
UNIVERSITY of CALIFORNIA

SANTA CRUZ

USING NETWORK ATTACHED STORAGE IN A SECURED DISTRIB UTED
FILE SYSTEM

A dissertationsubmittedin partialsatisfactionof the
requirementsfor thedegreeof

DOCTOROF PHILOSOPHY

in

COMPUTERSCIENCE

by

Benjamin Clay Reed

June2000

The dissertationof Benjamin Clay Reedis
approved:

Prof.DarrellD. E. Long,Chair

Prof.TaraM. Madhyastha

Dr. CynthiaDwork

Dr. RanCanetti

Deanof GraduateStudies

Copyright c
�

by

BenjaminClay Reed

2000

iii

Contents

List of Figures vi

List of Tables vii

Abstract viii

Acknowledgments x

1 Intr oduction 1
1.1 DistributedFile Systems . 3
1.2 RelatedWork . 4

1.2.1 DistributedFile Systems. 4
1.2.2 Methodsof Authentication. 16

1.3 Overview of theThesis . 25

2 The SCARED Object Model 27
2.1 ObjectAbstraction . 28

2.1.1 BasicSemantics . 29
2.1.2 DataObjectSemantics. 30
2.1.3 MetadataObjectSemantics. 31

2.2 Block Allocation . 33
2.3 CacheManagement. 34
2.4 AccessControl . 36
2.5 Summary . 38

3 Deriving Keysfor Authentication 39
3.1 DistributedSCAREDEnvironment. 41
3.2 Key Distribution WithoutKey Exchange. 42
3.3 Key Types . 43

3.3.1 GeneratingCapabilityKeys . 44
3.3.2 GeneratingIdentity Keys . 45
3.3.3 CombiningKeys . 46

3.4 Revocation . 48
3.4.1 Key Expiration . 48

iv

3.4.2 CapabilityKey Revocation . 49
3.4.3 Identity Key Revocation . 49

3.5 SecurityAnalysis . 50
3.6 Summary . 55

4 An Authenticated Messageprotocol for SCARED 57
4.1 Integrity andIdentityGuarantees. 59
4.2 FreshnessGuarantees. 61

4.2.1 Verifying FreshnessusingCounters . 63
4.2.2 Verifying FreshnessusingTimers . 63

4.3 TheRequest/ResponseProtocol . 64
4.3.1 TheRequestProtocol. 64
4.3.2 ResponseProtocol . 65
4.3.3 AsynchronousResponses. 66

4.4 Encryption. 67
4.5 Analysisof MessageProtocol . 68

4.5.1 ExchangingtheFreshnessGuarantee . 69
4.5.2 TheGenericMessageProtocol . 70

4.6 Summary . 74

5 UsingSCARED in a Distributed File System 75
5.1 Brave File SystemLayout. 76
5.2 Brave Semantics . 79

5.2.1 File Semantics . 79
5.2.2 DirectorySemantics . 80

5.3 Brave Operations . 80
5.3.1 Creation. 81
5.3.2 Deletion. 82
5.3.3 File SystemChecks. 83

5.4 Conclusion . 84

6 Implementing SCARED and Brave 85
6.1 UNIX file systems. 86

6.1.1 I-nodes . 86
6.1.2 Directories . 86
6.1.3 Virtual File Systems . 87

6.2 IntegratingBraveandSCAREDinto theVFS . 88
6.2.1 Allocation Management . 90

6.3 ImplementingSCARED . 91
6.4 Summary . 92

7 Conclusions 93
7.1 Contributions . 93

7.1.1 Comparisonto RelatedWork . 93
7.1.2 Specificadvantagesof SCAREDandBrave 95

7.2 FutureWork . 97

v

7.2.1 Caching. 97
7.2.2 Locking . 98
7.2.3 StripingandMirroring . 98
7.2.4 Allocation andLoadBalancing . 99

A KeyData Encoding 101
A.1 Identity Attribute . 102
A.2 CapabilityAttributes . 103
A.3 Key InformationAttributes . 104
A.4 Key DataEvaluation . 105

B Pseudo-RandomFunctions 106

Bibliography 108

vi

List of Figures

1.1 Thedataandmetadataaccessesin NFSandCIFS. 5
1.2 Thedataandmetadataaccessesin AFS. 9
1.3 Clientaccessusingdataandmetadataservers. 11
1.4 ClientaccessusingNASD. 13

2.1 Thestructureof afile object. 30
2.2 Thestructureof ametadataobject. 31

3.1 Theadministrator, thestoragedevice,andtheclientarethethreerolesin SCARED.
Thekey derivationschemeallows theadministratorto generateaccesskeys for the
clients.. 41

3.2 Theadministratorsharesakey, K, with thestoragedevicewhich is usedto generate
keys to be given to the clients. In this examplethe messagesmustbe exchanged
over securechannels. 45

3.3 Mixing identityandcapabilitykeys to enableprinteraccessto adataobject. 47

5.1 Brave directoryentrylayout. 76
5.2 An exampledirectorystructurestoredin ametadataobject.. 78

6.1 Brave integrationinto theLinux VFS. 88

vii

List of Tables

A.1 SCAREDattributetypesfor key data. 102
A.2 Permissionmasksfor thepermissioncapabilityattribute. 103

Network AttachedStoragein a SecuredDistributedFile System

BenjaminReed

Abstract

Distributedfile serversarebecominganimportantpartof thenetwork infrastructure.The

increasedcapacityof disk driveshasincreasedthe amountof storagemanagedby the file server.

Thenumberof network clientshave increased,aswell asthebandwidthandconnectivity between

theclientsandservers.Thefile server is a bottleneckin theaccesspathbetweenthenetwork client

andthedataonthedisks.To alleviatethisbottleneckit hasbeenproposedto directlyattachdisksto

thenetwork, therebyincreasingtheaggregatenetwork bandwidthto thedataandrelieving thefile

server. Attachingdisksto thenetwork bringssecurityproblemsthatdo not exist whenthedisk is

only attachedto thefile server.

Simply applyingexisting authenticationprotocolsto network attachedstorageis not suf-

ficient becauseof their administrative and computationalrequirements.We review someof the

commonmeansof authenticationin usetodayandtheir weaknesseswhenappliedto network at-

tachedstorage.

To addresstheseauthenticationweaknesses,wepresentanauthenticationprotocolto pro-

vide strongauthenticationguaranteesto network attachedstorage. This protocol avoids the in-

frastructureand computationaloverheadof other protocolswhile still providing strongidentity,

integrity, andfreshnessguarantees.

To enabletheprotocolwe introduceanobjectmodelto permitthecorrectlevel of access

controlto thedatastoredon thenetwork storagedevices.Additional advantagesto usinganobject

interfaceasopposedto a block interfacearediscussed.

We describea completelydistributedfile system,which we implementedfor Linux, that

ix

takesadvantageof theauthenticationprotocolandobjectmodel.Thefile systemexhibitsscalability,

manageability, andsecurityfeaturesmissingin mostcontemporaryfile systems.It alsoillustrates

how addingsimpleobjectsemanticsto network storagedevicescanremovetheneedfor afile server

without sacrificingsecurity.

x

Acknowledgments

I mustfirst thankMom for teachingmeto love to learnandDadfor his guidanceandex-

ample.My secondaryeducationin Fairfield,Ohio,provideda foundationonwhich to build. Miami

Universitytaughtmehow fun learningcanbe.DePaulUniversityshowedmethewondersof Com-

puterScience,andthe University of California,SantaCruz, taughtme to explore. Unfortunately,

spacedoesn’t permitmeto acknowledgeall thewonderfulteachersandadvisorsI havehadat these

institutions.At SantaCruz, in particular, I enjoyedandlearnedimmenselyfrom every instructorI

hadandworkedfor. If therewerenotsomany, I wouldbeableto acknowledgethemindividually.

Specialacknowledgementgoesto my advisor, Darrell Long,without whosepatienceand

guidanceI would have never beenableto finish (or start,for thatmatter). It washis commentsin

his ComputerSecurityclassthat inspiredthis work. It wasthe freedomI hadat IBM’ s Almaden

ResearchCenterthatlet mefinish thisparticularwork. I mustespeciallythankmy managers,Steve

WelchandNorm Pass,who refusedto let menotgetmy degree.

Theadvancementprocessof thedoctoralprogramrequiresspecialefforts on thepartof

theadvancementcommitteeandthedefensecommittee.I amtruly gratefultoAlexandreBrandwajn,

CynthiaDwork, Darrell Long, andAnujan Varma,who wereon my advancementcommittee.As

well as Darrell Long, TaraMadhyastha,Cynthia Dwork, andRanCanetti for their work on my

defensecommittee.

CynthiaandRanhave taughtme andguidedme in thesecurityaspectsof this thesis. I

certainlywould not have beenableto get it right without their help. Ed Chron,RandalBurns,and

Darrell Long helpedme with the systemspart of this work. Ed’s supportandencouragement,in

particular, helpedmecontinuethiswork. BenGertzfielddid theinitial Linux VFSwork andhelped

usflushout thedesignof theBrave client.

xi

Obviously, every good ideais built on othersandthe influenceof my collegesandthe

bodyof publishedwork in this areahelpedmepull theneededpiecestogether. Most of all, I must

alsoacknowledgeGod’s efforts in gettinga coupleof goodideasthroughmy thick skull, andthe

unwaveringsupportandencouragementof my wife, Carolina.

xii

Thisdissertationis dedicatedto my wife andchildren.

1

Chapter 1

Intr oduction

The needto accessanything from anywherehasemphasizedthe role of distributed file

serversin computing.Distributedfile systemsprovide local file systemsemanticswhenaccessing

remotestorage.This allows network clients to incorporatethe remotestorageinto the local file

system.File semanticsarewell understoodby usersandapplications,makingdistributedfile servers

aconvenienttool to usein developingdistributedapplications.

As theroleplayedby distributedfile systemsexpands,someshortcomingsof theirdesign

becomeincreasinglyevident.Fasterclients,highbandwidthconnections,andlargerdrivecapacities

increasethedemandon file servers. Although it would seemthatnetwork file server performance

would belimited by theI/O capacityof thesystemstoragedevices,in actuality, with sufficient I/O

bandwidth,file serversfrequentlybecomeCPUbound. RiedelandGibsonshowed thatevenwith

low overall CPU utilization burst loadsweresufficiently intenseto over-utilize theCPU[47]. By

allowing direct accessto storagedevicesby the clientsthey wereableto reducethe workloadof

thefile servers. This kind of directaccessalsorequiresa supportingauthenticationmechanismto

preventmaliciousclientsfrom makingunauthorizedchangesto thestorageand,consequently, the

2

file system. While this kind of accesscontrol becomesmoreapparentwhenclientscandirectly

accessthestoragedevices,evenclassicaldistributedfile systemsarefrequentlylackingin thisarea.

Applicationsthatrely on distributedfile systemsshouldnot becompromisedby security

weaknessesof the file systemson which they are built. Data storedon distributed file systems

frequentlyneedto beprotectedfrom unauthorizedaccessor eavesdropping.Theadministratorsof

the distributed file serverscontrol accessto the serversand,consequently, who hasaccessto the

dataon their storagedevices. Encryptioncanbeusedto preserve theconfidentialityof thedatain

thesesituations,but in practiceusersmustencryptoutsideof thefile systemto achieve this kind of

confidentiality. Contemporarydistributedfile systemsareonly beginningto addresstheseissues.

Theauthenticatednetwork attacheddiskswepresentaddresstheseproblemsby providing

anarchitecturebasedonone-wayhashfunctionsproviding for mutualauthenticationof thenetwork

disksandtheclients. This architectureobviatestheneedfor moreperformanceintensive authenti-

cationmethodssuchaspublic-key encryptionandKerberos[40]. Theauthenticationinfrastructure

requiredis very smallandflexible, allowing it to fit into morecomplex systems.

