SIAM Review, 41(2):335–362, 1999.

[9] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
http://www-db.stanford.edu/∼backrub/google.html.

220

http://desktop.google.com/
http://www-db.stanford.edu/~backrub/google.html

[10] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In
Proceedings of the 7th International World Wide Web Conference, pages 107–117, Bris-
bane, Australia, 1998. Elsevier Science Publishers B.V. Amsterdam, The Netherlands,
The Netherlands.

[11] A. Z. Broder. Some applications of Rabin’s fingerprinting method. In R. Capocelli, A. D.
Santis, and U. Vaccaro, editors, Sequences II: Methods in Communications, Security, and
Computer Science, pages 143–152. Springer-Verlag, 1993.

[12] A. Z. Broder. On the resemblance and containment of documents. In Proceedings
of Compression and Complexity of Sequences (SEQUENCES ’97), pages 21–29. IEEE
Computer Society, 1998.

[13] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise independent
permutations. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing (STOC ’98), pages 327–336, 1998.

[14] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise independent
permutations. Journal of Computer and Systems Sciences, 60(3):630–659, 2000.

[15] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering of
the web. In Proceedings of the 6th International World Wide Web Conference, pages
391–404, Santa Clara, California, Apr. 1997.

[16] P. Buneman, S. Khanna, K. Tajima, and W. C. Tan. Archiving scientific data. In Pro-
ceedings of the 2002 ACM SIGMOD International Conference on Management of Data,
Madison, Wisconsin, 2002.

[17] T. Burkard. Herodotus: A peer-to-peer web archival system. Master’s thesis, Mas-
sachusetts Institute of Technology, May 2002.

[18] W. A. Burkhard and R. M. Keller. Some approaches to best-match file searching. Com-
munications of the ACM, 16(4):230–236, Apr. 1973.

[19] R. Burns. Differential compression: a generalized solution for binary files. Master’s
thesis, University of California, Santa Cruz, Dec. 1996.

[20] R. Burns and D. D. E. Long. Efficient distributed back-up with delta compression. In
Proceedings of I/O in Parallel and Distributed Systems (IOPADS ’97), pages 27–36, San
Jose, California, Nov. 1997. ACM Press.

[21] R. Burns and D. D. E. Long. A linear time, constant space differencing algorithm. In Pro-
ceedings of the 16th IEEE International Performance, Computing and Communications
Conference (IPCCC ’97), pages 429–436, Phoenix, Arizona, Feb. 1997. IEEE.

[22] R. Burns and D. D. E. Long. In-place reconstruction of delta compressed files. In Pro-
ceedings of the Seventeenth ACM Symposium on Principles of Distributed Computing
(PODC 1998), pages 267–275, Puerto Vallarta, Mexico, June 1998. IEEE.

221

[23] R. Burns, L. Stockmeyer, and D. D. E. Long. Experimentally evaluating in-place delta
reconstruction. In Proceedings of the 19th IEEE Symposium on Mass Storage Systems
and Technologies. IEEE, 2002.

[24] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm.
Technical Report 124, Digital Systems Research Center, May 1994.

[25] L.-F. Cabrera and D. D. E. Long. Swift: A distributed storage architecture for large
objects. In Digest of Papers, 11th IEEE Symposium on Mass Storage Systems, pages
123–128, Monterey, California, Oct. 1991. IEEE.

[26] L.-F. Cabrera and D. D. E. Long. Swift: Using distributed disk striping to provide high
I/O data rates. Computing Systems, 4(4):405–436, 1991.

[27] California Spatial Information Library. California digital raster graphics. http://
gis.ca.gov/casil/gis.ca.gov/drg/.

[28] CAMiLEON Project: Creative Archiving at Michigan & Leeds: Emulating the Old on
the New. http://www.si.umich.edu/CAMILEON/.

[29] F. Can. Incremental clustering for dynamic information processing. ACM Transactions
on Information Systems, 11(2):143–164, Apr. 1993.

[30] A. Cannane and H. E. Williams. A general-purpose compression scheme for large col-
lections. ACM Transactions on Information Systems, 20(3):329–355, 2002.

[31] J. L. Carter and M. N. Wegman. Universal classes of hash functions (extended abstract).
In Proceedings of the Ninth Annual ACM Symposium on Theory of Computing (STOC
’77), pages 106–112, New York, New York, 1977. ACM Press.

[32] C. Chan. Don’t rule out tape, experts say. http://www.itworld.com/nl/
storage sol/12092002/pf index.html, Dec. 2002.

[33] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and dynamic
information retrieval. In Proceedings of the Twenty-Ninth Annual ACM Symposium on
Theory of Computing (STOC ’97), pages 626–635, El Paso, Texas, 1997. ACM Press.

[34] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID: High-
performance, reliable secondary storage. ACM Computing Surveys, 26(2), June 1994.

[35] Y. Chen, J. Edler, A. Goldberg, A. Gottlieb, S. Sobti, and P. Yianilos. A prototype im-
plementation of archival intermemory. In Proceedings of the Fourth ACM International
Conference on Digital Libraries (DL ’99), pages 28–37. ACM Press, 1999.

