
PERSES: Data Layout for Low Impact
Failures

Technical Report UCSC-SSRC-12-06
September 2012

A. Wildani E. L. Miller
avani@cs.ucsc.edu elm@cs.ucsc.edu

I. F. Adams D. D. E. Long
iadams@cs.ucsc.edu darrell@cs.ucsc.edu

Storage Systems Research Center
Baskin School of Engineering

University of California, Santa Cruz
Santa Cruz, CA 95064

http://www.ssrc.ucsc.edu/

PERSES: Data Layout for Low Impact Failures

Abstract

Disk failures remain common, and the speed of recon-
struction has not kept up with the increasing size of disks.
Thus, as drives become larger, systems are spending an
increasing amount of time with one or more failed drives,
potentially resulting in lower performance. However, if
an application does not use data on the failed drives,
the failure has negligible direct impact on that applica-
tion and its users. We formalize this observation with
PERSES, a data allocation scheme to reduce the perfor-
mance impact of reconstruction after disk failure.

PERSES reduces the length of degradation from the
reference frame of the user by clustering data on disks
such that working sets are kept together as much as pos-
sible. During a device failure, this co-location reduces
the number of impacted working sets. PERSES uses sta-
tistical properties of data accesses to automatically de-
termine which data to co-locate, avoiding extra admin-
istrative overhead. Trace-driven simulations show that,
with PERSES, we can reduce the time lost due to failure
during a trace by up to 80%, or more than 4000 project
hours over the course of three years.

1 Introduction

Over time, failure events are inevitable in large disk-
based storage systems [4, 15]. Even in failure events
where data is not lost, there is a system-wide cost for
accessing data on the failed disk. The failed disk is in-
accessible and other disks and the interconnecting net-
work links may be saturated. This cost is increasing as
growth in disk size outpaces growth in disk, CPU, and
network bandwidth [8, 10]. While a 100 GB drive that
can be rebuilt at 50 MB/s is fully operational in about
half an hour, a terabyte drive at 50 MB/s can take up to
six hours to be back online. We look at this problem from
the perspective of working sets: groups of files that are
frequently accessed together, such as files for a project.

If a failed disk contains data for multiple working sets or
projects, all of those projects could stall until the rebuild
is completed. If the failure occurs in a working set that
is not actively being accessed, it could potentially have
zero productivity cost to the system users: the proverbial
tree fallen in a forest.

To leverage this working set locality, we introduce
PERSES, a data allocation model designed to decrease
the impact of device failures on the productivity and per-
ceived availability of a storage system. PERSES is named
for the titan of cleansing destruction in Greek mythology.
We name our system PERSES because it focuses destruc-
tion in a storage system to a small number of users so
that others may thrive. Our goal with PERSES is to iso-
late failures away from as many users as possible.

PERSES reduces the impact of failures by laying out
data on a disk array according to dynamically computed
working sets and selectively re-replicating data that is in
multiple working sets. Since elements of a working set
are co-located on disk, any single failure impacts a very
small number of working sets. Working sets can either
be derived from the metadata in the trace or calculated
statistically based on the trace access pattern. Previous
work has shown that algorithms such as N-Neighborhood
Partitioning (NNP) can calculate statistical traces in O(n)
[26, 27]. We use NNP to calculate working sets quickly
without the overhead of maintaining groups by hand.

Multi-user cloud storage systems, the primary target of
PERSES, are caught up in the data deluge, as many me-
dia sites and datasets explode in size. According to the
2011 IDC report, digital content is expected to grow to
2.7 zettabytes by the end of 2012, which would be a 48%
increase over 2011 [5]. Cloud applications such as mu-
sic players and document sharing rely on their user base
experiencing a very low response time. In this environ-
ment, the cloud provider has a higher perceived availabil-
ity if, on failure, their system appears slow or unavailable
to a small number of users versus somewhat degraded to
a large number. Other use cases that are disproportion-

1

ately affected by partial data degradation include compi-
lation and some scientific workloads. PERSES is also a
good fit for large storage systems where a small but con-
stantly shifting subset of the data is in active use. Sys-
tems that organically grow around a dynamic set of re-
quirements naturally tend to have a small set of data in
active use and a long tail of accesses across the remainder
of the data [20]. These systems resemble archives in that
while there are distinct, consistent working sets, there is
little repeat access for popularity based allocation to take
advantage of. We study such archival-like workloads in
this paper to form a baseline for improvement.

To demonstrate the benefits of PERSES, we arranged
data onto simulated disks according to both pre-labeled
and statistically derived groups and used our simulator
to inject faults during a real data trace. We show that
the PERSES layout leads to faults that affect fewer work-
ing sets during the rebuild phase than a group-agnostic
layout. Our fault injection simulation compares the real
time lost during disk rebuilds across layouts by measur-
ing group time lost, which we define as the total delay
encountered by all of data groups as a result of the ac-
cess requests that are delayed while a disk is rebuilding.

We found that with a grouping that biased towards
larger groups, PERSES gained over 4000 hours of group
time during the three year trace compared to a ran-
dom allocation and gained over 1000 hours compared
to an ideal temporal allocation. Additionally, we found
that while rebuild speed was a major factor in relative
group time lost, adding a read cache made no notice-
able difference. Finally, we discovered that setting a
minimum group size improved the performance under
PERSES even on smaller disks, with a maximum value
of 94% less time lost.

Our main contributions are:

1. Methodology for working set selection for better per-
formance during failure events (PERSES)

2. Fault simulator with real trace data showing up to 80%
decrease in group time lost with PERSES allocation

3. Parameter identification and optimization for rebuild
speed and minimum group size

After reviewing other work in the field, in Section 3 we
describe our simulation design and sample workloads.
We then, in Section 4 describe the results of our simula-
tion work followed by an analysis of our results and the
effect of scrubbing on our failure model. Finally, in Sec-
tion 5 we discuss the implications of PERSES for large
scale system design.