Finally, sinceencryptionis notrequiredto supportauthentication,avarietyof legal issues

canbeavoided. Domesticencryptionis restrictedin somecountries[9], andothersrestrictexport

of encryption[55, 56]. Theserestrictionscanbeavoidedby thenetwork disksallowing thesame

disksto beusedworldwide.

We review thecomponentsof distributedfile systemsin � 1.1. In � 1.2anoverview of the

typesof contemporaryfile systemsis presentedto show thecontext in which this work wasdone,

aswell asanoverview of theauthenticationmethodsusedin thosefile systems.An overview of the

restof this thesisis presentedin � 1.3.

3

1.1 Distrib uted File Systems

In general,a distributedfile systemhasfour components:clients,file servers,authenti-

cationservers,anddatastores. Client machinesaccessfiles on behalfof usersandapplications.

Usersandtheir applicationshave credentialsthatareusedto identify themselvesto anauthentica-

tion server, or evendirectly to a file server. Someexamplesof file systems,which will bereviewed

later, that separatethe file server andthe datastoresareSwift [32] andZebra[22]. Andrew File

System(AFS) [24] is an exampleof a file systemthat separatestheauthenticationandfile server

components.The morecontemporaryfile servers,suchasNetwork File System(NFS) [53] and

CommonInternetFile System(CIFS) [41], do the file serving,authentication,andstorageat the

sameserver.

If anauthenticationserver is present,theclientauthenticatestheuserto theauthentication

server in theform of a password, token,or otherauthenticationmethod.Theauthenticationserver

givestheclient new tokensthatareusedto accessthefile server. Thesetokensmaygrantaccessto

specificfiles on thefile server or maysimply authenticatetheidentity of theuser.

In classicaldistributedfile systems,all accessesto thedatastorearethroughthefile server.

Thefile server verifiestheaccessibilityof thedatabeforecarryingout therequestfrom a client on

thedatastore.Thedatastoreis usuallylocally attachedto thefile server. Sincethelocal storageis

only attachedto thefile server, it cansimply carryout therequestsof thefile server withouthaving

to authenticateor checkaccesspermissions.

Storingdataonanetwork is oftenaccompaniedby thesharingof databetweenusers.For

sharingto occur, usersneedto beableto transferrightsto otherusers.Assignmentof auser’s rights

or of asubsetof thoserightsto anotherusershouldbepossible.Onsomedistributedfile systems,a

usercangive accessto specificfiles. On others,thegranularityof sharingis at thedirectorylevel.

4

Finally, someonly allow usersto grantaccessto entiresubtrees.

1.2 RelatedWork

This sectionpresentssomekey work in the areaof distributedfile systemsto illustrate

the differencesin their aspects.We startby presentingsomeof the popularserver basedfile sys-

tems,followedby file systemsthatdistributethework acrossmultipleservers,andthencompletely

distributed file systems.After presentingthesefile systems,we will presentwork in the areaof

authentication,followed by someimportantexamplesof the applicationof theseauthentication

methodsin distributedfile systems,beginningwith theweakestformsof authentication.

1.2.1 Distrib uted File Systems

While mostdistributedfile systemssharethecommongoalof extendinglocal file system

semanticsto network storage,theapproachesdiffer greatly. To illustratetheseapproacheswebegin

by presentingtwo of themostpopularnetwork file systems:NFSandCIFS.We thenpresentAFS

andDFS.They allow thefile systemto bespreadacrossmultiple servers.We alsopresenta group

of file systemsthatmanagethefile systemmetadataat file serversandstorethedataon dedicated

dataservers.This ideahasbeenappliedto NFSandAFS by theNASD projectat Carnegie Mellon

University. Finally two serverlessdistributedfile systemsarepresented.

NFS

NFS [53] wasdevelopedby SunMicrosystemsto provide transparentremoteaccessto

files. It usesa RemoteProcedureCall / ExtendedDataRepresentation(RPC/XDR) interfaceto

makeit portableacrossoperatingenvironments.Thefile systemconsistsof statelessfile serversand

5

connect

localdata & metadataClient Server
requests

Figure1.1: Thedataandmetadataaccessesin NFSandCIFS.

file systemclients.NFSis moreafile sharingprotocolthanafile system.TheNFSprotocolimplies

mostlyUNIX semanticsto thefiles,andthefiles themselvesareusuallystoredin a local file system

on thefile server. Thefile server exposessubtreesof thelocal file systemsto thenetwork.

Sincethe files arebeingsharedfrom a local file system,file systemsaccessedby NFS

clientsdo not spanservers. CIFS,describedin thenext section,sharesthis limitation. Figure1.1

illustratesthefile systemaccessin theseserver basednetwork file systems.

When a client connectsto a file server the client first usesthe mount protocol to get

a handleto the root of the sub tree that will be accessed.The mountprotocol server runs on a

privilegedport. Oncethehandleis obtained,theclientscommunicatewith thefile server running

on a non-privilegedport to requestfile anddirectorydata. Version2 of theprotocolrestrictedthe

maximumtransfersizeper requestto 8192bytes.Version3 [8] of theprotocolremoved this limit

which allows for betterperformance.Client cachingis not specifiedin theprotocol,but in practice

NFSclientscachefile datafor 5 secondsanddirectorydatafor 30seconds.Writesarecommittedto

diskwhenreceivedby theserver. Version3 addedawrite commitprotocolto allow multiple writes

beforeactuallycommittingto disk.

The most commonform of authenticationin NFS is network based. Only the server

authenticatestheclient. Theclient doesnot authenticatetheserver. As mentionedin section1.2.2,

network basedauthenticationis subjectto anumberof attacksandtoolsexist to exploit them.Other

proposalsexist for usingDESwith public key encryptionandKerberos,but they have yet to gain

6

popularity.

NFSis statelessto make it resistantto server failures.Becauseit is stateless,it losesthe

openandclosesemanticsof files. Openandclosesemanticscanbeusedfor efficientcachemanage-

mentbothon server andclient. Cachingreadsis very importantsincereadsaretheoverwhelming

majority of client operations.Thesimpletime basedcachinglimits theeffectivenessof thecache

anddoesnotassurecacheconsistency.

CIFS

TheCommonInternetFile System(CIFS)[41] is a statefulfile sharingprotocolthathas

evolved from a file andprint sharingprotocolfor personalcomputerson a local areanetwork. A

CIFS server is able to sharefiles, printers,and FIFO (or namedpipes)with CIFS clients using

Server MessageBlocks (SMB). Communicationbetweenthe client and server takes placevia a

requestSMB anda responseSMB. With oneexception,the client alwaysmakesa requestto the

server not vice-versa. SMB’sareencapsulatedin a NetBIOSpacket andtransportedover a reliable

transportsuchasTCP.

CIFSusesmandatorylocking that is enforcedby theCIFSserver. Filesmaybeopened

with file level locks to provide read,write, andexclusive locks to a file. Byte locking canalsobe

usedto lock rangesof a file for reador write access.Variationsof the readandwrite SMB’s are

availableto performa simultaneousreadandlock on a byterange,aswell asa simultaneouswrite

andunlock. In the caseof the level locks andbyte rangelocks, the locks will be releasedwhen

theclient explicitly releasesthe locksor closesthefile. TheCIFSserver will not revoke the locks

heldby aclient. Thelaterversionsof CIFSaddeda temporarylocking calledopportunisticlocking

that can be requestedby the client when a file is opened. If opportunisticlocking is requested,

7

theclient neednot write changesto theserver or requestlocks until thefile is to beclosedor the

server revokes the opportunisticlock. If the server mustrevoke an opportunisticlock, the server

sendsan SMB to the client revoking the lock. The client repliesto the requestafter flushingany

datato bewritten andrequestinglocksfor rangesthatwererequestedwhile theopportunisticlock

washeld. The specificationfor theCIFS protocolmakesvery little mentionof caching.Caching

is only mentionedin relationto opportunisticlocking. Cacheconsistency canbemaintainedusing

theCIFSlocking mechanism.However, sincetheserver cannotrevoke locksheldby theclient the

cachesmustbeflushedto theserver quickly andthelocksreleasedto avoid impactingotherclients

waiting on thelock.

CIFS supportstwo securitymodes:share-level anduser-level. In both casesthe client

andserver arebothin possessionof a sharedsecret(i.e. thepassword). Securityis enforcedwhen

a sessionis initiated with a resource.In thecaseof share-level security, accessto the resourceis

restrictedusingapassword. Onceaccessis gainedto aresourceusingshare-level security, thesame

level of accessis usedfor all files andsubdirectoriesin the resource.User-level security, on the

otherhand,requiresauseridandpassword to accesstheresource.Oncetheresourceis accessedthe

level of accesscanvary on anindividual file or directorybasis.

To prevent eavesdroppingof passwords when initially accessingresourcesof a CIFS

server, encryptioncanbeusedwhile authenticating.DESis usedastheencryptionalgorithm.The

variablenames(���) andtermsusedto describethevalidationprotocolaretakenfrom thestandard

[41]. Whentheclient initially connectsto theserver andnegotiatestheprotocollevel thatwill be

used,theserversendsbackacryptkey which is computedby encryptingastringcomposedof eight

questionmarkswith a sevenbytestring,which is usuallya combinationof thetime anda counter.

Theclient beginsencryptingthepassword by calculating����� , which is a stringcomposedof eight

8

questionmarksencryptedwith ���
	 . ���
	 is theuser’s password paddedwith spacesif necessaryto

form a 14 bytestring. ���� is ����� with five null bytesappended.Finally, theencryptedpassword is

theresultof encryptingthecrypt key with ���� . Both theclient andserver performthecalculation

andtheserver validatestheresultsentby theclient with theresultof its own calculation.

If authenticationis doneusingtheabovealgorithm,thepassword is protectedfrom eaves-

droppingandtheuseof thecryptkey seemsto protecttheresultfrom beingreplayedto gainaccess.

Theauthenticationis only doneon initial connectionto theresource.Theconnectionorientedpro-

tocol is relieduponto maintainthe integrity of the restof thesession.As waspointedout earlier,

TCPcannotberelieduponto provide thiskind of integrity. Packetscanbemanipulatedto andfrom

the server in orderto fool the client andserver; or the sessionitself could be taken over after the

connectionis made,giving theattacker accessto theresourceasif sheweretheuserthatconnected

to theresource.

DedicatedServer

Generalpurposeoperatingsystemsprovide many functionsandfeaturesthat aresuper-

fluousto a systemwhosesolefunction is to act asa file server. Someof thesefunctionsinclude

graphicaluserinterfaces,multitasking,andapplicationprogrammingsupport. Operatingsystems

have beencreatedto expresslysupportthefile servingfunction. An exampleof suchanoperating

systemis Network Appliance’sdedicatedfile server. Theircustomizedoperatingsystemis designed

specificallyfor processingnetwork requests,andincludesa Write AnywhereFile Layout(WAFL)

[23] that is optimizedfor file serving.Theresultis a file server with improvedperformancewhen

comparedto afile serverhostedby ageneralpurposeoperatingsystem.Severalexistingfile sharing

protocolsaresupportedincludingCIFS,thedefactoWindows file sharingprotocol,andNFS,the

9

connect

localVolume Server

connect

localVolume Server

connect

localVolume Server

Client
requests
data & metadata

Figure1.2: Thedataandmetadataaccessesin AFS.

de facto UNIX file sharingprotocol. This allows the server to communicatewith many existing

network clients.

AFS/DFS

Andrew File System(AFS) [24] is a statefuldistributedfile system.It hasa muchmore

complicatedinfrastructurethanNFSbecauseit actuallyis a file system.AFS presentsthenetwork

clientswith theappearanceof a singlenamespace.Thefirst level of thenamespaceexposesthe

availableAFS cells. Eachcell hasa subtreein theAFS network completewith its own domainof

authentication.Thesecellscanhave many volumeservers. Thevolumeserverscontaintheactual

file systemdata.Figure1.2 illustratestheaccessmethodsof theclients. Thefigureshows that the

metadataanddatarequestsarepassedto volumeserver. Eachvolumeserver containsa subtreeof

thefile system.