[36] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, , and S. Sankar. Row-
diagonal parity for double disk failure correction. In Proceedings of the Third USENIX
Conference on File and Storage Technologies (FAST), pages 1–14, San Francisco, Cali-
fornia, Dec. 2004. USENIX Association.

222

http://gis.ca.gov/casil/gis.ca.gov/drg/
http://gis.ca.gov/casil/gis.ca.gov/drg/
http://www.si.umich.edu/CAMILEON/
http://www.itworld.com/nl/storage_sol/12092002/pf_index.html
http://www.itworld.com/nl/storage_sol/12092002/pf_index.html

[37] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: Making backup cheap and easy.
In Proceedings of the 5th Symposium on Operating Systems Design and Implementation
(OSDI), pages 285–298, New York, New York, 2002. ACM Press.

[38] A. Crespo and H. Garcia-Molina. Archival storage for digital libraries. In Proceedings
of the Third ACM International Conference on Digital Libraries (DL ’98), pages 69–78,
Pittsburgh, Pennsylvania, June 1998. ACM Press.

[39] J. Dean and M. R. Henziger. Finding related pages in the World Wide Web. In Proceed-
ings of the 8th International World Wide Web Conference, Toronto, Ontario, Canada,
May 1999.

[40] F. Douglis and A. Iyengar. Application-specific delta-encoding via resemblance detec-
tion. In Proceedings of the 2003 USENIX Annual Technical Conference, San Antonio,
Texas, June 2003.

[41] F. Douglis, A. K. Iyengar, and K.-P. Vo. Dynamic suppression of similarity in the web: a
case for deployable detection mechanisms. Technical Report RC22514, IBM Research,
Thomas J. Watson Research Center, Yorktown Heights, New York, July 2002.

[42] EMC Corporation. EMC Centera: Content Addressed Storage System, Data
Sheet. http://www.emc.com/pdf/products/centera/centera ds.pdf,
Apr. 2002.

[43] D. Eppstein. Fast hierarchical clustering and other applications of dynamic closest pairs.
In SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference on Theoretical
and Experimental Analysis of Discrete Algorithms), pages 619–628, Jan. 1998.

[44] Éric Fimbel. Edit distance and Chaitin-Kolmogorov difference. Technical Report ETS-
RT-2002-001, École de Technologie Supérieur, Université du Québec, Sept. 2002.

[45] K. Eshghi. Intrinsic references in distributed systems. Technical Report HPL-2002-32,
HP Laboratories, Feb. 2002.

[46] D. Fetterly, M. Manasse, M. Najork, and J. Wiener. A large-scale study of the evolution
of web pages. In Proceedings of the 12th International World Wide Web Conference,
pages 669–678. ACM Press, May 2003.

[47] R. A. Finkel, A. Zaslavsky, K. Monostori, and H. Schmidt. Signature extraction for
overlap detection in documents. In M. J. Oudshoorn, editor, Proceedings of the Twenty-
Fifth Australasian Computer Science Conference (ACSC2002), Melbourne, Australia,
2002. ACS.

[48] A. Finney. The Domesday Project—November 1986. http://www.atsf.co.uk/
dottext/domesday.html, Feb. 2004.

[49] Free Software Foundation. The gzip data compression program. http://www.gnu.
org/software/gzip/gzip.html, 2000.

223

http://www.emc.com/pdf/products/centera/centera_ds.pdf
http://www.atsf.co.uk/dottext/domesday.html
http://www.atsf.co.uk/dottext/domesday.html
http://www.gnu.org/software/gzip/gzip.html
http://www.gnu.org/software/gzip/gzip.html

[50] J. Gailly and M. Adler. Zlib lossless data compression library. http://www.gzip.
org/zlib/.

[51] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. In Proceedings of
the 19th ACM Symposium on Operating Systems Principles (SOSP ’03), Bolton Landing,
New York, Oct. 2003. ACM Press.

[52] T. Gibson, E. L. Miller, and D. D. E. Long. Long-term file activity and inter-reference
patterns. In Proceedings of the 24th International Conference for the Resource Manage-
ment and Performance and Performance Evaluation of Enterprise Computing Systems
(CMG98), pages 976–987, Anaheim, California, Dec. 1998. CMG.

[53] T. J. Gibson. Long-term UNIX File System Activity and the Efficacy of Automatic File
Migration. PhD thesis, University of Maryland, Baltimore County, May 1998.

[54] A. V. Goldberg and P. N. Yianilos. Towards an archival intermemory. In Proceedings of
IEEE Advances in Digital Libraries, ADL ’98, pages 147–156, Santa Barbara, California,
Apr. 1998. IEEE Computer Society.

[55] B. Gopal and U. Manber. Integrating content-based access mechanisms with hierarchical
file systems. In Proceedings of the 3rd Symposium on Operating Systems Design and
Implementation (OSDI), pages 265–278, 1999.

[56] J. Gray, W. Chong, T. Barclay, A. Szalay, and J. Vandenberg. TeraScale SneakerNet:
Using inexpensive disks for backup, archiving, and data exchange. Technical Report MS-
TR-02-54, Microsoft Research, Advanced Technology Division, Redmond, Washington,
May 2002.