2 Background and Related Work

Recent work has shown failures remain an issue for large
disk-based storage systems. For example, Schroeder and

Gibson showed that the average disk replacement rates in
the field are typically between 2 and 4%, implying a high
reconstruction rate [15]. Other studies have shown that
latent sector errors can lead to drive failure [4]. Pinheiro
et al. showed that failures are both difficult to predict
and common [12]. Scrubbing techniques can efficiently
catch these otherwise unobserved errors so that the disks
can be rebuilt promptly, but it is still often necessary to
rebuild much of the disk [17].

Managing availability in RAID-like systems has re-
ceived attention commensurate with increasing disk size
and corresponding rebuild difficulty [8]. Disk sizes have
grown, but the read speed is limited by power concerns
and by the areal density of data on the platters [28]. Ad-
ditionally, online-reconstruction is increasingly becom-
ing CPU-bound, meaning that the cost of on-line recon-
struction is unlikely to go down any time soon [10].

Modern storage systems can use parity to serve re-
quests for data on a failed disk while the disk is re-
building [6]. Many reconstruction optimizations have
been proposed for distributed RAID rebuild [30, 31]. On-
line reconstruction, serving accesses by reconstructing
data on demand, has been shown to be between 3 and
70 times slower than serving requests from disk because
of disk thrashing [29].

WorkOut addresses this degradation by employing a
surrogate RAID array and using that to serve requests
for “popular” data where popular is defined as accessed
twice within the course of the rebuild [29]. Tiair et

al. also base their reconstruction algorithm on popular-
ity [23]. These approaches are limited to workloads that
have many repeat accesses to the same data in a very
short period of time. PERSES sidesteps this limitation
by exploiting correlation along multiple dimensions in
addition to recency and frequency. Many other groups
have shown significant improvement in performance dur-
ing rebuild by modifying the underlying parity structure
or scheduling [7, 22, 23]. We intend in future work to
combine PERSES with existing optimizations for recon-
struction to evaluate the combined impact, but it is likely
that since PERSES is primarily a data allocation scheme,
it can be combined with all of these techniques to further
reduce the impact of failure events.

Generalized data layout is a major area of storage and
filesystems research. Typically, the focus is on bringing
the most recently active data to the best tier of storage,
such as PROFS which does this for LFS [24]. Amur et

al. look at layout for multi-replica systems in the context
of power management [2]. Lamehamedi et al. look at
the cost and reliability tradeoff of adding replicas, which
we use to inform our later calculations about the bene-
fit of storing multiple copies of files that are members of
multiple groups [9]. Sun et al. show that for parallel sys-
tems, there is a strong argument for application-driven

2

data placement [21]. However, none of these projects
focus on layout for reconstruction.

Grouping data on disk provides benefits such as being
able to avoid track boundaries [13], isolate faults [18],
and avoid power consumption from excessive disk activ-
ity [11, 25]. Many of the grouping techniques in previous
work rely on a high rate of repeat accesses, making those
techniques unsuitable for PERSES [11]. On exascale sys-
tems, these benefits are magnified because every element
in a group may be on separate disks, necessitating many
extra spin-ups that both waste power and decrease the
lifetime of the system [12, 25].

PERSES is inspired in particular by D-GRAID, which
demonstrated that placing blocks of a file adjacent to
each other on a disk reduced the system impact on fail-
ure, since adjacent blocks tend to fail together [18]. They
proposed that since a head error is likely to affect adja-
cent track members more than random blocks on a disk,
writing a file consecutively was an effective way to lo-
calize failures and thus minimize the person or project
time lost as a result of file unavailability during the re-
build process. PERSES translates this idea to cloud and
other large storage arrays.

Arpaci-Dusseau et al. have made a variety of ad-
vances in semantically aware disk systems [3, 19], but
their online inference mechanism had trouble with the
asynchronous nature of modern operating systems. We
used suggestions from their work to categorically group
our traces. We also examine how statistical classifica-
tion methods compared to classification using metadata.
We did not want to limit ourselves to a particular work-
load type, so use N-Neighborhood Partitioning (NNP) to
do much of our working set calculation [26]. NNP has
been shown to find working sets in real time as well as
find predictive working sets. We chose this over other
working set algorithms because we wanted PERSES to
have low administrative overhead while not depending
on popularity for classification. This type of grouping
has been shown effective for cache management in on-
line deduplication as well as power [26].

We built PERSES so that for statistical grouping we
need only collect the bare minimum of data, which al-
lows our algorithms to work almost domain-blind.

3 Design

PERSES is designed as a generic technique for data allo-
cation in a high-availability multi-purpose environment.
Generally, when a disk fails, access to the data on the
failed disk is degraded from having to reconstruct data
from parity. PERSES is based on the idea that degraded
access to a fraction of the data in a working set has a dis-
proportionate impact to the working set as a whole. If
a project on a failed disk is not accessed while the disk

rebuilds, the failure is unobserved; it does not count to-
wards the group time lost. On systems with highly bursty
access patterns, unobserved failures become increasingly
common as data is co-located. We also note that even if
data is readable during rebuild, the performance can be
degraded enough to slow down the entire project. In our
simulation, we model a range of rebuild times to better
understand the impact of PERSES in different reliability
environments.

Consider a shared storage system that is holding data
for five projects on six disks. Figure 1 shows what a
failure would look like on this system with and with-
out PERSES. The numbered boxes correspond to blocks
of data, and the numbers correspond to projects. In the
ungrouped example, Figure 1(a), data is arranged with-
out any consideration to group membership. When one
disk is lost, indicated by the thick dashed line, up to four
projects could see performance degradation if they are
accessed before rebuild completes. On a system laid out
with PERSES, such as Figure 1(b), the data is laid out
across the disks based on either access patterns or meta-
data. Groupings are refreshed periodically and the lay-
out re-arranged, so some data will always be unlabeled.
When a disk fails in this scenario, only Project 3 is af-
fected since it is the only project on the failed disk, both
reducing the amount of degradation across groups and
increasing the probability that the failure is unobserved.