Its performanceadvantageover otherdistributedfile systemsis a resultof its cachingthe

entirefile locally whenit is opened.Cachedcopiesof files aremadeconsistentwith thefile on the

file server whenthefile is closed.Benchmarksshow that local cachingof files reducethe loadon

10

thefile serverallowing it to serveadditionalclients.AFSusesacallbackmechanismto keepcopies

of files thatarein thecacheandno longeropenedconsistentwith theoriginalson thefile server.

Theperformanceimprovementsin AFSarenotuniversal.If afile is notcached,afile openmaytake

longerthanwith NFS.File closesmaytake longerthanusingNFS,sincethedatamustbeflushed

to theserver if thefile haschanged.

Authenticationin AFS is doneusing Kerberos[40, 29]. Directorieshave accesslists

which allow accessesbasedon user’s Kerberosidentifier. Whena userwishesto accessAFS, she

first obtainsa Ticket GrantingTicket (TGT) from the authenticationserver. This ticket is time

limited andallows theuserto requestadditionalticketsto communicatewith theAFS file servers.

Kerberosticketsareonly usedfor authentication;noencryptionis doneon theactualfile data.Fur-

thermore,eventhoughall thenetwork packetssentbetweentheclientsandfile serversareauthenti-

catedusingKerberos,thepacketsthemselvesarenot actuallyintegrity protected.For performance

reasons,only the packet headerhasintegrity guarantees,so modificationsto the payloadof the

packetsareundetected.Kerberosreliesonsynchronizedclocksto preventreplays.If clocksarenot

looselysynchronized,theauthenticationserviceswill notwork.

DecorumFile System(DFS)[27] is a follow-on to AFS.It improvedcachingby allowing

partsof thefile to becachedinsteadof requiringthewholefile to becached.This wasnecessary

to allow for files to beopenedthatwould betoo large to cachein their entirety. Theimprovedfile

cachingalsoincludedcacheconsistency call-backswith finer levelsof granularity. Filesin DFSare

alwayskeptconsistent.Whenafile is opened,theclientobtainsa tokenfor thepieceof thefile that

is kept in its local cache.If thetokenis for writing andanotherclient requeststhatpieceof thefile,

theserver will revoke thetoken,causetheclient to flushany changesto theserver, andreleasethe

token. After thefirst client releasesits token, thesecondclient will be granteda token andmake

11

connect

localMetadata
Server

connect

localStorage Server

connect

localStorage Server

request
metadata

data request

request
data

Client

Figure1.3: Clientaccessusingdataandmetadataservers.

changesto, or read,thatpieceof thefile.

Thelatestversionof DFS[15] alsoenhancessecurity. All packetsareintegrity protected

by default andthereis anoptionfor encryptingthepacketsbetweentheclient andserver. Thefiles

themselvesarestill storedin plain text on thefile servers.

StorageServers

Figure 1.3 illustrateshow metadataand data can be managedseparatelyby separate

servers. The simplestexampleof a file server making this kind of separationis the Bullet [59]

file system.It haddirectoryserversthathandlednamingandaccesscontrol,andBullet serversthat

storefile datain immutabledataobjects.Accessto thedataobjectson theBullet serverswasdone

with objectnumbersto identify adataobjectandcapabilitiesto allow clientaccessto agivenobject.

Theobjectnumbersandcapabilitiesweredistributedby thedirectoryservers. Thegreatestlimita-

tion of the Bullet file systemwasthat file dataobjectsmustbe readandwritten in their entirety.

Given that an analysisof the file systemtraffic at the time [42] showed that 75% of the files are

accessedin their entirety, theauthorsdid not view this limitation asthatgreat.

12

TheSwift file system[32] alsousedobjectsat thestorageservers,but they wereusedto

stripethe file dataacrossobjectson differentstorageservers. It alsodid not requirethat files be

accessedin theirentirety. Theauthorsfoundthatthis stripingboostedtheaggregatebandwidthand

processingavailableto serve filesevenwhenindividual fileswerebeingaccessed.

Becauseindividual files werestripedacrossthe storageservers,files that weresmaller

thanthestripestridemultiplied by thenumberof storageserverswerenot ableto fully obtainthe

benefitsof striping.Zebra[22] combinedtheideasSwift [32] andlog-structuredfile systems(LFS)

[51] andRAID [44] to producea file systemthat stripesthe file systemdataacrossthe storage

servers. Insteadof storing file datain objectsand the storageservers, eachclient writes update

logs to its own stripefragmentsandthenetwork storage.Theclientsusethefile manager(which

managesthemetadata)to managethemappingbetweenthefile systemnamespaceandthelocation

of thefile datain thestripefragments.

Network Attached StorageDevice

Dedicatedserversprovide an impressive increasein performance.However, the scala-

bility of the server is restrictedby factorssuchasthe processingpower of theCPU, the speedof

the systembus, network interface,disk interface,and the disks themselves. This is becausethe

file server mustbeinvolvedwith all transactionsbetweentheclient andthedisks.Figure1.4 illus-

tratesonesolutionto thisproblem.Thedisksaredirectlyattachedto thenetwork andallow thefile

server to marshalclient requeststo theappropriatedisks.Whendisksarenetwork attached,thefile

server is ableto managesignificantlymorestorageandtheaggregatenetwork bandwidthincreases

dramatically.

Theconvergenceof network andI/O connectiontechnologiesinspireinvestigationsinto

13

connect

localMetadata Server

request
metadata

Network
Storage

Object based

Network
Storage

Object based

data request

data
request

Client

Figure1.4: ClientaccessusingNASD.

the useof the network as the I/O bus [52, 26]. For example,Network-AttachedSecureDisks

(NASD) [17] havebeenmadeto operatewith Network File System(NFS)andAndrew File System

(AFS).

In file systemsbuilt with NASD, thefile server providesonly file systemmeta-datawhile

theactualfile dataareprovidedby thenetwork attacheddisks.Whenfiles areaccessedby network

clients,the requestsmustbe authenticatedandpermissionschecked beforethe accessis allowed.

Thefile serversgenerallydothiskind of checking.However, if clientsareallowedto directlyaccess

thedisks,thedisksmustalsobeableto verify theauthorityof theclient’s accessto thedata.

NASD usestimelimited capabilitiesto authorizeclientsto performspecificactionsonthe

disk. Thediskhassharedsecretswith thefile managerthatareusedto createcapabilitykeys. NASD

initially usedDESandsecurecommunicationbetweenthefile server andtheNASD to coordinate

thecapabilities.Later[18], capabilitiesweregeneratedusingthesharedsecretsat thefile manager

in sucha way that theNASD couldverify a capabilitythatwassentby a client wascreatedby the

14

file manager. This optimizationeliminateda lot of key exchangetraffic betweenthefile manager

andtheNASD.

Whena client wishesto accessdataon thedisk, theclient getsa capabilityfrom thefile

server to presentto thenetwork disk. Theclient thenpresentsthecapabilitywith a requestto the

disk, at which point thedisk verifiesthat thecapabilityallows therequestedactionbeforeactually

carryingout theaction.

Benchmarksshow thatby allowing clientsdirectaccessto thenetwork attacheddisk, the

processorutilization of the file server decreasesdramatically. This meansthat the file server can

handlemorestorage,but doesnot eliminatethefile server altogether. Therefore,thescalabilityof

thefile server limits overall growth of thefile system.

Serverless

Theserverlessfile system(xFS) [11] wasdevelopedin conjunctionwith theNetwork of

Workstations(NOW) projectat theUniversityof California,Berkeley. Thefile systemconsistsof

a network of trustedworkstationsthatcooperateto provide thefunctionalitynormallyprovidedby

a network server. Theresultis a file systemthathasno centralrepositoryof files. Instead,thefile

systemdataandmeta-datais spreadamongthenetwork of trustedworkstations.

By spreadingthefile systemdataandmeta-dataacrossmultiplemachines,theaggregated

resourcesaremuch greaterthan what would be found on a normal file server. Theseresources

includecachesize,network bandwidth,andprocessingpower. Stripingandloggingis alsousedto

boostperformance.

While dramaticperformanceimprovementsareseenwhen the serverlessfile systemis

comparedto a morecentralizedfile system,theseperformanceimprovementscomeat a price: re-

15

ducedsecurity. Theclientandmanagerkernelsaretrustedto protectthefile systemfrom malicious

access.Thus,theserverlessfile systemis designedto run in a uniform securityenvironment.This

kind of environmentcanbefound in NOW andin a network whereall machinesareadministered

andtrustedequally.

To allow accessto the serverlessfile systemby untrustedclients, an NFS gateway is

used.Thegateway is trustedandservesasa firewall betweenthetrustednetwork andtheuntrusted

clients.NFSclientsaccessthegateway asanNFSserver. Thegateway thenmakesrequestson the

part of the untrustedclient. The gateway hasthepotentialto becomea bottleneckandaddsextra

traffic andprocessingto the requests.However, performanceimprovementsarestill obtainedvia

thecooperative cachingandlog-basedstriping.

JetFile

JetFile[21] is similar to theserverlessfile systemin thatfile systemdatais spreadacross

the clients. However, JetFileusesstorageservers to act as a repositoryof files for backupand

availability reasons.Thekey designpointof JetFileis theiruseof multicastsasthecommunications

medium.Multicastis usedto ensurecacheconsistency amountall theclientsaccessingafile system

object.

Eachfile systemobjectis givenaFileID. Associatedwith aFileID is amulticastaddress.

ScalableReliableMulticast (SRM) [16] is usedto locatea FileID, andunicastis usedto actually

retrieve thedatafrom that location. Theclient thathastheFileID will answertheSRM andserve

the datato the requestingclient. Writes aredonelocally anddo not needto be written backto a

storageserver, sincethe client doing the writes will serve the datato otherclientsby answering

SRMsfor theFileID with itself asthe location. Beforea modifiedfile is removed from the local

16

cache,theclient will updatethestorageserver with thechanges.

Becausewrites andreadsdo not have to go backto a storageserver andmany replicas

of a file canexist at different clients, it is importantto have a way to serializeupdatesto a file.

Serializationis doneusingaversionserver thatgeneratesversionnumbersfor files thatareupdated

by clients. Theversionrequestsarealsomulticast,sootherclientscanmark their cachedfiles as

changing.Theversionserveralsoperiodicallysendsoutatableof currentfile versionsvia multicast

to fix up any clientswhoseversiontablehasbecomeoutof sync.

1.2.2 Methods of Authentication

Usersof adistributedfile systemhavetheability to controlwhohasaccessandthekind of

operationsthatcanbeperformedon their files. Theserestrictionsarenormallyenforcedby thefile

server. However, beforea file server canallow anactionto betakenon a pieceof data,it mustfirst

discover theidentity of therequesterof theaction.Thefile server requirestheuserto authenticate

with it beforedecidingwhethertherequestis to beallowed.

In somecasesauthenticationis doneby simply retrieving the user identifier from the

request;in others,cryptographyis usedto givea strongerwayof validatingidentity.

Authenticationis not a conceptthat appliesonly to clients. Clients may also wish to

validatethat theresponseto a requestcamefrom theserver from whomthey believe it came.The

mostcommondistributedfile systemsin usetodayonly authenticateclients.