[57] J. Gray and P. Shenoy. Rules of thumb in data engineering. In Proceedings of the
16th International Conference on Data Engineering (ICDE ’00), pages 3–12, San Diego,
California, Mar. 2000. IEEE.

[58] D. R. Hardy and M. F. Schwartz. Essence: A resource discovery system based on se-
mantic file indexing. In Proceedings of the Winter 1993 USENIX Technical Conference,
pages 361–374, 1993.

[59] T. H. Haveliwala, A. Gionis, D. Klein, and P. Indyk. Evaluating strategies for similarity
search on the web. In Proceedings of the 11th International World Wide Web Conference,
pages 432–442. ACM Press, May 2002.

[60] V. Henson. An analysis of compare-by-hash. In Proceedings of the 9th Workshop on Hot
Topics in Operating Systems (HotOS-IX). USENIX Association, May 2003.

[61] T. Hey and A. Trefethen. Grid Computing: Making the Global Infrastructure a Reality,
chapter The Data Deluge: An e-Science Perspective. John Wiley & Sons, Apr. 2003.

224

http://www.gzip.org/zlib/
http://www.gzip.org/zlib/

[62] Hitachi Global Storage Technologies. Hitachi hard disk drive specification: Deskstar
7K400 3.5 inch Ultra ATA/133 and 3.5 inch Serial ATA hard disk drives, version 1.4,
Aug. 2004.

[63] D. Hitz, J. Lau, and M. Malcom. File system design for an NFS file server appliance.
In Proceedings of the Winter 1994 USENIX Technical Conference, pages 235–246, San
Francisco, California, Jan. 1994.

[64] G. R. Hjaltason and H. Samet. Incremental similarity search in multimedia databases.
Technical Report CS-TR-4199, University of Maryland, College Park, Maryland, Nov.
2000.

[65] J. Hollingsworth and E. L. Miller. Using content-derived names for configuration man-
agement. In Proceedings of the 1997 Symposium on Software Reusability (SSR ’97),
pages 104–109, Boston, Massachusetts, May 1997.

[66] B. Hong, D. Plantenberg, D. D. E. Long, and M. Sivan-Zimet. Duplicate data elimination
in a SAN file system. In Proceedings of the 21st IEEE / 12th NASA Goddard Conference
on Mass Storage Systems and Technologies, College Park, Maryland, Apr. 2004.

[67] M. Hughes. PDF/A as an archive standard. http://www.aiim.org/documents/
standards/pdfa2.pdf, Oct. 2002.

[68] J. J. Hunt, K.-P. Vo, and W. F. Tichy. Delta algorithms: an empirical analysis. ACM
Transactions on Software Engineering and Methodology, 7(2):192–214, 1998.

[69] J. W. Hunt and M. D. McIlroy. An algorithm for differential file comparison. Technical
Report CSTR 41, Bell Laboratories, Murray Hill, New Jersey, 1976.

[70] IBM. IBM Tivoli Storage Manager. http://www.tivoli.com/products/
solutions/storage/.

[71] IBM. IBM OEM hard disk drive specification for DPTA-3xxxxx 37.5 GB–13.6 GB 3.5-
inch hard disk drive with ATA interface, revision (2.1). (Deskstar 34GXP and 37GP hard
disk drives), July 1999.

[72] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse
of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing (STOC ’98), pages 604–613. ACM Press, 1998.

[73] ISO Archiving Standards—Overview. http://ssdoo.gsfc.nasa.gov/nost/
isoas/overview.html, 2003.

[74] ISO/CD 19005-1: Document management—Electronic document file format for long-
term preservation—Part 1: Use of PDF (PDF/A), Oct. 2003.

[75] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Computing
Surveys, 31(3):264–323, Sept. 1999.

225

http://www.aiim.org/documents/standards/pdfa2.pdf
http://www.aiim.org/documents/standards/pdfa2.pdf
http://www.tivoli.com/products/solutions/storage/
http://www.tivoli.com/products/solutions/storage/
http://ssdoo.gsfc.nasa.gov/nost/isoas/overview.html
http://ssdoo.gsfc.nasa.gov/nost/isoas/overview.html

[76] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algorithms. IBM J.
Res. Dev., 31(2):249–260, Mar. 1987.

[77] R. H. Katz, G. A. Gibson, and D. A. Patterson. Disk system architectures for high
performance computing. IEEE, 77(12):1842–1858, Dec. 1989.

[78] J. T. Kohl, C. Staelin, and M. Stonebraker. HighLight: Using a log-structured file system
for tertiary storage management. In Proceedings of the Winter 1993 USENIX Technical
Conference, pages 435–447, San Diego, California, Jan. 1993.

[79] D. Korn, J. MacDonald, J. Mogul, and K. Vo. The VCDIFF generic differencing and
compression data format. Request For Comments (RFC) 3284, IETF, June 2002.

[80] D. G. Korn and K.-P. Vo. Engineering a differencing and compression data format. In
Proceedings of the 2002 USENIX Annual Technical Conference, pages 219–228, Mon-
terey, California, June 2002. USENIX Association.