PERSES is designed for a system with multiple disks,
different projects that rely on many blocks of data, a con-
troller to group data and manage layout, and the ability
to collect minimal trace data to inform the grouping al-
gorithm. The best candidate systems for PERSES have a
number of data disks greater than or equal to the number
of projects or working set groups on the system, though
we see in Section 4.2 that this is not strictly necessary.
We do not specify a particular reliability scheme, since
even though PERSES is designed for parity-based reli-
ability all reliability schemes save for mirroring intro-
duce a reconstruction delay. We care about reconstruc-
tion speed but not method. Rebuild requests are typically
given very low priority compared to incoming reads and
writes, so a parity system should have little overhead that
we do not account for [6]. We use the term degrada-

tion to refer to any delay in reading data that was on a
failed disk, and we discuss failure from the perspective
of working sets.

3.1 Working Sets

In order to lay out data by working set, we need to know
what the working sets are. Manually maintaining work-
ing sets has high administrative overhead and presents a
consistency problem [27]. PERSES determines working
sets automatically, either by using metadata or by statis-

3

(a) Standard. Single failure impacts Projects 1,3,4,and 5

(b) With PERSES. Single failure impacts Project 3

Figure 1: When a disk fails, all projects that have data on the disk have degraded performance. PERSES dynamically groups data

together on disk to limit the performance impact of failures across projects.

tically analyzing access patterns. In either case, work-
ing sets are determined by analyzing a portion of the ac-
cesses and are then applied to the remainder. In a real-
world setting, the working sets and parameters would be
re-calculated at intervals determined by a running aver-
age of predictive power for the current grouping [26].

Previous work shows that in some long-term storage
workloads, accesses happen in close temporal proximity
within the same working sets [25]. They further show
that this temporal proximity can be combined with spa-
tial proximity to decrease the power footprint of large
storage [25]. A data layout designed for fast reconstruc-
tion is a natural progression from a power aware data lay-
out since both exploit highly correlated access patterns.
Many workloads show an inverse Pareto distribution of
group access probabilities over time [26]. This results in
a high probability of an unobserved failure for small fail-
ure events, as any given working set has a low expected
value for immediate future access. Working set access
probabilities tend to have a shifting set of peak accessed
working sets with a long tail of seldomly accessed work-
ing sets. With PERSES, failures in this long tail have a
chance of having minimal to no system-wide impact.

Other projects examining grouping for storage have
found that it is possible to group data in large sys-
tems such that the groups have predictive power, mean-
ing that group membership implies a conditionally de-
pendent probability of access within a given period of
time [11, 26, 27]. There is also evidence that these groups
can correspond to real-life working sets for applications,
users, or projects [26]. We compare statistically derived
groupings with categorical, metadata informed group-
ings to determine a fast and low-overhead algorithm for
predictive data layout analysis.

Categorical groupings are groupings based on meta-
data or externally curated tags that describe data charac-

teristics that an administrator believes to be important.
We started with categorical grouping since prior work
has suggested that using pre-defined groups is one of the
best ways to investigate the impact of classifications [19].

Statistical groupings, on the other hand, are derived
from extrapolating relationships based on a period of ac-
cesses and modifying these extrapolations as new data
enters the system. This machine learning approach to
grouping is a better fit for dynamic data where the mean-
ing of curated labels drifts over time. Since many sys-
tems have strict privacy controls or other barriers to col-
lecting metadata-rich traces, we investigated techniques
to detect working sets with minimal private data. Wildani
et al. showed that the NNP algorithm can form predic-
tive groups using only LBA and timestamp of each ac-
cess [26]. We adapted NNP to PERSES by doing a full
parameter search since the parameters in Wildani et al.

were optimized for small groups.

3.1.1 Statistical Grouping with NNP

Neighborhood Partitioning is a statistical method to com-
pare data across multiple dimensions with a definable
distance metric. Though it is very efficient and has some
ability to detect interleaved groupings, it does not scale.
To support arbitrarily large amounts of data, we use N-
Neighborhood Partitioning (NNP), which merges several
partitions without the memory overhead of a single large
partitioning. By aggregating incoming accesses into re-
gions of fixed size, NNP is highly scalable and able to
perform in real time even in systems with high IOPS.
The size of regions is determined by the memory capa-
bilities of the system calculating the working sets, though
increasing the size of the region quickly meets dimin-
ishing returns [27]. The regions in our implementation
also overlap by a small number of accesses to account

4

for groups that straddle the arbitrary breakpoints in our
region selection.

For each region, the partitioning steps are:

1. Collect data
2. Calculate the pairwise distance matrix
3. Calculate the neighborhood threshold and detect

working sets in I/O stream
4. Combine new grouping with any prior groupings

For n accesses in a region, we represent pairwise distance
between every pair of accesses (pi, p j), as an n×n matrix
d with d(pi, pi) = 0. We calculate the distances in this
matrix using weighted Euclidean distance, defined as

d(pi, p j) = d(p j, pi) =
√

(ti − t j)2 + s× (oi −o j)2

where a point pi = (ti,oi), t = time, o = ID, and s is a
scaling factor based on the typical relative distance be-
tween access IDs versus time.

We were most interested in recurring ID pairs that
were accessed in short succession. As a result, we also
calculated an m×m matrix, where m is the number of
unique block IDs in our data set. This matrix was calcu-
lated by identifying all the differences in timestamps

T = [T1 = ti1 − t j1,T2 = ti1 − t j2,T3 = ti2 − t j1, . . .]

between the two IDs oi and o j. Weighting timestamps
led to overfitting, so we decided to treat the unweighted
average of these timestamp distances as the time element
in our distance calculation. Thus, the distance between
two IDs is:

d(oi,o j) =

√

√

√

√

(

∑
|T |
i=1 Ti

|T |

)2

+ s× (oi −o j)2

Once the distance matrix is calculated, we calculate
a value for the neighborhood threshold, Ň. In the online
case, Ň must be selected a priori and then re-calculated
once enough data has entered the system to smooth out
any cyclic spikes. Once the threshold is calculated, the
algorithm looks at every access in turn. The first access
starts as a member of group g1. If the next access occurs
within Ň, the next access is placed into group g1, other-
wise, it is placed into a new group g2, and so on. Figure 2
illustrates a simple case.

3.1.2 Combining Neighborhood Partitions

A grouping Gi is a set of groups g1, . . . ,gl that were cal-
culated from the ith region of accesses. Unlike plain
neighborhood partitioning, NNP is not entirely memory-
less; NNP combines groupings from newer data to form
an aggregate grouping.