Network Based

Everydeviceconnectedto aTCP/IPnetwork hasanIP addressassociatedwith it. This IP

addressis uniqueto thenetwork. Whentwo devicescommunicatewith eachother, eachmessage

17

sentincludesthe sourceIP addressand the destinationIP address.It is convenient to authenti-

catethe sourceof a messageby checkingthe sourceIP address.Currently, IP addressesarefour

bytes,usuallywritten asfour numbersseparatedby dots.Sincenumbersarehardto work with, IP

addressesaremappedto domainnamesby DNS[36]. Thismappingallowstheuseof moredescrip-

tive alphanumericnamesfor IP devices.Many applicationsthatauthenticatemachinesbasedupon

network addressesallow theuseof domainnamesin theaccesslists.

Usually network applicationsauthenticateusers,not machines;so further information

abouttheusersendingthemessageis neededfrom theremotemachine.UNIX systemshaveauserid

associatedwith eachuser. Thisuseridis a 16-bit numberwhich is mappedto analphanumericuser

namegenerallydonevia an/etc/passwdfile or Network InformationSystem(NIS).Whenmessages

aresentto servers,theclientusuallyincludesinformationabouttheuserthatis makingtherequest.

The server is more likely to trust that the messagecontainsa valid usernameif the messageis

comingfrom a privilegedport. UNIX systemsallow only thesuperuser(root) to accessprivileged

ports(numberedbelow 1024).

In theory, the useof network addressauthenticationof machinesand privileged ports

provide a goodmeansof client andserver authentication.However, in practiceanumberof attacks

[4] cancompromisethesecurityof boththeclientandserver. Earlyon,attacksonroutingprotocols

allowed onedevice to spoof (or act like) anotherdevice by taking on the network addressof the

device andredirectingnetwork routes.Spoofingcanalsobe doneby returningfraudulentdatato

requeststo resolvedomainnamesfrom IP addresses.Also new PCoperatingsystems,suchasOS/2

andWindows, do not have a conceptof privilegedports; thusmakingit difficult to trustany user

informationsentby themachine.

18

Password Based

CIFS,describedin � 1.2.1,usespasswordbasedauthentication.Thistypeof authentication

is also commonin file transferprotocolssuchas FTP and HTTP. In its simplestform, a client

initiatesa connectionwith a server andsendsa useridentifieranda password that correspondsto

thatuseron theserver. Thepassword is asharedsecretbetweentheuserandtheclient.

Of courseif the password is sentin the clear, it is exposedto a network eavesdropper.

To avoid exposingthe password it may be exchangedvia a challenge-responsetype of protocol.

In theory, the challenge-responsecould be usedto validatethat both the client andserver are in

possessionof thekey; but, frequently, only theserver issuesthechallenge.

Even if the password is not sentover the network in clear text, it is still susceptibleto

man-in-the-middleandsessiontakeoverattacks.In theman-in-the-middleattack,theattacker relays

traffic betweenthe client andserver until they have finishedvalidatingeachother, at which point

the attacker startsmakingrequestsdirectly to the server actingasif it weretheclient. In session

takeover, the attacker takeson the network identity of the client after the client hasauthenticated

itself to theserver. Both attackstake advantageof the fact thatauthenticationis only doneat the

beginningof thesession.

Kerberos

Kerberos[40, 29] bypassesproblemswith network basedauthenticationby not trusting

thenetwork. It is anexampleof anauthenticationmethodthatusesa trustedthird-partyandsym-

metric encryption.TheKerberosprotocoladdstime stamps,a ticket grantingserver, andanother

approachto cross-realmauthenticationto theNeedhamandSchroederauthenticationprotocol[38].

Therearefour entitiesin theKerberosauthenticationprotocol: theclient, theserver, theAuthenti-

19

cationServer (AS), andtheTicketGrantingServer (TGS).

The client initiates the communicationbetweenclient andserver. A Kerberosticket is

usedby the client to authenticateitself to the server. The ticket containsa certificateissuedby

an AS or TGS. The certificateincludesa randomsessionkey, the identity of the client, and an

expirationtime. Thecertificateis encryptedwith thesecretkey of theserver with whomtheclient

will communicate.Theclient requeststicketsfrom anAS or aTGSusingasharedsecretkey.

Theauthenticationserver hasadatabaseof secretkeysusedby clients,servers,andticket

grantingservers.Whenaclientwishesto establishtheidentityof theuser, onwhosepartit is acting,

to a server, theclient requeststhe password from the userandthenrequestsa ticket from the AS

to communicatewith the server on behalfof the user. The AS respondswith a ticket encrypted

with thesecretkey of theserver andtherandomsessionkey includedin the ticket encryptedwith

thepassword of theuser. Ticketsreceivedfrom anauthenticationserver arecalledTicket Granting

Tickets(TGT) becausethey areusedto obtainotherticketsfrom a TGS.A TGT is usedto allow

singlesign-on.Theusershouldonly haveto giveherpasswordonceinsteadof everytimesheneeds

a ticket. Keepingthepassword in memoryis dangerous,sinceanattacker thatobtainsthepassword

couldimpersonatetheuseruntil thepassword is changed.By storingaTGT theattacker couldonly

usetheTGT until expired(usuallyon theorderof eighthours).

Oncethe client hasa TGT, it canbe usedto obtaintickets from a TGS to authenticate

theclient to otherservers. Whena client wishesto establishthe identity of its userto a server, the

client presentstheTGT andthe identity of theserver to theTGS.TheTGSreturnsa ticket to the

clientencryptedwith thesecretkey of theserverandtherandomsessionkey of theticket encrypted

with the randomsessionkey in theTGT. Theclient presentsthe ticket to theserver andthenthey

exchangeciphertext encryptedwith the randomsessionkey of theticket to mutuallyauthenticate

20

themselves.

Implementationsof KerberosuseDES,which cancauseproblemswhentrying to export

applicationswhich useKerberos.AlthoughDESkeys aredifficult to break,humansneedkeys that

they canremember. Keys chosenby usersareoften subjectto dictionaryattacks.In additionthe

infrastructurewhich Kerberosrequirescanbedifficult to setupandmaintain.Theexpiration time

of theticketsrequiresynchronizedclockswhich maybedifficult to achieve with network attached

storage.If clocksgetoutof synchronization,replaysandbrokenkeys canbeusedto attackservers.

Theselimitationswith othershave beendetailedby Bellovin andMerritt [3].

Public Key

In 1976,Whitfield Diffie andMartin Hellmanpublishedapaper[13] thatproposedpublic-

key cryptography. RalphMerkle hadproposedthefirst implementationof a public-key cryptosys-

tem two yearsearlier in a term paper[35]. A public-key cryptosystemconsistsof two keys: a

public-key andaprivate-key. Theprivate-key is computationallydifficult to derive from thepublic-

key. Usersof the cryptosystemdistribute their public-key keepingthe correspondingprivatekey

secret. Messagesare sentto a userby encryptingthe messagewith the user’s public-key. The

messagecanthenonly bedecryptedby theuserin possessionof private-key.

TheDiffie Hellmanalgorithmis a key exchangealgorithmbasedon public-key encryp-

tion. Thealgorithmgetsits securityfrom thedifficulty of calculatingdiscretelogarithmscompared

to the easeof doing exponentiation. In the key exchangethe two partieshave a common � and

� suchthat � is primitive with respectto � . Both � and � may be public. The first party picks a

randomnumber� , andthesecondpartya randomnumber� . Where � and � aretheprivatekeys.

Thetwo partiesthenexchange��� and ��� . Thesetwo resultsconstitutethepublickeys. Bothparties

21

now haveasharedsecret:����� , whichthey canuseasasharedsymmetricencryptionkey. Oneattack

thatDiffie Hellmanis subjectto is theman-in-the-middleattack.In man-in-the-middle,theattacker

doesa key exchangewith eachpartyasif it weretheother. Sincethereis no authenticationin the

algorithmneitherpartyknows theidentityof theother.

Authenticationcanbedonewith public-key algorithmsthroughtheuseof digital signa-

tures. In thesealgorithmsthe private key is appliedto a function alongwith the messageto be

signed.The result is thedigital signature.A recipientof a messagecanthenapply anotherfunc-

tion with the messageandthe public key andverify that the resultmatchesthe digital signature.

Therehavebeenmany digital signaturealgorithmsdevised.ThemostpopularareDigital Signature

Algorithm (DSA) andRivestShamirandAdleman(RSA).

Digital SignatureAlgorithm is partof theDigital SignatureStandard[57]. This standard

wasintroducedin 1991to providemessageauthenticationandintegrity. It doesnotprovideencryp-

tion. Thealgorithmhasthreepublicparameters:� , a primenumber, � , aprimefactorof ����� , and

��� �"! #%$ �'&)(+*-,�.0/ � , where� lessthan�1�2� and �"! #%$ �'&)(+*-,�.0/ �43 � . Theprivatekey is � whichis

anumberlessthan � . Thepublickey is � �5��� ,�.6/ � . A message,7 , canbesignedby computing

89�;:<��= ,�.0/ �"> ,?.6/ �@> and A �B:DC $ � :FEG: 74>�HI� 8 >J> ,�.0/ � . Thefunction E is a one-washhash

function(DSA requirestheuseof SecureHashAlgorithm [58]), and 8 and A constitutethesignature

of 7 . Anyonecanverify thesignatureby calculatingK � A $ � ,?.6/ � , LM� �N:FEO: 74>QPRKS> ,�.0/ � ,
LT� �U:V8 KS> ,�.0/ � , and W �X:J:<�ZY@[P\� Y^] > ,?.6/ �_> ,�.6/ � , thenverifying that W �`8 .

RSA [50] predatesDSA andis muchsimpler. RSA alsoprovidesencryptionaswell as

authentication.Thepublic key consistsof � � �T� , where� and � areprime,and a that is relatively

primeto : ���5�b> : �S�c�b> . Theprivatekey is d6afeU� ,�.0/ : ���5�b> : �g���b> . After generatingd , � and

� arediscardedandnever revealed. RSA canbe usedto sign a message,7 , by signingits hash:

22

�h�UEG: 74> . Thedigital signatureis givenby A �N�ji ,�.0/ � . Anyonecanvalidatea signatureby

computingW � Alk ,�.0/ � andverifying that W � � .
Oneproblemwith public-key cryptosystemsis key distribution. Two partiescanmutu-

ally authenticatethemselvesonly if they know thesigningkey of theotherparty. Managingkeys

becomesan intractableproblemif everyone’s public-key mustbe distributed to every otherparty

beforecommunicationtakesplace.This problemis addressedby theuseof CertificateAuthorities

(CA). Everyoneis requiredto have thepublic-key of theCA. In additioneveryonemusthave their

public-key signedby thepublic-key of theCA. This is generallydoneby gettinga message,called

a certificate,with theparty’s identity andpublic-key in it signed.Whenonepartysendsa message

to theother, it signsthemessagewith its public-key andsendsthemessagewith thesignatureand

its certificate. The otherparty canverify the owner of the public-key via the certificateand the

authenticityof themessageby usingthepublic-key containedin thecertificate.

Oneof theproblemsof certificatebasedauthenticationis revoking acertificate.A certifi-

catewouldneedto berevokedif theprivate-key waslost,for example.Certificaterevocationis dealt

with in two ways: expiration dates,andCertificateRevocationLists (CRL). Eachcertificatecon-

tainsanexpirationdatethatlimits theamountof time thatacompromisedkey canbeused.A CRL

containsa list of certificatesthatareno longervalid. This list is signedby theCA anddistributed

periodically. Becauseeachcertificatehasanexpirationtime, thelist will notgrow indefinitely.

The two major drawbacksto digital signaturesarekey sizeandspeed.Both DSA and

RSA requirekeys at least512to 1024bits in lengthto besecure.MAC andsymmetricencryption

keys in generalareconsideredstrongif they are128-bitsin length.DSA andRSAarealsoordersof

magnitudesslower thatMAC andsymmetricencryptionalgorithms.This slow down is largely be-

causeof thekey sizesinvolvedandtheoperationsperformed.Theoperationsrequiredto usepublic

23

key authenticationaresubstantialandmake it unsuitablefor usewith network attachedstorage.