[81] T. M. Kroeger and D. D. E. Long. Design and implementation of a predictive file
prefetching algorithm. In Proceedings of the 2001 USENIX Annual Technical Confer-
ence, pages 105–118, Boston, Massachusetts, Jan. 2001.

[82] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weath-
erspoon, W. Weimer, C. Wells, and B. Zhao. OceanStore: An architecture for global-scale
persistent storage. In Proceedings of the 9th Interational Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). ACM Press,
Nov. 2000.

[83] P. Kulkarni, F. Douglis, J. LaVoie, and J. M. Tracey. Redundancy elimination within large
collections of files. In Proceedings of the 2004 USENIX Annual Technical Conference,
pages 59–72, Boston, Massachusetts, June 2004.

[84] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual disks. In Proceedings of the
7th Interational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 84–92. ACM Press, 1996.

[85] S. Levenson and M. Warfel. PDF/A background. http://www.aiim.org/
documents/standards/oct3mel.pdf, Oct. 2002.

[86] H. Liefke and D. Suciu. XMill: An efficient compressor for XML data. In Proceedings
of the 2000 ACM SIGMOD International Conference on Management of Data, pages
153–164, May 2000.

[87] W. Litwin and M.-A. Neimat. High-availability LH* schemes with mirroring. In Pro-
ceedings of the Conference on Cooperative Information Systems, pages 196–205, Jan.
1996.

226

http://www.aiim.org/documents/standards/oct3mel.pdf
http://www.aiim.org/documents/standards/oct3mel.pdf

[88] W. Litwin, M.-A. Neimat, and D. A. Schneider. LH*—linear hashing for distributed files.
In Proceedings of the 1993 ACM SIGMOD international conference on Management of
data, pages 327–336. ACM Press, 1993.

[89] W. Litwin, M.-A. Neimat, and D. A. Schneider. LH*—a scalable, distributed data struc-
ture. ACM Trans. Database Syst., 21(4):480–525, 1996.

[90] W. Litwin and T. Schwarz. Algebraic signatures for scalable distributed data structures.
In Proceedings of the 20th International Conference on Data Engineering (ICDE ’04),
Boston, Massachussetts, Mar. 2004. IEEE.

[91] R. A. Lorie. A project on preservation of digital data. http://www.rlg.org/
preserv/diginews/diginews5-3.html, June 2001. Volume 5, Number 3.

[92] R. A. Lorie. Long-term archival of digital information. University of California, Santa
Cruz, Storage Systems Research Center Seminar, May 2004.

[93] Q. Lv, M. Charikar, and K. Li. Image similarity search with compact data structures. In
Proceedings of the Thirteenth ACM International Conference on Information and Knowl-
edge Management (CIKM ’04), pages 208–217, New York, New York, 2004. ACM Press.

[94] P. Lyman, H. R. Varian, K. Searingen, P. Charles, N. Good, L. L. Jordan, and J. Pal.
How much information? 2003. http://www.sims.berkeley.edu/research/
projects/how-much-info-2003/, Oct. 2003.

[95] J. P. MacDonald. Xdelta 1.1.3. http://sourceforge.net/projects/
xdelta/.

[96] J. P. MacDonald. File system support for delta compression. Master’s thesis, University
of California, Berkeley, 2000.

[97] K. Magoutis, S. Addetia, A. Fedorova, M. I. Seltzer, J. S. Chase, A. J. Gallatin, R. Kisley,
R. G. Wickremesinghe, and E. Gabber. Structure and performance of the direct access
file system. In Proceedings of the 2002 USENIX Annual Technical Conference, pages
1–14, Monterey, California, 2002. USENIX Association.

[98] M. Mahalingam, C. Tang, and Z. Xu. Towards a semantic, deep archival file system.
Technical Report HPL-2002-199, HP Laboratories, Palo Alto, California, July 2002.

[99] M. Manasse. Finding similar things quickly in large collections. http://research.
microsoft.com/research/sv/PageTurner/similarity.htm.

[100] U. Manber. Finding similar files in a large file system. Technical Report TR 93-33,
Department of Computer Science, The University of Arizona, Tucson, Arizona, Oct.
1993.

[101] U. Manber and S. Wu. GLIMPSE: A tool to search through entire file systems. Technical
Report TR 93-94, Department of Computer Science, The University of Arizona, Tucson,
Arizona, Oct. 1993.

227

http://www.rlg.org/preserv/diginews/diginews5-3.html
http://www.rlg.org/preserv/diginews/diginews5-3.html
http://www.sims.berkeley.edu/research/projects/how-much-info-2003/
http://www.sims.berkeley.edu/research/projects/how-much-info-2003/
http://sourceforge.net/projects/xdelta/
http://sourceforge.net/projects/xdelta/
http://research.microsoft.com/research/sv/PageTurner/similarity.htm
http://research.microsoft.com/research/sv/PageTurner/similarity.htm

[102] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook for Applied Cryptog-
raphy, chapter 2. CRC Press, Oct. 1996.

[103] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook for Applied Cryptog-
raphy, chapter 4. CRC Press, Oct. 1996.