We do this through fuzzy set intersection between
groupings and symmetric difference between groups

Figure 2: Each incoming access is compared to the preceding

access to determine whether it falls within the neighborhood

(Ň) to be in the same group. If it does not, a new group is

formed with the incoming access.

within the groupings. So, for groupings
G1,G2, . . .Gk, the total grouping G is :

G = (Gi ∩G j)∪ (Gi∆gG j) ∀i, j 1 ≤ i, j ≤ k

where the groupwise symmetric difference, ∆g, is de-
fined as every group that is not in Gi∩G j and also shares
no members with a group in Gi ∩G j. For example, for
two group lists G1 = [(x1,x4,x7),(x1,x5),(x8,x7)] and
G2 = [(x1,x3,x7),(x1,x5),(x2,x9)], the resulting group-
ing would be G1 ∩G2 = (x1,x5) ∪ G1 ∆g G2 = (x2,x9),
yielding a grouping of [(x1,x5),(x2,x9)]. (x1,x4,x7),
(x1,x3,x7), and (x8,x7) were excluded because they
share some members but not all. This group calculation
happens in the background during periods of low activity.
As accesses come in, we need to update groups to reflect
a changing reality. We do this by storing a likelihood
value for every group. This numerical value starts as
the median intergroup distance value and is incremented
when the grouping successfully predicts an access.

NNP is especially well suited to rapidly changing us-
age patterns because individual regions do not share in-
formation until the group combination stage. When an
offset occurs again in the trace, it is evaluated again, with
no memory of the previous occurrence. Combining the
regions into a single grouping helps mitigate the disad-
vantage of losing the information of repeated correlations
between accesses without additional bias.

3.1.3 Runtime

Neighborhood partitioning runs in O(n) since it only
needs to pass through each neighborhood twice: once to
calculate the neighborhood threshold and again to collect
the working sets. This makes it an attractive grouping
mechanism for workloads with high IOPS, where a full
O(n2) comparison is prohibitive. Additionally, we can
capture groups in real time and quickly take advantage
of correlations.

5

4 Experiments

We built a trace simulator with stochastic fault injection
to analyze PERSES on a range of different hardware con-
figurations and rebuild environments.

Our simulator goes through the following steps:

1. Initialize disks and cache
2. Determine groupings
3. Lay out data across disks
4. Run through trace

Disk are initialized with all of the data that is read
through the course of the trace. Disks are filled progres-
sively with either grouped or randomly allocated data
such that the only empty space is on the final disk. The
amount of data each trace accesses is fixed, so as we add
more disks to the simulator the size of disks decreases
since the data is spread over more disks. Since we do not
know the size of the files accessed in our trace, we al-
locate 10 MB per file. This number is entirely arbitrary,
but the simulation results that use it can easily be trans-
lated to any real world system with fixed size blocks by
adjusting the data to disk ratio accordingly. The simula-
tor has an LRU read cache to capture popular accesses.
The default cache starts cold and is 10 GB. This cache is
assumed to be in memory and thus not part of our fail-
ure model other than to reduce the number of repeat disk
accesses.

Groups are calculated before the trace is run, as de-
scribed in Section 3.1. For grouped experiments, groups
are then laid out sequentially on disks starting with the
smallest groups. Random experiments have files laid out
randomly without attention to group membership. Mod-
eling correlated failure and doing a bin packed layout
where large groups are paired with smaller to minimize
total groups per disk is in our future work.

When disks are initialized, they are given a low uni-
form probability of failure. After each access, the prob-
ability of failure is increased by .001% to represent wear
on the device [12]. Only full-disk failures are considered
since recent work has shown latent sector errors to be
surprisingly rare on modern hardware [14].

We express the rebuild speed of a disk with a single
parameter, r, that encompasses the disk bandwidth, net-
work overhead, and CPU load of a disk to form the num-
ber of seconds it takes to restore a gigabyte of data. We
choose r = 30 s/GB (≈34 MB/s) as our default value for
reconstructing data based on the 50 MB/s read speed of
an off-the-shelf 7200 RPM disk [10]. This is a low es-
timate since CPU saturation and not read speed is the
typical bottleneck for disk rebuild [10], and Section 4.2
shows that as r increases PERSES performs even better.
We also test on r values as low as 10 s/GB (≈102 MB/s)
to demonstrate that PERSES can reduce group time lost

even on faster hardware.

We define group time lost as the amount of time a
group experiences degraded performance as a result of
disk rebuilds. Group time lost can be higher than total
system impact since a failure, especially on disks without
working-set aware allocation, can affect multiple groups
and each group contributes to group time lost. Once the
data is laid out on disk, the trace is played back in the
simulator to calculate the total system impact of all fail-
ure events and total group time lost. While failures are
random, they are set to a consistent random seed between
each pair of grouped and random runs to make the runs
comparable. All random layout runs were run at least 50
and typically over 100 times.

We do not include scrubbing in our simulation because
scrubbing, which touches every element it can regardless
of semantic qualities, does not satisfy our group asso-
ciation assumption [16]. Members of a group can be
scrubbed even if a fraction of the group is offline. The
only effect scrubbing is likely to have on group time lost
is to slightly increase the failure rate caused by the total
number of spin-ups of the drive.

4.1 Grouped Data Sets

We use two traces in this work. We chose these traces be-
cause they had both accesses and semantic information,
so we could for the first time provide a direct comparison
between statistically and categorically defined groups.

The first data set is from the California Department of
Water Resources. Our data consists of 90,000 accesses
to a record store from 2007 through 2009. We make the
assumption that queries correspond to record accesses.
The data set is pre-grouped, and the grouping labels we
consider for each access are “Timestamp,” “Site,” “Site
Type,” and “District.” The dataset provided an additional
grouping, “Year,” that we chose not to use because it is
inconsistently applied.