MessageAuthentication Codes

MessageAuthenticationCodes(MAC) providebothmessageauthenticationandintegrity.

A MACis theresultof applyingacryptographicone-wayfunctiontoasecretkey andandamessage.

The MAC is thenappendedto the messagewhenthe messageis transmitted.Typically the same

secretkey is usedto verify andgeneratetheMAC. To verify, thereceiver simply appliesthesame

secretkey asthesenderandthemessagereceived to the function. If the result is the sameasthe

MAC includedwith the message,the receiver is assuredthat the messagearrived intact andwas

generatedby someonein possessionof thesecretkey.

EncryptionfunctionssuchasDEScanbeusedto implementone-wayfunctions.However,

plainone-way hashfunctionssuchasMD5 [49] or SecureHashAlgorithm (SHA) [58] canbeused

asa MAC function. The MAC function we us that is basedon SHA andMD5 is calledHMAC

[30, 2].

MACsareusefulsincemessageintegrity is important,andaMAC providesbothmessage

integrity andauthenticationin onecalculation.HMAC, in particular, avoidsencryptionrestrictions

thatarepresentin many countries.

Oneof theproblemswith MACsis thatbothpartiesinvolved in thecommunicationmust

bein possessionof thesamesecretkey, soa methodof key distribution mustbeemployed. A key

distributionschemebasedonatrustedthird partyandsymmetricencryptionkeys,suchasKerberos,

may be employed. A public key distribution schemecanalsobe employed usingpublic keys for

encryption,not justauthentication.

A novel schemefor authenticationand key distribution basedon HMAC calledKryp-

24

toKnight [5] couldalsobeused.In form it is muchlike Kerberos.It usesa trustedthird partyand

hasticketsthatareusedto initiate communicationbetweentwo parties.However, unlike Kerberos

KryptoKnight usesonly an elementaryform of encryption(in the form of a one-timepad) that

allowedIBM to getapproval for its usearoundtheworld without restriction.

Thesessionkey is generatedby theTrustedThird Party(TTP).Eachpartywill receive the

sessionkey encryptedwith a one-timepadthatonly the receiving partyandtheTTP canrecreate.

The one-timepadis generatedby the TTP by generatinga MAC for someof thecommunication

dataanda randomstringsentby thereceiver. TheMAC is not sentby theTTP, but is usedasthe

one-timepad. Sinceboth theTTP andthe receiver sharethesecretusedwith theMAC, both can

regeneratetheone-timepad.Thisallows thereciever to decryptthesessionkey sentby theTTP.

KryptoKnight doesnot dependon synchronizedclocks. Insteadit usesone-timerandom

numbers(nonces)to ensurethefreshnessof amessage.

The simplicity andspeedof HMAC algorithms,aswell astheir immunity from restric-

tionsonencryption,makethemperfectfor usein network attachstorage.Theauthenticationscheme

describedin chapters3 and4 makesheavy useof HMACsandmany of theconceptsusedin Kryp-

toKnight.

CFS

The CryptographicFile System(CFS)[6] isn’t actuallya file systemitself, insteadit is

a virtual file systemthatservesasanencryptionlayerbetweentheuseranda shadow file system.

All thefile dataanddirectorydatais storedencryptedon theshadow file system.Theuserprovides

keys to theCFSwhich it usesto decryptfilesanddirectoriesfrom theshadow file systemfor reads,

andencryptfiles anddirectoriesfor writes. Thereis a one-to-onemappingbetweenthefiles on the

25

shadow file systemandCFS.Theshadow file systemcanbeany localor network file systemon the

machine.

Keepingthedataencryptedon theshadow file systemallows for convenientmanagement

of backups.Thebackupadministratorsareableto copy thefiles to tape,but thedataitself is not

compromised.Theconfidentialityof thefile systemis alsomaintainedif adistributedfile systemis

usedsinceCFS,in effect,providesend-to-endencryption.

Thereis somedatathatis notencryptedby CFS.File sizes,accesstimes,andthestructure

of thedirectoryhierarchyareall keptin theclear. Thus,CFSis vulnerableto traffic analysisattacks

from real-timenetwork datacollectionandfile systemsnapshots.In addition, the authentication

andintegrity of thedatais provided, in part,by theshadow file system.Old datacanbereplayed

without detection,if the encryptionkey hasnot beenchanged. If the dataitself doesnot have

integrity checkstheciphertext maybeableto bechangedwithoutdetection.

1.3 Overview of the Thesis

In thefollowing chapterswepresentsecurenetwork attachedstoragethatis ableto lever-

agethe benefitsof extremely distributed file systems,suchas xFS, without sacrificingsecurity.

Thenext chapterpresentstheobjectmodel,referredto asSCARED(SecureArray of RemotelyEn-

cryptedDevices),usedby thenetwork attachedstoragethatwill beleveragedthroughoutthis thesis.

Theobjectmodelallows us to avoid thebottleneckof a managementserver for metadata,suchas

block location, accesscontrol, and cachecoherency, as well as, the complexity of a distributed

managementprotocol.

An authenticationprotocolfor SCAREDwill bepresented,followedby a cryptographic

analysisof the protocol. SCAREDprotectsthe datafrom unauthorizedaccess,without resorting

26

to intensive cryptographicoperations. The protocol also allows the key distribution to be done

independentof thestoragedevice, makingit possibleto integratesecuredevicesinto any existing

securityframework. Themainadvantagesovercapabilityprotocols,suchasNASD,aretheability to

shareaccesskeys, identity keys,anduserkey derivation. Identity keys areespeciallyadvantageous

becausethey reducethenumberof keysmanagedby theclientsandremovetheneedfor afile server

to createcapabilities.The cryptographicoperationaremuchfasterthanthoseusedin public key

cryptography. And theinfrastructurerequirementsaremuchsimplierthanKerberos.

Finally, a distributedfile system,Brave, built usingSCAREDdeviceswill bepresented.

Brave runsat eachclient, andprovidesfile semanticsfor thedatastoredon theSCAREDdevices.

The fundamentaladvantageof Brave over existing file servers is that it is serverless,so it is not

limited by thescalabilityof asingleserver. It hasthisadvantagewithoutsacrificingsecurity.

27

Chapter 2

The SCARED Object Model

In order to increasethe aggregatebandwidthandprocessingto network storage,it has

beenproposedto directly attachstoragedevices to the network. This is in contrastto the more

mainstreamideaof putting the storagedevicesbehindnetwork file servers. Examinationof past

literaturerevealsthattheideaof clientsdirectly accessingstorageserversis notnew.

Previous file systemssuchas Zebra[22] and Swift [32] stripedthe file systemacross

multiplenetwork storageserversthattheclientsdirectlyaccessed.Zebrahadalargeblockinterface,

calledfragments,into whichit loggedclientrequestsandSwift hadamoreobjectbasedabstraction.

TheBullet [59] file systempresentedanextremelysimpleobjectbasedabstractionto interfaceto

thenetwork storageserversthatstoredimmutableobjects.MorerecentlyPetal[31] groupsmultiple

storageserversinto whatis effectively a largeblockdeviceontowhich theclientsmapadistributed

file system,Frangipani[54]. GPFS[25] andxFS[11], theserverlessfile systemfrom Berkeley, use

theclientsin a clusterasstorageserversto form a singledistributedblock device. NASD [17] and

Trapeze[10], on theotherhand,useanobjectabstractionwith network attachedstorage.Of course

this is only a small sampleof currentandpastwork, but it doesshow a long history of network

28

attachedstorageandtheiraccessmethods.

This chapteraddressesthe advantagesof an object interfaceover a block interfacefor

network attachedstorage,andit proposesan objectmodel that is usedin our versionof network

attachedstorage. Given that most local storageinterconnects,suchas IDE andSCSI,areblock

based,it seemsnaturalto have a block interfaceto network storage.We refute this intuition by

presentingfour areasin whichanobjectinterfacehassignificantadvantagesover ablock interface:

additionalsemantics,storageallocation,caching,andauthentication.

Thenext sectiondescribessomeof theadditionalsemanticsthatcanbeaddedto anetwork

storagedevice to increasetheoverall efficiency of a distributedfile systemusingnetwork storage.

Section2.2 presentstheallocationproblemsof network attachedstorageandtheir solutionsusing

an objectmodel. The advantagesof objectaccesswith respectto cachingandauthenticationare

presentedin � 2.3and � 2.4. Thechapteris summarizedin � 2.5.

2.1 Object Abstraction

As mentionedin the introduction,usingan objectmodelon the network storageallows

additionalsemanticsat thestoragedevice. Someof thesemanticinformationis simply a resultof

theobjectinterface.For example,if ablockinterfaceis used,therelationshipbetweendiskblocksis

not easilyderived. However, in anobjectbasedmodelthenetwork storageknows to whichobjects

ablockbelongsandcanoptimizeaccordingly. Oneof themainoptimizationsof theBullet [59] file

systemis to storeall blocksof afile contiguously.

Theobjectinterfaceis evenmoreadvantageousthantheblock interfacewhenfunctional

semanticsareaddedto the objects. The file systemsreviewed in the introductionthat hadan ob-

ject interfacesupportedlittle more than the operationsthat can be doneon normal file; namely

29

read,write, andtruncate.Thesefunctionalsemanticsareenoughfor storingfiles in objects,but if

directorydatais to bestoredin objects,moreoperationsneedto beaddedto theobjectinterface.

In the following sections,we presentthe operationsfor two object types: dataobjects,

andmeta-dataobjects.Thedataobjectssupportoperationsusuallyfound in anobjectinterfaceto

supportfile objects. The meta-dataobjectshave additionalsemanticsto supportdirectories.The

commonattributesand operationsof both typesof objectswill be presentedin the next section

beforetheoperationsspecificto eachobjecttypeareintroduced.

2.1.1 BasicSemantics

Justasablock interfaceto storageusesblocknumbers,objectsareidentifiedby anobject

number, whichwill bereferredto astheobjectidentifieror OID. ClientsuseOIDsto accessobjects

just asthey would a block numberto accessblocks. An importantdifferenceis that the mapping

of an OID to physicalblocksrequiresadditionalmeta-datathat themappingof block numbersto

physicalblocksgenerallydonotneed.This is becauseobjectsarenotfixedsizeandtheblocksthey

usewill grow andshrinkover time.

AnotherdifferencebetweenblocknumbersandOIDsis thatOIDsarecreatedanddeleted.

In our objectmodel,we do not reuseobjectOIDs. Sinceour OIDs are128bits we do not needto

worry aboutexhaustingoursupply.

Our objectabstractionalsoallows thestorageto manageobjectmetadatasuchasaccess

timesandsize,aswell asallowing clients to attachtheir own metadatato an objectsuchasac-

cesslists. This allows thestorageto moreactively participatein a distributedfile system,thereby

removing muchof theloadfrom thedistributedfile servers.

Whenan object is created,the createrequestspecifieswhich type of object to create.

30

Info block
ACL

File data
Timestamps

Figure2.1: Thestructureof afile object.

In this chapterwe outline two typesof objects: dataobjectsandmetadataobjects. We will first

describethedataobjects,which is thesimplerof thetwo, followedby themetadataobject.

2.1.2 Data Object Semantics

Dataobjectssupportthesemanticsassociatedwith files in a file system.Basicallya data

objectrepresentsa logically contiguoussetof datablocks. The storagedevice is responsiblefor

mappingthesetof blocksinto actualphysicalblocks,whichmayor maynotbecontiguous.

Figure2.1, shows a representationof the structureof a file object. Commonto all ob-

jectsarean informationalblock, the info block, that is accessedin its entiretyby the clientsand

timestamps.If ACLs areusedto restrictaccessto the object,an ACL will alsobe present.The

dataobjectalsohasfile dataassociatedwith it. This is avariablelength,logically contiguoussetof

blocks.They areaccessedbasedon theiroffsetinto thedataobject.Blockscanbereadandwritten.