[104] J. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy. Potential benefits of delta-
encoding and data compression for HTTP. In Proceedings of the Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Communication (SIG-
COMM ’97), Cannes, France, Sept. 1997.

[105] R. Moore, C. Barua, A. Rajasekar, B. Ludaescher, R. Marciano, M. Wan, W. Schroeder,
and A. Gupta. Collection-based persistent digital archives—part 1. http://www.
dlib.org/dlib/march00/moore/03moore-pt1.html, Mar. 2000.

[106] R. Moore, C. Barua, A. Rajasekar, B. Ludaescher, R. Marciano, M. Wan, W. Schroeder,
and A. Gupta. Collection-based persistent digital archives—part 2. http://www.
dlib.org/dlib/april00/moore/04moore-pt2.html, Apr. 2000.

[107] R. Moore, J. Lopez, C. Lofton, W. Schroeder, G. Kremenek, and M. Gleicher. Con-
figuring and tuning archival storage systems. In Proceedings of the 7th NASA Goddard
Conference on Mass Storage Systems and Technologies, Mar. 1999.

[108] T. D. Moreton, I. A. Pratt, and T. L. Harris. Storage, mutability and naming in Pasta. In
Web Engineering and Peer-to-Peer Computing, NETWORKING 2002 Workshops, Pisa,
Italy, May 19–24, 2002, Revised Papers, pages 215–219, 2002.

[109] M. N. Murty and G. Krishna. A computationally efficient technique for data-clustering.
Pattern Recognition, 12:153–158, 1980.

[110] A. Muthitacharoen, B. Chen, and D. Mazières. A low-bandwidth network file system. In
Proceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP ’01),
pages 174–187, Lake Louise, Alberta, Canada, Oct. 2001.

[111] M. Nelson and J.-L. Gailly. The Data Compression Book. M&T Books, New York, New
York, 2nd edition, 1996.

[112] Network Appliance. A new approach for strong reference information—NearLine stor-
age. Technical Report TR 3193, Network Appliance, Inc., Sept. 2002.

[113] NIST FIPS 180-1: Secure Hash Standard, Apr. 1995.

[114] NIST FIPS 180-2: Secure Hash Standard, Aug. 2002.

[115] M. A. Olson. The design and implementation of the Inversion file system. In Proceedings
of the Winter 1993 USENIX Technical Conference, pages 205–217, San Diego, Califor-
nia, Jan. 1993.

228

http://www.dlib.org/dlib/march00/moore/03moore-pt1.html
http://www.dlib.org/dlib/march00/moore/03moore-pt1.html
http://www.dlib.org/dlib/april00/moore/04moore-pt2.html
http://www.dlib.org/dlib/april00/moore/04moore-pt2.html

[116] E. J. Otoo. Balanced multidimensional extendible hash tree. In Proceedings of the 5th
ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, pages 100–113.
ACM Press, 1986.

[117] M. Ouksel and P. Scheuermann. Storage mappings for multidimensional linear dynamic
hashing. In Proceedings of the 2nd ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems, pages 90–105. ACM Press, 1983.

[118] Z. Ouyang, N. Memon, T. Suel, and D. Trendafilov. Cluster-based delta compression of a
collection of files. In International Conference on Web Information Systems Engineering
(WISE 2002), pages 257–266. IEEE, Dec. 2002.

[119] PDF Archive Committee. http://www.aiim.org/pdf a/.

[120] P. K. Pearson. Fast hashing of variable-length text strings. Communications of the ACM,
33(6):677–680, 1990.

[121] C. Percival. Naive differences of executable code. http://www.daemonology.
net/bsdiff/.

[122] Perkins Coie. Document retention after Sarbanes-Oxley. http://www.
perkinscoie.com/content/ren/updates/corp/093003.htm, July 2002.

[123] Pocket Soft, Inc. RTPatch. http://www.pocketsoft.com/.

[124] C. Policroniades and I. Pratt. Alternatives for detecting redundancy in storage systems
data. In Proceedings of the 2004 USENIX Annual Technical Conference, pages 73–86,
Boston, Massachusetts, June 2004. USENIX Association.

[125] S. Quinlan and S. Dorward. Venti: A new approach to archival storage. In Proceedings of
the 2002 Conference on File and Storage Technologies (FAST), pages 89–101, Monterey,
California, Jan. 2002. USENIX Association.

[126] M. O. Rabin. Probabilistic algorithms in finite fields. SIAM Journal on Computing,
9(2):273–280, May 1980.

[127] M. O. Rabin. Fingerprinting by random polynomials. Technical Report TR-15-81, Center
for Research in Computing Technology, Harvard University, 1981.

[128] M. O. Rabin. Efficient dispersal of information for security, load balancing, and fault
tolerance. Journal of the ACM, 36(2):335–348, 1989.

[129] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable content-
addressable network. In Proceedings of the Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication (SIGCOMM ’01), pages
161–172, San Diego, California, 2001. ACM Press.