Our other data set is a database of vital records from
the Washington state digital archives where records are
labeled with one of many type identifiers (e.g. “Birth
Records”, “Marriage Records”) [1]. We examined
5,321,692 accesses from 2007 through 2010. In addi-
tion to the supplied type identifiers, each record accessed
had a static1 RecordID that is assigned as Records are
added to the system. We use these IDs as a second di-
mension when calculating statistical groupings, which
are discussed in Section 3.1.1.

4.1.1 Categorical Grouping

We used principal components analysis to select the most
predictive and automatically derivable feature for wa-
ter, which was “Site.” The single feature for wash was

6

 1

 10

 100

 1000

E
le

m
e

n
ts

 p
e

r
g

ro
u

p

Groups

Elements per group for ’Site’ Grouping

(a) Water Dataset

 100

 1000

 10000

 100000

 1e+06

 1e+07

E
le

m
e

n
ts

 p
e

r
g

ro
u

p

Groups

Elements per group for wash Grouping

(b) Wash Dataset

Figure 3: Grouping size distribution for Categorical Groups.

Both datasets show a similar distribution of group sizes, with

the wash dataset having much larger groups overall. Note that

the y-axis is on a log scale and the x-axis corresponds to indi-

vidual groups.

“Record Type.” This is consistent with previous work
on this data [1, 25]. Figure 3 shows the distribution of
group sizes for categorically grouped traces of water and
wash data. We see in Figure 3 that both graphs exhibit a
logarithmic decrease in number of groups as group size
increases.

4.1.2 Statistical Grouping

We used the NNP algorithm to identify statistical work-
ing sets in our wash trace. Groups are determined based
on access times and a unique per record ID field that
most record possessed. Those that were missing the ID
field were treated as singletons. We could not statistically
group the water trace because there was not enough in-
formation to provide a viable second continuous dimen-
sion for the classifier.

NNP parameters that affect the grouping include two

scaling factors and weights for means and standard de-
viations in the partitioning calculation. Lacking any ex-
ternal confirmation of validity, we did a complete crawl
through the parameter space and then calculated the av-
erage group size of all of the resultant groupings.

Avg. Group Size Std. Dev. Max. Group Size

wash-A 4.7 8.3 1865
wash-B 3.2 4.0 1012

Table 1: Statistics of the two non-trivial groupings NNP found

in wash

When these groupings were clustered using the param-
eters and average group size as features, elements fell
into one of three clusters. The groupings within each
cluster were almost identical. The first cluster, which
resulted from extreme parameter combinations, was the
“null” grouping where every element is a separate group.
We name the representatives we selected from the two
non-trivial grouping clusters wash-A and wash-B. Ta-
ble 1 shows the main differences between the two group-
ings. Though the difference in average group sizes seems
small, the group size distribution within the grouping
(Figure 4) shows that the inverse Pareto distribution of
group sizes results in many more larger groups for the
wash-A grouping.

4.2 Simulation Results

We ran our PERSES simulator on categorically grouped
water and wash data as well as the two statistical group-
ings of wash data. We saw the most improvement from
the statistical groupings. To help understand the impact
of PERSES, we also averaged the amount of time PERSES

gains versus the layout it is being compared against when
it has more than two disks over the course of the trace;
we call this number hours gained.

4.2.1 Categorical Groupings

We chose to use “Site” as main label for the water data
after using principal components analysis to see which
label was most predictive. Figure 5 shows that all of
the labels provide very similar grouped time lost val-
ues over the course of the trace. This is surprising be-
cause grouped time lost is determined with respect to the
grouping. So, over the course of the trace every group-
ing sees roughly equivalent impact for failures. This in-
dicates that though the groups are predictive, there is not
enough data to isolate groups.

Figure 6 shows that categorical grouping with “Site”
on water does not significantly reduce the group time
lost compared to random allocation for r = 30. Further-

7

(a) wash-A

(b) wash-B

Figure 4: Both wash-A and wash-B statistical groupings have

enough very small groups to greatly skew the group size dis-

tribution towards larger groups. Groups sizes obey an inverse

Pareto distribution.

 10

 100

 1000

 10000

 100000

 10 100 1000

G
ro

u
p

 T
im

e
 L

o
st

 (
s)

of disks

Grouped Time Lost for Water

site
district

site type

Figure 5: All of the categorical labels in the water trace provide

similar grouped time lost trends.

 1e+06

 1e+07

 1e+08

 1e+09

 10 100 1000

G
ro

u
p

 T
im

e
 L

o
st

 (
s)

of disks

Grouped Time Lost for Record Type vs. Random

Random
Grouped

(a) Washington: 1060 hours gained

 10

 100

 1000

 10000

 10 100 1000

G
ro

u
p

 T
im

e
 L

o
st

 (
s)

of disks

Grouped Time Lost for Site-Grouped Water vs. Random

Random
Grouped

(b) Water: .09 hours gained

Figure 6: These graphs show that neither categorical grouping

significantly improves on random arrangement at r = 30.

more, we found that increasing r, the number of seconds
it takes to rebuild a gigabyte of data, had negligible effect
on the relative group time lost. “Record Type” on wash
performs better, saving about 1000 hours, largely due to
the higher access rate for wash.

4.2.2 Statistical Groupings

Figure 7 shows how allocating data on disk using the
wash-A grouping improves group time lost by up to 50%
at 4 disks going down to approximately 5% as the num-
ber of disks increases. This represents an increase of an
order of magnitude for larger disks with r, the number
of seconds it takes to rebuild a gigabyte of data, as low
as 10. At r = 30, which is the value we focus our tests
on, there is a clear benefit to laying out disks with the
wash-A grouping with the percent improvement ranging
from 10% for small disks to 80% for larger disks. The
wash-B grouping, on the other hand, did not consistently
outperform random allocation (Figure 8). This is because

8

 5e+06

 1e+07

 1.5e+07

 2e+07

 10 100 1000

G
ro

u
p

 T
im

e
 L

o
st

 (
s)

of disks

Grouped Time Lost for wash-A; r=10

Random
Grouped

(a) r=10: 837 hours gained

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 10 100 1000

G
ro

u
p

 T
im

e
 L

o
st

 (
s)

of disks

Grouped Time Lost for wash-A; r=30

Random
Grouped

(b) r=30: 4289 hours gained

Figure 7: PERSES significantly reduces group time lost with the wash-A grouping.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 10 100 1000

G
ro

u
p

 T
im

e
 lo

st
 (

s)

of Disks

Group time Lost for wash-B, r=10

Random
Grouped

(a) r=10: 12 hours gained

-6e+07

-4e+07

-2e+07

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 10 100 1000

G
ro

u
p

 T
im

e
 lo

st
 (

s)

of Disks

Group time Lost for wash-B, r=30

Random
Grouped

(b) r=30: 2740 hours gained

Figure 8: PERSES shows less improvement with the wash-B grouping.

wash-B has smaller, noisier groups, which biases the lay-
out algorithm towards placing related data farther apart
on average. We discuss this further in Section 5.