Writing pasttheendof objectcausestheobjectto grow. Theobjectscanalsobetruncated.Using

theseoperationsandsemantics,it is simpleto mapfile operationsontodataobjectoperations.

Later sectionswill show the advantagesof the objectabstractionin termsof cacheco-

herency, accesscontrol,andblockallocations.In additionto theseadvantages,astoragedevicecan

alsotake into accounttherelationshipbetweenblocksthatis inherentin thedataobjectabstraction.

Many studies[1, 43] have shown that themajority of file accessesaresequential.By knowing the

31

ACL

etag ltag entry data

etag ltag entry data

etag ltag entry data
...

Info block

Timestamps

Figure2.2: Thestructureof ametadataobject.

sequentialorderingof physicalblocksin the object,the storagedevice cando read-ahead.Since

accessesaredoneusinganOID andnotaphysicalblock,thediskcanreorganizephysicalblocksof

anobjectto becontiguous,andmoveoftenusedobjectsto themiddleof thestoragemediain order

to optimizeperformance.

Using thedataobjectabstraction,the loadon a file server canbegreatlyreducedby al-

lowing clientsto make dataaccessesdirectly to thestoragedevices.Many of thesameadvantages

gainedby moving file semanticsto thenetwork storagecanalsobe seenby moving directoryse-

manticsto thestoragedevices.

2.1.3 Metadata Object Semantics

Sincethe semanticsand operationsof directoriesare so different from files, we have

the metadataobject type. A file systemusesfiles to storethat dataof the file system. The files

themselvesareaccessedthroughdirectories.Thedirectoriesorganizefiles into a hierarchalname

spaceandprovide locationinformationaboutthefiles, or in otherwords,thedataaboutthedata–

themetadata.

Figure2.2,shows a representationof thestructureof a metadataobject. Thestructureis

32

similar to the dataobjectexcept that insteadof file data,a metadataobjectorganizesthe databy

entries.This is becausedirectorydatais organizedinto directoryentriesin contrastto acontiguous

setof blocksusedto storefile data.Theseentriesareusedto mapnamesto objects,justasdirectory

entriesin a localfile systemmapanameto diskblocks.Whendefiningtheabstractionfor metadata

objects,we wantedto ensurethedatastructuresenabledthestorageof metadatawithout dictating

its structure.For this reasonentriesconsistof a lookuptag,anentry tag,andvariablelengthentry

data.Thetagsareusedto accesstheentrydata,but entrydataitself hasnomeaningto thestorage.

Thereare two indicesto the directoryentries: the lookup tagsandthe entry tags. The

lookuptag is usedto optimizethe lookupoperation,which is oneof themostcommonoperations

on metadataobjects[60]. The lookup tag is set by the clientsof the storagedevice andcanbe

changedat any time. Theentry taguniquelyidentifiesanentry in a metadataobjectandcannotbe

changed.It is usedto identify theentry to beoperatedon by all themetadataoperationswith the

exceptionof lookup.

Whenan entry is createdin a metadataobject, a uniqueentry tag is generatedby the

storagedevice to identify thenew entry. This tagis notonly uniqueat thetimeof creation,but will

never be generatedagainfor that directoryobject. As in the caseof OIDs, thereis no dangerof

runningoutof entrytagssincethetagsare128-bitnumbers.

The entry tag is also usedto changethe lookup tag andentry dataof an entry and to

deleteanentry. Whenenumeratingtheentriesof ametadataobject,theentrytagis alsoused.Entry

enumerationoccurswhentheclient needsto list thecontentsof a directory. A storagedevice will

try to put asmany of theentriesinto a responseto a requestfor enumerationasit can. If all of the

entriescannotfit into a singleresponse,thenetwork storagewill indicateto theclient theentrytag

of next entryin theenumeration.

33

By usingmetadataobjectstheloadof thefile server canbefurtherreduced,if not elimi-

natedentirely. Themetadataabstractionprovidesenoughsemanticsto allow efficient accessto the

entries,aswell asallow accesscontrol lists to limit accessto specificmetadataoperations.

2.2 Block Allocation

Usingtheobjectabstractionsfrom theprevioussectionwe cansimplify themanagement

of block allocations.Whenstoringdataon network storagedevices,caremustbetakento allocate

physicalblockson the disk in a consistentmanner. The sameblocksshouldnot be allocatedto

differentfile systemobjectsor file systemdataandmetadatacould get overwritten. By usingan

objectabstractionat thestoragedevice, thephysicalblockallocationscanbemanagedlocally at the

device.

Whenusingblock orientednetwork storagein a distributedfile system,a distributemes-

sagingprotocolor acentralservermustbeusedto managetheallocationof blocksto thefile system

objects.For example,FrangipaniandGPFSusea groupmessagingprotocol,andStorageTank[7]

usesa server to manageallocation.Usinggroupmessagingprotocolsimposetopologyrestrictions

on thenetwork. Not only mustall clientsbeableto communicatewith eachother, but slow clients

will affect the fasterclients. Theserver basedapproachintroducesnetwork latenciesto allocation

requests,aswell asanotherpoint of failure. All of theseproblemsaresolvedby “centralizing” the

allocationof blocksat thestoragedevice.

As mentionedin theprevious section,objectsarelogical entitiesasopposedto physical

entities.Sincethemappingof theselogicalentitiesto physicalblocksis doneby thedeviceandnot

exposedby thestoragedevice,block allocationis donetransparentlyto theclients.Theallocations

canalsobe doneatomically, sincethe block managementis local. Finally the clientsneedonly

34

communicatewith thestoragedeviceto allocatestorage,sinceall of themanagementis donelocally

at thedevice.

2.3 CacheManagement

The cachemanagementproblemis very similar to the allocationmanagementproblem.

Clientsneedto benotifiedwhenobjectsthey havecachedchangesothey caninvalidatetheircache.

As with allocationmanagement,cachemanagementof block devicesis usuallydoneusingagroup

messageprotocolor a cachemanagementserver. Conceivably, a block orientednetwork device

could directly invalidateclient caches,but a lot of informationwould needto be maintainedper

client to beableto know whichblockstheclientshave in theircache;thismayimposealargemem-

ory requirementfor storagedevices. Theobjectabstractionhelpsthecachemanagementproblem

by providing anicelevel of granularityof cachemanagement.

It shouldbenotedthatnotall distributedfile serversinvalidateclient caches.Some,such

asNFS,useda timerbasedapproachto invalidatetheir cache.However, timerbasedapproachesdo

nothave goodconsistency guaranteesor goodperformancecharacteristics.

Thereis awholerangeof cacheconsistency modelsthatcanbeimplementedontopof the

objectabstraction.Wechoseaconsistency modelthathasasmallprocessingandmemoryoverhead

andstill providesacceptableconsistency andperformance.Strongerguarantees,suchasthoseof

DFS,couldalsobeimplementedif sufficient memorywereavailable.

Call-backsfrom thestoragedevicesareusedto invalidateclient caches.Clientsregister

interestin specificobjectson the disksandarenotified of changes.Whenever an objectchange

hasbeencommittedto thenon-volatile storage,a notificationwill besentto interestedclients.The

specificsof thenotificationdependson thetypeof object.Whenaclient removesanobjectfrom its

35

cache,it notifiesthestoragethatit no longeris interestedin theobject.

Sincedataobjectschangeoften,andusuallyinvolve multipleupdates,thenotificationfor

dataobjectupdatesdoesnothappenuntil changeshave beencommittedon thestoragedevice. This

allows clientsto sendmultiple write requeststo thestoragedevice beforeactuallycommittingthe

changesto non-volatile storage.It alsoavoidshaving to sendcacheinvalidationnoticeseachtime

awrite requestis received.Theinvalidationnotificationwill tell theclient exactlywhichpartshave

changedsoonly thosepagesin thecachecanbeinvalidated.

Changesto metadataobjectshappenmuchlessoftenthanchangesto dataobjectsin gen-

eral[60]. Sowhenachangehappens,notificationsaresentimmediatelyto interestedclients.These

notificationswill includetheentrytagsof theentriesthathave changed.

In addition to cacheinvalidation notifications,a versionnumberis kept by the storage

device for eachobjectas well as eachdirectory. The versionnumberis incrementedeachtime

the objector an entry changes.This allows, for example,clients to revalidatetheir cacheson a

reboot.It alsoallows for conditionalupdatesof objectsandentriesby allowing theclient to request

an updateonly if theversionof theentry or object is the onetheclient expects.Sincewe do not

have a locking mechanismat the network storagedevice, theseconditionalupdateshelp to avoid

consistency problemswhensimultaneousupdateshappen.

By usinganobjectabstraction,weareableto providealooseconsistency protocolsimilar

to AFSwith goodperformancecharacteristics,while avoidingtheoverheadof groupmessagingpro-

tocolsor anotherserver. Thelow overheadof theprotocolreducesthememoryandcomputational

requirementsof thestoragedevice.

36

2.4 AccessControl

Justastheobjectabstractionallowedusto take into accountthedifferentobjecttypesto

improve thecachemanagement,we canusetheobjectabstractionto control thekindsof accessto

theblockson thestoragedevice basedon their objecttypes.Accesscontrol is oneareawherethe

advantagesof the objectaccessover block accessis very clear. Currently, block orientedaccess

devicesallow only coursegranularityof accesscontrolof thenetwork storage.Usuallyclientsare

grantedreador write accessto wholepartitions.This coursegrainedaccesscontrolis not sufficient

whenusedin a file system. Accessneedsto be grantedto blocksbasedon the object to which

the blocks belongand the kinds of operationsthat can be performedon the object. The object

abstractionallows usto do exactly that.

To controlaccessto storage,thedevice mustbe ableto eitherknow what theclient can

do, or know on whosebehalf the client is acting. Capabilitiesareusedto convey to the network

storagewhat theclient cando. If thestoragedevice is ableto identify theclient, anaccesslist for

therequestedobjectis checkedto grantaccessto theobject.Thenetwork storagewehavedesigned

usesbothof theseaccessmethods.

Capabilitiesare lists of accessrights encodedin a block of bytes. The accessrights

cryptographicallyderived in sucha way that thestorageis ableto validatetheir authenticity. The

encodingallowsthedeviceto know thepermittedoperationsandthetargetsof thoseoperations.For

example,a client maypossessthecapabilitythatallows it readaccessto anobject. Whena client

presentsa storagedevice the capability, the device can validatethe capability cryptographically

and the checkthat the requestedoperationis permittedby the capability. Capabilitieshave the

advantagethatthestoragedoesnothave to know theidentityof theclient,sothedecisionto permit

theoperationis madequickly basedsolelyon thecapability.

37

Oneof thedifficultieswith usingcapabilitiesis distributing thecapabilitiesto theclients.

Becausecapabilitiesallow suchfine grainedaccessto objectson thedevice, therearea lot of them

that canbe generatedandwill needto be distributed. The otherdifficulty is revoking or “taking

back” capabilitiesthata client possesses.Sincea capabilityis just a block of bytes,theclient can

make asmany copiesasit wants,andthe administratorrevoking accesscannotbe surethe client

hasnot keptacopy of thekey.

Usuallya capabilityneedsto berevokedbecausetheclient lost accessto anobject.This

kind of revocationcanbeavoidedaltogetherby usedaccesscontrol lists (ACLs). Whenanobject

hasan accesscontrol list, a client canbe deniedaccessby removing his identifier from the list.

For this reason,it is often more convenient to useACLs and identifiers insteadof capabilities.

Identifierscanalsobe advantageousto the clientssincethey reducethe numberof keys a client

needsto manage.Thereasonfor thereductionis thatinsteadof requiringa capabilitykey for each

objecton adevice thata clientcanaccess,it only needsasinglekey to identify itself to thedevice.