229

http://www.aiim.org/pdf_a/
http://www.daemonology.net/bsdiff/
http://www.daemonology.net/bsdiff/
http://www.perkinscoie.com/content/ren/updates/corp/093003.htm
http://www.perkinscoie.com/content/ren/updates/corp/093003.htm
http://www.pocketsoft.com/

[130] C. Reichenberger. Delta storage for arbitrary non-text files. In Proceedings of the 3rd
International Workshop on Software Configuration Management, pages 144–152. ACM
Press, 1991.

[131] C. M. Riggle and S. G. McCarthy. Design of error correction systems for disk drives.
IEEE Transactions on Magnetics, 34(4):2362–2371, July 1998.

[132] R. Rivest. The MD4 message digest algorithm. Request For Comments (RFC) 1186,
IETF, Oct. 1990.

[133] R. Rivest. The MD5 message-digest algorithm. Request For Comments (RFC) 1321,
IETF, Apr. 1992.

[134] M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-structured
file system. ACM Transactions on Computer Systems, 10(1):26–52, Feb. 1992.

[135] J. Rothenberg. Ensuring the longevity of digital documents. Scientific American,
272(1):42–47, Jan. 1995.

[136] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems. Lecture Notes in Computer Science; Middleware
2001: IFIP/ACM International Conference on Distributed Systems Platforms Heidel-
berg, Germany, November 12–16, 2001. Proceedings, 2218:329–350, 2001.

[137] A. Rowstron and P. Druschel. Storage management and caching in past, a large-scale,
persistent peer-to-peer storage utility. In SOSP ’01: Proceedings of the eighteenth ACM
symposium on Operating systems principles, pages 188–201, New York, New York,
2001. ACM Press.

[138] Y. Saito and C. Karamanolis. Pangaea: A symbiotic wide-area file system. In Proceed-
ings of the 2002 ACM SIGOPS European Workshop. ACM Press, Sept. 2002.

[139] Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam. Taming aggressive replica-
tion in the Pangaea wide-area file system. In Proceedings of the 5th Symposium on Op-
erating Systems Design and Implementation (OSDI). USENIX Association, Dec. 2002.

[140] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch, R. W. Carton, and J. Ofir.
Deciding when to forget in the Elephant file system. In Proceedings of the 17th ACM
Symposium on Operating Systems Principles (SOSP ’99), pages 110–123, Dec. 1999.

[141] K. Sayood, editor. Lossless Compression Handbook. Academic Press, an imprint of
Elsevier Science, 2003.

[142] F. Schmuck and R. Haskin. GPFS: A shared-disk file system for large computing clusters.
In Proceedings of the 2002 Conference on File and Storage Technologies (FAST), pages
231–244. USENIX Association, Jan. 2002.

230

[143] Secretary of State Kevin Shelley, State of California. Local government records manage-
ment guidelines, June 2004.

[144] M. I. Seltzer and O. Yigit. A new hashing package for UNIX. In Proceedings of the
Winter 1991 USENIX Technical Conference, pages 173–184, 1991.

[145] J. Seward. http://sources.redhat.com/bzip2/, 2002.

[146] M. A. Sheldon, D. K. Gifford, P. Jouvelot, and J. W. O’Toole Jr. Semantic file systems.
Proceedings of the 13th ACM Symposium on Operating Systems Principles (SOSP ’91),
pages 16–25, Oct. 1991.

[147] N. Shivakumar and H. Garcia-Molina. Building a scalable and accurate copy detection
mechanism. In Proceedings of the First ACM International Conference on Digital Li-
braries (DL ’96), Bethesda, Maryland, Mar. 1996.

[148] N. Shivakumar and H. Garcia-Molina. Finding near-replicas of documents on the web.
In Proceedings of The Second International Workshop on the World Wide Web and
Databases (WebDB ’99). LNCS, 1999.

[149] Sleepycat Software. Berkeley DB Database. http://www.sleepycat.com/.

[150] C. A. N. Soules and G. R. Ganger. Connections: Using context to enhance file search. In
Proceedings of the 20th ACM Symposium on Operating Systems Principles (SOSP ’05),
pages 119–132, Brighton, United Kingdom, Oct. 2005.

[151] N. T. Spring and D. Wetherall. A protocol-independent technique for eliminating redun-
dant network traffic. In Proceedings of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication (SIGCOMM ’00), pages 87–
95, Stockholm, Sweden, Aug. 2000. ACM Press.

[152] R. Stata, K. Bharat, and F. Maghoul. The term vector database: Fast access to indexing
terms for web pages. In Proceedings of the 9th International World Wide Web Confer-
ence, Amsterdam, Kingdom of the Netherlands, May 2000.

[153] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. In Proceedings of the Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communication
(SIGCOMM ’01), pages 149–160. ACM Press, 2001.

[154] A. S. Tanenbaum, J. N. Herder, and H. Bos. File size distribution on UNIX systems: then
and now. ACM SIGOPS Operating Systems Review, 40(1):100–104, 2006.

[155] C. Tang, Z. Xu, and M. Mahalingam. PeerSearch: Efficient information retrieval in
peer-to-peer networks. Technical Report HPL-2002-198, HP Laboratories, Palo Alto,
California, July 2002.

231

http://sources.redhat.com/bzip2/
http://www.sleepycat.com/

[156] The Enterprise Storage Group. Reference Information: The Next Wave; The Summary
of: “A Snapshot Research Study by The Enterprise Storage Group”. http://www.
enterprisestoragegroup.com/, 2002.