We compare against random since we have no infor-
mation as to the actual layout of the data behind our
traces. To give us another bound on PERSES perfor-
mance, we also compared it against a temporal layout
where , where files are placed on disk in the order they
will later be read in the trace. Figure 9 shows that even
against this optimal temporal layout, PERSES has less
than or equal group time lost for all but the largest disks,
with an average of 1300 hours saved over the three years
of the trace.

 1e+06

 1e+07

 1e+08

 10 100 1000

G
ro

u
p

 T
im

e
 L

o
st

 (
s)

of disks

Grouped vs Temporal Locality for wash-A; r=30

Temporal
Grouped

Figure 9: PERSES performs as well as or better then data allo-

cated with a temporal oracle. 1321 hours gained.

9

 10000

 100000

 10 100 1000

G
ro

u
p

 T
im

e
 L

o
st

 (
s)

of disks

Grouped Time Lost vs. Cache Size

Cache Size (# Files)
0

10
50

100
500

1000
1500
5000

10000

Figure 10: Cache size has negligible effect on group time lost.

This graph was made with r = 30 and grouping wash-B, but

other parameter combinations produced similar results.

4.2.3 Refinements

To further study our results, we explored the effects of
different cache sizes, different r values, limiting group
size, and increasing the IOPS in our trace. For cache and
rebuild, we wanted to explore how PERSES would be-
have in different system configurations. The minimum
group size experiments came from the observation that
larger groups had more to lose and experienced more
benefit from localization. We found that restricting group
size did improve the performance of PERSES. Finally, we
realize that the traces we have have relatively low IOPS,
and we wanted to address concerns about the efficacy of
PERSES in an active environment. To do this, we sped
up our trace by a factor of ten and show that it PERSES

improves group time lost even on the compressed trace.

Caching

Our simulator has a read cache to catch popular reads be-
fore they go to disk. We found that the size of this cache,
within reason, had very little impact on the group time
lost. Figure 10 shows that not having any cache at all is
competitive with having a cache of 10,000 files for wash,
which represents 97 GB of cache. This trend continues
until the cache becomes so large that every repeat request
is served out of cache.

Rebuild Speed

Another question we had was how the rebuild factor af-
fected group time lost. Figure 11 shows the improvement
in group time lost for different rebuild factors. Though
low r values do worse than random due to the over-
head of disk arrangement, once values start approaching
what disks can physically do, relative group time lost de-
creases as r rises.

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 10 100 1000

G
ro

u
p

 T
im

e
 L

o
st

 (
s)

of disks

Grouped Time Lost vs. Rebuild Speed

Rebuild Penalty (s/GB)
1
5

10
20
30
50

100

(a) Wash-A Grouped

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 10 100 1000

G
ro

u
p

 T
im

e
 L

o
st

 (
s)

of disks

Grouped Time Lost for Random Allocation vs. Rebuild Speed

Rebuild Penalty (s/GB)
1
5

10
20
30
50

100

(b) Random

Figure 11: As the time to rebuild increases, PERSES grouping

saves significant time over random

Minimum Group Size

After we noticed that wash-A outperformed wash-B, we
ran experiments where we specified a minimum group
size for our groupings. Our results indicate that PERSES

has higher impact on larger groups since without group-
based allocation there is a greater chance the project will
be spread across many disks.

Figure 12 shows the wash-A grouping with minimum
group sizes of 50 and 100 files. The top pair of lines
on each graph are group allocated and random allocated
data with r = 30 whereas the bottom pair are the same
lines for r = 10. Surprisingly, if we restrict the size of
groups to only model larger projects, we see significant
improvement even with r = 10, which corresponds to a
rebuild rate of 102 MB/s. This indicates that in a group-
ing with large groups, PERSES is valuable even on high-
end hardware with very fast rebuild.

High IOPS

Finally, we had some concerns about how PERSES would
behave under high IOPS. To test this, we compressed our

10

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 10 100 1000

G
ro

u
p

 T
im

e
 L

o
st

 (
s)

of disks

Grouped Time Lost - Min. Group Size 50

Random 30
30

Random 10
10

(a) Min. Group Size 50: 9252 hours gained for r = 30

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 10 100 1000

G
ro

u
p

 T
im

e
 L

o
st

 (
s)

of disks

Grouped Time Lost - Min. Group Size 100

Random 30
30

Random 10
10

(b) Min. Group Size 100: 9214 hours gained for r = 30

Figure 12: PERSES significantly lowers group time lost with a

larger group size for wash-A. Group time lost is on a log scale

 1e+06

 1e+07

 1e+08

 10 100 1000

G
ro

u
p

 T
im

e
 L

o
st

 (
s)

of disks

Time Compressed wash-A; r=30

Random
grouped

Figure 13: Compressing the accesses in wash-A by a factor of

10 only slightly hurts the performance of PERSES

traces by a factor of 10, such that for example accesses
that are 100 s apart in the trace are 10 s apart in the com-
pressed trace. Figure 13 shows that while PERSES does
not save as much group time lost under compression, it
still handily outperforms random allocation once disks
are reasonably sized.

5 Discussion

Our results show a consistent reduction in group time lost
for PERSES, and the reduction is greatest when groups
are statistically derived and larger.