Whenidentifiersareused,thestoragedevice mustmaintainanaccesscontrol list (ACL)

for eachobjecton thedevice. TheACL constitutesadditionalmetadatathat thedevice musttrack

for eachof its objects.TheobjectabstractionreadilysupportsACLssincethegranularityof access

is at theobjectlevel. Justaseachobjecton thedisk is protectedby anaccesscontrol list, thedisk

itself is alsoprotectedby an accesscontrol list. The disk’s accesscontrol list controlswho can

createobjectson thedisk andwhocanchangethedisk’s accesscontrollist.

By usingcapabilitiesandidentifierswith accesscontrollists,we canprovide accesscon-

trol for all theobjectsmanagedby thestoragedevice. Theability to do this level of accesscontrol

wouldbedifficult if ablock server wereused,whichexplainswhy currentdistributedblockservers

do notdofinegrainedaccesscontrol.

38

2.5 Summary

The SCARED object model is “as simple as possible,but not simpler”. It allows the

clientssimpleabstractionsto modelbothdataandmetadatafile systemobjects.It alsoeliminates

theneedfor client to clientdistributedmessagingprotocolsor additionalserversby centralizingthe

managementof objectallocation,access,andcachingat thestoragedevice.

Theobjectallocationsallow for efficient allocationof blocksat thedisk without clients

having to coordinatetheiractivities. Futureoptimizations,suchasblockplacementbasedonaccess

patterns,canbedoneat thedisk transparentlyto theclient.

Not only doesthe objectabstractionhelp with the allocationof blocks, it alsoenables

themto beefficiently cachedat theclient. Thecachingpolicy we have presentedallows clientsto

havecacheconsistency with very little overheadat thestoragedevice. Thesmalloverheadproperty

is a very importantonesincemany of the network attachedstoragedeviceswill have extremely

limited resourceswhencomparedto conventionalfile servers.

Not only do objectshelpwith cachingandallocation,but they alsohelpprotectaccessto

the datastoredon the network. Sinceclientscanaccessthe network storagedirectly, the storage

devices must be able to restrict accessto their data. The next chapterwill build on the object

abstractionpresentedin thischapterto provide strongaccessprotectionsto thedataon thedevice.

39

Chapter 3

Deriving Keysfor Authentication

From a securityperspective, the big differencebetweena hostattachedstoragedevice

anda network attachedstoragedevice is that the former knows exactly from which hostrequests

arecoming. Requeststo a network attachedstoragedevice canoriginatefrom any nodeon the

network. In somecases,thenetwork andhostsonthenetwork areconsideredtrusted,in whichcase

the network providesinformationaboutthe identity of the requester, but in generalnetworks are

considereduntrusted.Themostcommonnetworking protocol,TCP/IP, is vulnerableto avarietyof

attacksthatillustratetheeaseof fakingtheidentityof nodeson anIP network [4].

Thetwo mostcommonwaysof overcomingtheidentityproblemaresymmetrickey based

authenticationschemesandpublic key basedauthenticationschemes.Both of theseschemesusea

trustedthird party to give out ticketsor certificatesto clientson thenetwork to helpidentify them-

selves to otherclients. Symmetrickey basedauthenticationschemesusually requirea ticket for

eachpair of clientsthatarecommunicating;whereas,public key basedschemesrequireonly one

certificateperclient. Thebig disadvantageof publickey cryptographyis thecomputationallyinten-

sive operationsthatareinvolved. Both of theseschemesarewidely usedin the form of Kerberos

40

[40] andSecureSocket Layer(SSL)[12].

While KerberosandSSLcould beusedto fulfill thesecurityneedsof network attached

storage,therearea few requirementsthat make it necessaryto find a betterapproachto security.

First, Kerberoshasa large infrastructureassociatedwith it. This implies that choosingKerberos

would forcethenetwork storageto only bedeployed in a Kerberosenvironment.Thelarge infras-

tructurealsoincreasestheadministrative costsfor eachstoragedevice. SSLalsohasanassociated

infrastructure,albeitsimpler, thatwould alsorequirethedevice to only bedeployed in anSSLen-

vironment. In addition, the processingrequirementsmake it unfit for low endnetwork attached

storage.Finally, bothschemesrequireencryptionin thedevice which meansthey areexport con-

trolled [55].

We have solved the problemby using one authenticationschemebetweenclients and

network storage,andanotherbetweentheclientsthemselves. To overcomesomeof theproblems

mentionedabove, we have devised an authenticationschemebasedon key derivation using one

way hashes.Thesekeys have identitiesandcapabilitiesassociatedwith them. The keys canbe

exchangedamongtheclientsusingwhateverexistingprotocolsarein place,e.g. SSLandKerberos.

Thekey derivation,its associatedprotocol,andtheobjectmoduleexplainedin theprevi-

ouschapterarecollectively referredto asSCARED(SecureArray of RemotelyEncryptedDevices).

The next sectionexplains the environmentin which SCAREDis used. Section3.2 explains the

methodof key derivation. Theway capabilitiesandidentitiesareassociatedwith thederivedkeys

is explainedin � 3.3. Accessrevocationis discussedin � 3.4. A securityanalysisof thederivationis

donein � 3.5,and � 3.6summarizesthischapter.

41

Kd�-�Secret�key�shared�
with�admin

Administrator Client

Kd�-�Received�with�disk Kb�-�Received�from�Admin

Distributes�keys�to�clients
over�secure�channel.

Clients�communicate�over�untrusted
channels�using�keys�received�from�
admin.

Figure3.1: Theadministrator, thestoragedevice,andtheclientarethethreerolesin SCARED.The
key derivationschemeallows theadministratorto generateaccesskeys for theclients.

3.1 Distrib uted SCARED Envir onment

In theSCAREDenvironmenttherearethreeroles: theclient, theadministrator, andthe

storagedevice. The administratoris the owner of the storagedevice. Shecontrolsaccessto the

device. Theclientsusethestoragedevice to storetheir data. SCARED’s purposeis to enablethe

administratorto grantaccessto the network storage,andallow clientswith accessto sharetheir

accessrightswith otherclients.

Initially, theadministratoris theonly onethatcanaccessanetwork storagedevice. When

anadministratorattachesthestoragedevice to thenetwork it will shareasecretkey with thedevice,

whichallows it to administerthedevice. Theadministratorusesthiskey to deriveotherkeysfor use

by theclients.Clientsusethederivedkeys to accessthestoragedevices.

Figure3.1 illustratesconceptuallythethreerolesin theSCAREDenvironment.Initially,

theadministratorwill sharea secret,m i with thestoragedevice. Theadministratorwill use m i to

derive new keys. In this example,a new key m�n is derived andpassedvia a securechannelto a

42

client. Theclient canthenuse mon to accessthenetwork storageover anuntrustednetwork.

An importantfeatureof theSCAREDprotocolis that theadministratordoesnot needto

beonlinewith thediskwhengeneratingsecretsfor theclients.Not only doesthis relaxthenetwork

topologyrequirements,but it alsoallows theadministratorto give new secretsto theclientsusing

off-line methodssuchase-mail.

TheSCAREDcommunicationprotocolreliesonsharedkeys to authenticateaccessto the

devices. Not only mustthesekeys besecret,but they mustalsocarry informationabouttheclient

in possessionof thekey, sothat thestoragedevice cancheckaccess.Thenext sectionexplainsthe

methodof key derivation that SCAREDuses,and � 3.3 explainshow the informationusedin key

derivationis usedto hold informationaboutthekey.

3.2 Key Distrib ution Without KeyExchange

We wantedto keepthe device from having to do key managementor be involved with

distributing keys to clients,sothestoragedevice itself knowsonly aboutonekey: thediskkey. This

key is sharedby thestorageadministratorandthestoragedevice. It is thekey uponwhichall other

keys arebased,andis usedto bootstrapthesecurityof thedisk. We assumethat theadministrator

receivesthediskkey with thestoragedevice. Thismaybein theform of asmartcard,disk,or paper

thatcomeswith thedevice. Anothermethod,which is usedby NASD, is to allow theadministrator

to generateandsendthedisk key to thediskwhenit is first connectedto thenetwork.

From this initial disk key we derive new secretsusinga keyed one-way hashfunction,

EG:Fprq ms> . Thecryptographicpropertiesof this functionwill beanalyzedin � 3.5,but for now three

importantpropertiesshouldbe noted. First, if m is secret,thanthe resultof the function is also

secret.Also, it is computationallydifficult for anattacker to find m given EO:Fp4q ms> and p . Finally,

43

it is computationallydifficult to find anotherp�t and m t suchthat m tS�uEO:Fp�tVq mh> if m is not

known. Fromananalyticpointof view, weassumethat EO:Fp4q ms> is apseudo-randomfunction[19]

whereD is theargumentof thefunctionand m is thekey.

Usingthekeyedone-way hashfunction,anadministratorcanderive new keys for clients

by hashingdata,representingtheattributesof thenew key, usingthediskkey asthekey to thehash

function. If a client presentsthedatausedto generatethekey to thestoragedevice, thedevice can

regeneratethesecretsinceit is in possessionof thedisk key. Clientscanalsogeneratenew secrets

by hashingnew key datausinga key in their possession.Thesenew keys canthenberegenerated

by thedisk givenall of thedataassociatedwith thekeys from which they werederived.

In order for keys to be meaningfulto the storagedevice, they needto have somedata

associatedwith themto convey identity andcapabilityalongwith otherdataassociatedwith the

key. Thehashfunctionbindsthedataassociatedwith akey, referredto asthepublickey data,to the

key itself.

Thepublickey dataallowsthestoragedeviceto derivenotonly thekey theclient is using,

but alsoto checkthe accessthe client hasto the device. Becausethe key is derived usinga one-

way hashandthekey data,whena key is usedby a client, theclient mustalsosendthekey data

associatedwith thekey. Thebindingbetweenthekey andkey dataallows theadministratorto put

informationin thekey datathatthestoragedevice usesto grantaccessto theclient. By includinga

expirationdateaspartof thekey data,theadministratoris alsoableto limit thelifetime of thekey.

3.3 Key Types

Theauthenticationneedsof a client andstoragedevice differ, so thekeys they usealso

differ. Theclient needsto verify theresponsesreceivedfrom astoragedevice actuallycamefrom a

44

givendevice. Thedevice needsto verify thattheclienthastheauthorityto makea request.Whena

key is usedby a client to senda requestto thestoragedevice, we referto thekey asanaccesskey.

A key usedto verify theorigin of a response,is referredto asa responsekey.

Anotherway of classifyingkeys is by thetypeof publicdataassociatedwith them.If the

dataassociatedwith a key hasto do with thetypeof operationsthatcanbedoneusingthekey and

thetargetsof theoperations,thekey is referredto asa capabilitykey. If thedatahasto do with the

identity of thepossessoror groupmembership,thekey is referredto asanidentitykey.

Both capabilityandidentity keys canbe usedasaccesskeys. If theobjectshave access

lists associatedwith them, the device will useidentity keys to checkaccess.If accesslists are

not used,thedevice mustcheckaccessusingcapabilitykeys. Accesslists imply fewer keys to be

managedat theclients,but moremeta-datato bemanagedat thedevices. Capabilitykeys require

very little meta-datato bemanagedat thedevices,but morekeys to bemanagedby theclients.

Sincetheclientsareonly interestedin authenticatingthedevicethatgeneratedaresponse,

responsekeys arealwaysidentity keys. A client receivesa responsekey generatedspecificallyfor

thatclient by theadministratorto authenticateresponsesfrom aspecificdevice.

3.3.1 GeneratingCapability Keys

A capabilitykey allowsaspecificoperationto beperformedonastoragedevice. Thetype

of operationpermittedandthedetailsof thatoperationaregovernedby the datausedto generate

thekey.