[157] The Enterprise Storage Group. Compliance: The effect on information management and
the storage industry. http://www.enterprisestoragegroup.com/, 2003.

[158] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: a scalable distributed file system. In
Proceedings of the 16th ACM Symposium on Operating Systems Principles (SOSP ’97),
pages 224–237. ACM Press, 1997.

[159] W. F. Tichy. The string-to-string correction problem with block moves. ACM Transac-
tions on Computer Systems, 2(4):309–321, 1984.

[160] W. F. Tichy. RCS—a system for version control. Software—Practice and Experience,
15(7):637–654, July 1985.

[161] M. Tong. General Hashing. PhD thesis, University of Auckland, Nov. 1996.

[162] D. Trendafilov, N. Memon, and T. Suel. Zdelta: An efficient delta compression tool.
Technical Report TR-CIS-2002-02, Polytechnic University, June 2002.

[163] D. Trendafilov, N. Memon, and T. Suel. Compression file collections with a TSP-based
approach. Technical Report TR-CIS-2004-02, Polytechnic University, Apr. 2004.

[164] A. Tridgell. Efficient Algorithms for Sorting and Synchronization. PhD thesis, Australian
National University, Feb. 1999.

[165] U.S. House. Sarbanes-Oxley Act of 2002. 107th Cong., 2d sess., H.R.3763, Jan. 2002.

[166] X. Wang, D. Feng, X. Lai, and H. Yu. Collisions for hash functions MD4, MD5,
HAVAL-128 and RIPEMD. Cryptology ePrint Archive, Report 2004/199, 2004. http:
//eprint.iacr.org/.

[167] H. Weatherspoon and J. D. Kubiatowicz. Erasure coding vs. replication: A quantitiative
comparison. In Proceedings of the 1st International Workshop on Peer-to-Peer Systems
(IPTPS), Cambridge, Massachusetts, Mar. 2002.

[168] H. Weatherspoon, C. Wells, P. R. Eaton, B. Y. Zhao, and J. D. Kubiatowicz. Silverback: A
global-scale archival system. Technical Report CSD-01-1139, University of California,
Berkeley, Mar. 2000.

[169] G. Wiederhold. Database Design. McGraw-Hill, New York, New York, second edition,
1983.

[170] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and Indexing
Documents and Images. Morgan Kaufmann Publishers, second edition, 1999.

232

http://www.enterprisestoragegroup.com/
http://www.enterprisestoragegroup.com/
http://www.enterprisestoragegroup.com/
http://eprint.iacr.org/
http://eprint.iacr.org/

[171] T. Wong, C. Wang, and J. Wing. Verifiable secret redistribution for archive systems.
pages 94–105, Greenbelt, Maryland, Dec. 2002.

[172] Q. Xin, E. L. Miller, T. J. E. Schwarz, D. D. E. Long, S. A. Brandt, and W. Litwin.
Reliability mechanisms for very large storage systems. In Proceedings of the 20th IEEE
/ 11th NASA Goddard Conference on Mass Storage Systems and Technologies, pages
146–156, San Diego, California, Apr. 2003.

[173] L. L. You and C. Karamanolis. Evaluation of efficient archival storage techniques. In
Proceedings of the 21st IEEE / 12th NASA Goddard Conference on Mass Storage Systems
and Technologies, pages 227–232, College Park, Maryland, Apr. 2004.

[174] L. L. You, K. T. Pollack, and D. D. E. Long. Deep Store: An archival storage system
architecture. In Proceedings of the 21st International Conference on Data Engineering
(ICDE ’05), Tokyo, Japan, Apr. 2005. IEEE.

[175] L. Yu and D. J. Rosenkrantz. A linear-time scheme for version reconstruction. ACM
Transactions on Programming Languages and Systems, 16(3):775–797, 1994.

[176] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clustering method
for very large databases. In Proceedings of the 1996 ACM SIGMOD International Con-
ference on Management of Data, pages 103–114, Montreal, Quebec, Canada, June 1996.

[177] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory, IT-23(3):337–343, May 1977.

233

	ssrctrcover-06-04
	you-thesis
	Title
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Acknowledgments
	1 Introduction
	1.1 Contributions
	1.2 Evaluation
	1.3 Towards Efficient Disk-Based Archival Storage
	1.3.1 The Explosion of Digital Data
	1.3.2 Demands in Computing on Archival Storage
	1.3.3 Advances in Storage Technologies
	1.3.4 Moving Away From Tape

	1.4 Organization

	2 Background
	2.1 Fulfilling the Need to Archive Data
	2.2 Deep Store: Scalable Archival Storage
	2.3 Space-Efficient Storage Systems
	2.3.1 Chunking: Dividing Data Streams by Content
	2.3.2 Delta Compression and Resemblance Detection
	2.3.3 Content-Addressable Storage
	2.3.4 Versioning File Systems

	2.4 Scalable Storage Systems
	2.5 Lossless Data Compression
	2.5.1 Stream Compression
	2.5.2 Delta Compression (Differential Compression)