The most surprising result we found was that statistical
grouping significantly outperformed categorical in terms
of reducing group time lost. Statistical groupings outper-
form categorical groupings because, given the relatively
short rebuild period, PERSES favors “tighter” groupings.
By tighter, we mean groups where every group mem-
ber has a high probability of co-access with every other
group member. Statistical groups produced by NNP have
this property, whereas the categorical groups in wash and
water do not have any implicit promises of co-access.
On the other hand, wash-A strictly outperforms wash-B
because wash-B has groupings that are too tight. As a
result, groups end up being very small on average and
do not fully capture the co-access relationships in the
trace data. We see this in Table 1 where wash-A has
both larger groups and higher variance in group size than
wash-B. The lesson is to bias NNP towards larger group-
ings for best PERSES performance.

In keeping with these two observations, it is unsur-
prising that we saw similar large gains when limiting
the minimum group size of wash-A to 50 or to 100.
PERSES gains the most benefit from placement of large
groups while smaller groups are still more likely to be
on a failed disk. We are working on distributing smaller
groups across all disks to lower their probability of fail-
ure. Also, as the length of the rebuild increases, PERSES

does much better because the longer a rebuild takes the
more accesses are slowed, affecting more groups if the
disk is not laid out according to group membership. Re-
build rate has a very high impact on the results because
the rate between accesses is fixed by the timestamps in
the trace. Thus, the probability that the failure will be ob-
served by an access increases increases with downtime.

Surprisingly, adding a read cache did not significantly
alter our results. This is because while elements were ac-
cessed in groups in our traces, they were almost never ac-
cessed repeatedly in short succession. This indicates that
layout models based on the popularity of data for place-
ment would have performed poorly on our traces. This
sort of workload is prevalent in both record indices such
as wash and scientific data such as water. These two
datasets are by no means ideal; PERSES should perform

11

even better on data with higher IOPS and more distinct
working sets such as virtual machine images or docu-
ment servers.

One concern with grouping all of the data a project
needs on a small set of physical devices is a slightly
higher probability of losing all of the data for a project
in a data loss event. We can mitigate this by arranging
data on the tertiary replica such that in a multiple failure
event, the tertiary datastore has a different arrangement
and the data is preserved while retaining the benefit of
increased availability in normal rebuild scenarios.

Rapid rebuild is touted as making RAID reconstruc-
tion irrelevant, but it has two major problems. First,
the latent sector errors it fixes only happen in rapid suc-
cession, meaning that it will always be playing catch-
up [15]. Secondly, we see improvement with PERSES

even at r = 10, which corresponds to reconstructing data
from a failed drive at over 100 MB/s, faster than most
drives can even be read.

6 Conclusions

We have demonstrated PERSES, a data layout technique
for significantly lower impact rebuilds in large multi-use
storage systems. We have shown that we can automat-
ically derive groupings from statistical data and apply
them to lay out data such that a failed disk affects few
working sets. Our experiments show that, with large au-
tomatically generated groupings, we can reduce the total
time that groups perceive as lost by up to 80%, which
corresponds to over 4000 hours over three years. We
also showed that even against an optimal temporal lay-
out, PERSES saves over 1300 hours in our three year
trace.

Furthermore, we showed that PERSES is especially ef-
fective on larger groups, since even as the number of
disks increase group time lost is still 40% lower with
PERSES than without, and the average time gained is over
9000 hours. Finally, we showed that PERSES can oper-
ate with high IOPS, making it relevant for active systems
including cloud storage. PERSES is general purpose and
requires no administrative overhead to find groups or re-
arrange data, and it can combine with existing rapid re-
construction methods to help alleviate the growing con-
straint of disk rebuild.

6.1 Future Work

Our next steps are to add correlated failures to our fault
simulator to better represent real failure scenarios. We
expect PERSES to do well with correlated failures be-
cause there will be fewer, larger failures, which PERSES

is designed for. Another interesting problem is in how
groups are allocated to disks. Currently, disks are filled

in with groups based on group size. We are exploring us-
ing more intelligent bin packing to place groups on disk
based on probability of access. Finally, we are looking at
the effects of combining PERSES with existing systems to
reduce reconstruction overhead through replication and
caching.

Our eventual goal is to design a data layout algo-
rithm for non-hierarchical file systems. Current file sys-
tems use the directory hierarchy to obtain some no-
tion of likelihood of co-access in data. If we can au-
tomatically detect working sets and lay them out such
that projects are isolated, we can control fragmentation
in non-hierarchical systems without administrative over-
head or time consuming metadata analysis.

7 Acknowledgments

This research was supported in part by the National Sci-
ence Foundation, the Department of Energy, and indus-
trial sponsors.

References

[1] ADAMS, I., STORER, M., AND MILLER, E. Anal-
ysis of workload behavior in scientific and histori-
cal long-term data repositories. ACM Transactions

on Storage (TOS) 8, 2 (2012), 6.

[2] AMUR, H., CIPAR, J., GUPTA, V., GANGER, G.,
KOZUCH, M., AND SCHWAN, K. Robust and flex-
ible power-proportional storage. In Proceedings

of the 1st ACM symposium on Cloud computing

(2010), ACM, pp. 217–228.

[3] ARPACI-DUSSEAU, A., ARPACI-DUSSEAU,
R., BAIRAVASUNDARAM, L., DENEHY, T.,
POPOVICI, F., PRABHAKARAN, V., AND SI-
VATHANU, M. Semantically-smart disk systems:
past, present, and future. ACM SIGMETRICS

Performance Evaluation Review 33, 4 (2006),
29–35.

[4] BAIRAVASUNDARAM, L. N., GOODSON, G. R.,
PASUPATHY, S., AND SCHINDLER, J. An analy-
sis of latent sector errors in disk drives. In Pro-

ceedings of the 2007 SIGMETRICS Conference on

Measurement and Modeling of Computer Systems

(June 2007).

[5] GENS, F. Idc predictions 2012: Competing for
2020. IDC, Report, Dec (2011).

[6] HOU, R., MENON, J., AND PATT, Y. Balancing i/o
response time and disk rebuild time in a raid5 disk
array. In System Sciences, 1993, Proceeding of the

12

Twenty-Sixth Hawaii International Conference on

(1993), vol. 1, IEEE, pp. 70–79.

[7] JONES, L., REID, M., UNANGST, M., AND

WELCH, B. Panasas tiered parity architecture.
Panasas White Paper (2008).

[8] KRYDER, M., AND KIM, C. After hard driveswhat
comes next? Magnetics, IEEE Transactions on 45,
10 (2009), 3406–3413.

[9] LAMEHAMEDI, H., SHENTU, Z., SZYMANSKI,
B., AND DEELMAN, E. Simulation of dynamic
data replication strategies in data grids. In Parallel

and Distributed Processing Symposium, 2003. Pro-

ceedings. International (2003), IEEE, pp. 10–pp.

[10] LOUWRENTIUS. Raid array size and rebuild speed.

[11] PINHEIRO, E., AND BIANCHINI, R. Energy con-
servation techniques for disk array-based servers.
In ICS ’04 (2004), ACM, pp. 68–78.

[12] PINHEIRO, E., WEBER, W., AND BARROSO, L.
Failure trends in a large disk drive population. In
Proceedings of the 5th USENIX conference on File

and Storage Technologies (FAST’07) (2007).

[13] SCHINDLER, J., GRIFFIN, J., LUMB, C., AND

GANGER, G. Track-aligned extents: matching ac-
cess patterns to disk drive characteristics. In Con-

ference on File and Storage Technologies (2002).

[14] SCHROEDER, B., DAMOURAS, S., AND GILL, P.
Understanding latent sector errors and how to pro-
tect against them. ACM Transactions on Storage

(TOS) 6, 3 (2010), 9.

[15] SCHROEDER, B., AND GIBSON, G. A. Disk fail-
ures in the real world: What does an MTTF of
1,000,000 hours mean to you? In Proceedings of

the 5th USENIX Conference on File and Storage

Technologies (FAST) (Feb. 2007), pp. 1–16.

[16] SCHWARZ, T. J. E., XIN, Q., MILLER, E. L.,
LONG, D. D. E., HOSPODOR, A., AND NG, S.
Disk scrubbing in large archival storage systems. In
Proceedings of the 12th International Symposium

on Modeling, Analysis, and Simulation of Com-

puter and Telecommunication Systems (MASCOTS

’04) (Oct. 2004), pp. 409–418.

[17] SCHWARZ, S. J., T., AND MILLER, E. L. Store,
forget, and check: Using algebraic signatures to
check remotely administered storage. In Proceed-

ings of the 26th International Conference on Dis-

tributed Computing Systems (ICDCS ’06) (Lisboa,
Portugal, July 2006), IEEE.

[18] SIVATHANU, M., PRABHAKARAN, V., ARPACI-
DUSSEAU, A., AND ARPACI-DUSSEAU, R. Im-
proving storage system availability with D-GRAID.
ACM TOS 1, 2 (2005), 133–170.

[19] SIVATHANU, M., PRABHAKARAN, V., POPOVICI,
F., DENEHY, T., ARPACI-DUSSEAU, A., AND

ARPACI-DUSSEAU, R. Semantically-smart disk
systems. In Proceedings of the 2nd USENIX Con-

ference on File and Storage Technologies (2003),
pp. 73–88.

[20] STAELIN, C., AND GARCIA-MOLINA, H. Cluster-
ing active disk data to improve disk performance.
Princeton, NJ, USA, Tech. Rep. CS–TR–298–90

(1990).

[21] SUN, X., CHEN, Y., AND YIN, Y. Data layout op-
timization for petascale file systems. In Proceed-

ings of the 4th Annual Workshop on Petascale Data

Storage (2009), ACM, pp. 11–15.

[22] THOMASIAN, A., TANG, Y., AND HU, Y. Hier-
archical raid: Design, performance, reliability, and
recovery. Journal of Parallel and Distributed Com-

puting (2012).

[23] TIAIR, L., JIANG, H., FENG, D., XIN, H., AND

SHIR, X. Implementation and evaluation of a
popularity-based reconstruction optimization algo-
rithm in availability-oriented disk arrays. In Mass

Storage Systems and Technologies, 2007. MSST

2007. 24th IEEE Conference on (2007), IEEE,
pp. 233–238.

[24] WANG, J., AND HU, Y. PROFS-performance-
oriented data reorganization for log-structured file
system on multi-zone disks. In mascots (2001),
Published by the IEEE Computer Society, p. 0285.

[25] WILDANI, A., AND MILLER, E. Semantic data
placement for power management in archival stor-
age. In Petascale Data Storage Workshop (PDSW),

2010 5th (2010), IEEE, pp. 1–5.

[26] WILDANI, A., MILLER, E., AND RODEH, O.
Hands: A heuristically arranged non-backup in-line
deduplication system. Tech. Rep. UCSC-SSRC-
12-03, University of California, Santa Cruz, Mar.
2012.

[27] WILDANI, A., MILLER, E., AND WARD, L.
Efficiently identifying working sets in block i/o
streams. In Proceedings of the 4th Annual Interna-

tional Conference on Systems and Storage (2011),
p. 5.

13

[28] WOOD, R. Future hard disk drive systems. Jour-

nal of magnetism and magnetic materials 321, 6
(2009), 555–561.

[29] WU, S., JIANG, H., FENG, D., TIAN, L., AND

MAO, B. Workout: I/o workload outsourcing for
boosting raid reconstruction performance. In Pro-

ceedings of the Seventh USENIX Conference on

File and Storage Technologies (FAST09) (2009).

[30] XIN, Q., MILLER, E. L., SCHWARZ, T. J., LONG,
D. D. E., BRANDT, S. A., AND LITWIN, W.
Reliability mechanisms for very large storage sys-
tems. In Proceedings of the 20th IEEE / 11th NASA

Goddard Conference on Mass Storage Systems and

Technologies (Apr. 2003), pp. 146–156.

[31] XIN, Q., MILLER, E. L., AND SCHWARZ, T.
J. E. Evaluation of distributed recovery in large-
scale storage systems. In Proceedings of the 13th

IEEE International Symposium on High Perfor-

mance Distributed Computing (HPDC) (Honolulu,
HI, June 2004), pp. 172–181.

Notes

1This is not quite true, but accurate for our purposes. Further expla-
nation can be found in [1].

14