	2.6 Lossy Data Compression
	2.7 Document Similarity
	2.8 User-Level File Systems
	2.9 Archival Metadata and Searching
	2.10 Reliability

	3 PRESIDIO Overview
	3.1 Solution Overview
	3.1.1 Large-Scale Data Compression
	3.1.2 Compressibility of Data
	3.1.3 Efficient Encoding of Data
	3.1.4 The Virtual Content-Addressable Storage System
	3.1.5 PRESIDIO and the Deep Store Architecture
	3.1.6 PRESIDIO Hybrid Compression Framework

	3.2 Prototype Implementation
	3.2.1 Feature Selection
	3.2.2 Similarity Detection
	3.2.3 Virtual CAS
	3.2.4 Redundancy Elimination Framework

	4 Identifying Data
	4.1 Overview
	4.2 Features
	4.3 Hashing and Fingerprinting
	4.3.1 Collision Properties
	4.3.2 Digests
	4.3.3 Rabin fingerprinting
	4.3.4 Strong and Weak Hashing

	4.4 Feature Selection
	4.4.1 Common Properties of Features
	4.4.2 Whole-File Hashing (Message Digests)
	4.4.3 Chunk Features
	4.4.4 Block-Based Storage
	4.4.5 Shingling
	4.4.6 Superfingerprints
	4.4.7 Evaluation

	4.5 Discussion
	4.6 Summary

	5 Finding Data
	5.1 Overview
	5.2 Similarity Detection
	5.2.1 Parameters used in similarity detection
	5.2.2 Comparing similarity detection properties
	5.2.3 Identical Data
	5.2.4 Similar Data
	5.2.5 Harmonic Superfingerprints
	5.2.6 File Resemblance

	5.3 Evaluation
	5.3.1 Whole-file hashing
	5.3.2 Chunking
	5.3.3 Superfingerprint

	5.4 Discussion

	6 Compressing Data
	6.1 Overview
	6.2 Redundancy Elimination
	6.2.1 Intra-file Compression
	6.2.2 Suppression of Multiple Instances
	6.2.3 Delta Compression Between Similar Files
	6.2.4 Hybrid Methods

	6.3 Evaluation
	6.3.1 Comparing Chunking and Delta Compression
	6.3.2 The chc Program
	6.3.3 Delta Encoding Similar Files
	6.3.4 Delta and Resemblance Parameters
	6.3.5 Data Sets

	6.4 Evaluating Methods for Improving Compression
	6.4.1 Delta compression between similar files
	6.4.2 Measurements
	6.4.3 Measuring the benefit of high resemblance data
	6.4.4 Performance
	6.4.5 Relationship Between Resemblance and Storage Efficiency

	6.5 Discussion
	6.6 Summary

	7 Storing Data
	7.1 Overview
	7.2 Content-Addressable Storage
	7.2.1 Addressing Objects

	7.3 Metadata
	7.3.1 Archival metadata formats
	7.3.2 Rich metadata

	7.4 Storage Operations
	7.4.1 C++ Interface

	7.5 Reliability
	7.6 Implementation
	7.6.1 Design Overview
	7.6.2 Indexing

	7.7 Discussion
	7.8 Summary

	8 Progressive Compression
	8.1 Overview
	8.2 The PRESIDIO Storage Framework
	8.3 Efficient Storage Methods
	8.3.1 class TESM: the ESM class interface
	8.3.2 class TVirtualFile: the virtual file interface
	8.3.3 ESM: Whole-file
	8.3.4 ESM: Chunking CAS
	8.3.5 ESM: DCSF-FP
	8.3.6 ESM: DCSF-SFP

	8.4 Content-Addressable Storage (CAS) and Virtual CAS (VCAS)
	8.4.1 Virtual Content-Addressable Storage (VCAS)
	8.4.2 Progressive Redundancy Elimination

	8.5 Summary

	9 Conclusion
	9.1 Contributions
	9.1.1 Problems addressed
	9.1.2 Technology benefits
	9.1.3 Minor contributions

	9.2 Discussion
	9.3 Limitations
	9.4 Future Work
	9.4.1 Distributed Storage, Replication, and Reliability
	9.4.2 Improving Compression
	9.4.3 Performance

	A Rabin Fingerprinting by Random Polynomials
	A.1 Properties of the Rabin fingerprinting method
	A.2 Modulo Polynomial Fingerprinting
	A.2.1 Binary Polynomials

	A.3 Properties of Rabin fingerprinting functions
	A.3.1 Randomized Functions
	A.3.2 Collision Properties
	A.3.3 Binary Representation
	A.3.4 Concatenation
	A.3.5 Number of Hash Functions
	A.3.6 Invertibility

	A.4 Data representation
	A.4.1 Representing Polynomials
	A.4.2 Fingerprint of the ``null string'' or ``empty string''
	A.4.3 Implications of the Prefixed String
	A.4.4 String Concatenation with Prefixed Strings
	A.4.5 Sliding Window with Prefixed Strings

	A.5 Constructing a Rabin fingerprinting library
	A.5.1 Computing Irreducible Polynomials

	A.6 Related work

	Bibliography