Thekey givento theclient is generatedby hashingthediskkey with thekey data.There-

sultof thehashis thecapabilitykey. Thecapabilitykey andthedatacorrespondingto thecapability

key aregivento theclient. Notethatthecapabilitykey mustbekeptsecretsoasecurechannelmust

45

1, 1

1,1 = H(

2,1, 2

2 = H(2,1+ 1))

data K

data KK

datadata K

K datadata K

Bob Administrator

K

K

Brenda
Storage

Figure3.2: Theadministratorsharesakey, K, with thestoragedevicewhichis usedto generatekeys
to begivento theclients.In thisexamplethemessagesmustbeexchangedoversecurechannels.

beusedto sendthekey to theclient.

A capabilitykey maybeusedto generateanothercapabilitykey thatis a restrictedsubset

of the capabilitiesof the first key. This canbe doneby anyonein possessionof a capabilitykey,

not just the administrator, which makes it convenient for highly distributed file systems. When

distributing thenew capabilitykey, thenew key-datacorrespondingto thenew key includesthedata

usedto computethenew key andthekey-datafrom theoriginal capabilitykey.

For example,in Figure3.2,if theadministratorwishesto grantBobtheability to readand

write object232 on the storagedevice, the administratorwould generatemR� with theREAD and

WRITE attributesin d�vZw+v � alongwith object232. Bob couldthengrantBrendatheability to read

object232by only including theREAD attribute andobject232 in d�vZw+v�� . Brendacouldgenerate

anothercapabilitykey to readobject232,but couldnot generatea capabilitykey to write to object

232,sincetheWRITE attribute is notamongthecapabilitiesof thekey thatBrendapossesses.

3.3.2 Generating Identity Keys

Identity keys allow a receiver to checkthe identity of the senderby including an iden-

tification string aspart of the key data. As wasdonewith the capabilitykeys, identity keys are

46

generatedby hashingtheidentificationstringaspartof thekey dataandthediskkey. Theresulting

identity key, andthecorrespondingkey data,aregivenvia asecurechannelto theclient.

As with capabilitykeys, identitykeyscanbeusedto generateotheridentitykeys. Whena

new identity key is generatedfrom another, theentity in possessionof theoriginal key is vouching

for the identity of theentity for whomthekey is generated.This allows a non-administrative user

to createanew identity key to allow accessto objectstheusercanalreadyaccess.

For example, in Figure 3.2 if the administratorwishesto identify Bob to the storage

device, theadministratorwould includea stringidentifying Bob in d�vZw+vx� . Bob couldthencreatea

new key identifying Brendato thedisk by includingastringidentifying Brendain d�vZw+v�� . It should

bepointedout that thestoragedevice would only recognizem � asvalid if Bob wereauthorizedto

identify otherusers,or Brendais only accessingobjectsthatBob canaccess.

Whenidentitykeysareused,thestoragedevicemustmaintainadditionalmetadataat the

objectsto be ableto checkthe operationsthat a given identity is allowed to perform. This extra

metadatais not neededwhenusingcapabilitykeys, sincethekey dataspecifiestheoperationsthe

client is allowedto perform.

3.3.3 Combining Keys

Figure3.3 illustratesaninterestinguseof deriving a capabilitykey from anidentity key.

In this example,theuseris in possessionof anidentity key andwould like to print a file. Theuser

cangeneratea capabilitykey, m tnDyzn andsendit to the printer. Becauseof the capabilitiesusedto

derive m tnDy+n theprintercanonly accesstheobject �|{%} if Bob hasaccessto thatobject. Therestof

theobjectsto whichBob hasaccessremaininaccessibleto theprinter.

Whenthediskreceivesthereadrequest,it will seethat m tnDy+n is beingusedandwill receive

47

"bob",�Kbob=�H(READ,123,�Kbob)

Kbob

Bob

Kd

M=Read,123,{{"
bob"},

{R
EAD,123}},�

MACKbob(M
)

ReadReply,�d
ata

Figure3.3: Mixing identityandcapabilitykeys to enableprinteraccessto adataobject.

thekey datacorrespondingto thatkey. Becausethefirst partof thekey dataconsistsof anidentity, it

will checktheACL of �|{%} to insurethatBobcanreadtheobject.If hedoeshaveaccess,thedevice

will thencheckthat thecapabilitiespresentin thesecondpartof thekey allow thereadoperation

on �|{%} .
Mixing capabilityandidentitiesprove to bevery usefulwhenallowing proxy operations

with anotherdevicethatdoesnothaveanidentityassociatedwith it. Otherexamplesarebackupand

archive services,third partydatamining andprocessing,andthird partytransfers.A key enablerof

theseapplicationsis theability for non-administratorsto derive capabilitykeys usingkeys in their

possession.

48

3.4 Revocation

With all thesekeys beinggenerated,it is importantto beableto disableor revoke a key

if it is compromised.Obviously, the bestway to deal with the problemof key revocationis to

make thekeys secure.Smartcardsandtamperresistantchipsaresomeof thewaysof makingthe

keys “secure”.However, thesmartcardsthemselvescanbelost,whichwouldagainnecessitatethe

revocationof thekeys in thecards.

SCAREDimplementsthreewaysof revoking keys. First, keys have a limited life time.

Second,valid keys arecontrolledat thetarget.Third, all keys canberevokedfor thestoragedevice

by changingthedisk key.

Only accesskey revocationneedsto bedoneat thestoragedevice sinceresponsekeys do

not needto be revoked. Responsekeys areusedby the client to authenticateresponsesfrom the

disk, sotheclient simply stopsusinga key thathasbeenrevoked. Theresponsekey doesnot have

any accessrights associatedwith it, so an attacker would not be ableto gain accessto a storage

device usinga revoked responsekey. No client would recognizeresponsesusingthe revoked key,

soanattackagainstaclient with a revokedkey wouldalsobeuseless.

3.4.1 KeyExpiration

Whenanadministratorgivesakey to aclient, theadministratorcanincludeanexpiration

time in thekey dataof thekey. Giventhata key canonly beusedat onetarget,theexpirationtime

is relative to the timer on that target. By usingrelative time, the needfor synchronizedclocksis

removed.Theexpirationtime will limit thelifetime of thekey.

If anattacker is abletocompromiseakey, thekey wouldonly beusefuluntil theexpiration

time. If theexpirationtime is keptshort,theattacker will only have asmallwindow of opportunity

49

to exploit thekey. Theability to expireakey is alsousefulwhenusingrevocationlistsbecausethey

keepthelist from growing without bounds.Whenakey is expired,it canberemovedfrom thelist.

3.4.2 Capability KeyRevocation

To aidein capabilitykey revocation,weassociatesaltto acapabilitykey. Saltis anumber,

muchlike a nonce,thatwill never bechangedto a valueit hashadpreviously. It is not considered

secretandit is storedwith every objector meta-dataentry. Whena capabilitykey is generatedfor

anobjector entry, thesaltof theobjector entrymustbeincludedin thekey data.Whenthekey is

used,thesalt in thekey datamustmatchthesalt in theobjector entrybeingoperatedon.

Capabilitykeys for anobjector entrycanberevokedby changingthesaltat theobjector

entry. Whenthesalt is changed,all of thekeys that includedthesaltwill be invalidated,sincethe

salt in thekeys will bedifferentfrom thenew salt.

3.4.3 Identity KeyRevocation

Identity key revocationcanactuallybedonein two ways. Thefirst usesrevocationlists

for unexpiredandinvalid identities.Thesecondmethodis asimplerrevocationschemethatrequires

thestoragedevice to know a priori theidentityof clientswith which it will becommunicating.

Whenkey expirationinformationis presentin thekey data,only keys thathaven’t expired

needto berevoked. If it is assumedmostkeys thatarenot expiredarevalid, thenanefficient way

of revoking keys is to give a list of key revocationsto the storagedevice. Basedon the previous

assumption,therevocationlist shouldbeshortsotheidentitiespresentin requeststo thediskcould

becheckedagainstthelist beforeacceptingthemasvalid. Oncea revokedkey is expired,it would

be removed from therevocationlist to keepit from growing without bound. In theory, revocation

50

lists couldbeusedwith capabilitykeys. However, giventhatthenumberof capabilitykeys will be

on theorderof thenumberof objectson aSCAREDdevice, thelist couldgrow extremelylarge.

Thesecondwayof doingidentitybasedauthenticationis to includeacounterin theiden-

tity key calculation.Thecounteris thenstoredin a tableon thestoragedevice indexedby theclient

id. Whena client makesa request,the device verifiesthat the counterin the tableis lessthanor

equalto thecounterincludedin thekey dataof the request.If thecounterin the tableis lessthan

thecounterin thekey data,thecounterin thetableis setequalto thekey datacounter. To revoke a

key, a new key needsto begeneratedwith a new counter. Whenthenew key is used,thetablewill

beupdatedandtheold keys will becomeinvalid.

3.5 Security Analysis

The previous sectionshave presenteda way of deriving new secretsbasedon an initial

mastersecretsharedby thestoragedevice andtheadministrator. Thenew secretsaresharedby the

storagedevice by exchangingonly public informationaboutthesecretandnot thesecretitself. In

addition,themethodof derivationallows datato beboundto thenew derivedsecret.In thissection

we seekto prove thatonly authorizedpartiescanderive new secretsandthatthedatathatis bound

to thenew secretscannotbechangedin away thatis undetectableby thestoragedevice.

Tobegin ouranalysis,wemustfirstmoreformally definethekeyedone-wayhashfunction

introducedin � 3.2. Thecryptographicconceptsusedin this chapterandthenext aremoreformally

analyzedin [20, 33].

Pseudo-randomfunctions are the basisof our key derivation. Informally, a pseudo-

randomfunction cannotbe distinguishedfrom a randomfunction by a party, the adversary, that

doesnot possessthe secretusedto computethe function. As the secretusedin the function de-

51

creasesin size,it is morelikely that theadversaryis abledistinguishthe function from a random

function.

To definepseudo-randomfunctionsmoreformally, we musttalk in termsof probabilities

andprobabilisticpolynomial time machines.AppendixB formally definespseudo-randomfunc-

tions. An integral part of the pseudo-randomfunction is the key, which we refer to asthe secret,

thatdeterminestheoutputof apseudo-randomfunctionfor agiveninput. Thesizeof thesecret,the

securityparameter, of thefunctiondeterminestheprobabilityof successfullyappearingrandomto

theobserver. Thefollowing factfollows directly from thedefinition.

Fact 1. A pseudo-randomfunction,prf, hasthepropertythat

~_�r~�� 3����0�M� ~ �s3I�M� ~ � Prob� � : �"> � prf � : �_>����I� $ �

where theprobability spaceis over choiceof � andinternal coinflipsof
�

, andwhere
�

is a probabilisticpolynomialtimemachine, and � �U� � � is thesecurityparameter.

Using this fact, we cannow definethe derivation function that we usedto derive new

sharedsecrets.

Definition 1. WedefineEo��: ��> � prf � : ��> where m isasecretand � is publicandprf isapseudo-

randomfunction.A pseudo-randomfunctioncannotbedistinguishedfroma randomfunctionbyan

adversarynot in possessionof m in polynomialtimewith non-negligible probability.

Wedonot restricttheadversary, specifically, theadversarycanseepast �F� q�E���: ��>J� pairs

andmayobtainother �F� q�Eo��: ��>J� pairsfrom otherclientsor administratorsin possessionof m .

As a preconditionboth the disk administratorandthestoragedevice sharea secretm i .
Thediskadministratormustbeableto generatenew secretsthataresharedonly by theadministrator

and the storagedevice without using a key exchangeprotocol. We will first show that the key

52

derivationmethodallows theadministratorto createnew secretsfor clientsandbind capabilitiesto

thosesecrets.Thenwewill show thattheclientsthemselvescancreatenew secretswith capabilities

boundto them.Thereis oneclaim which follows directly from thedefinitionof Eo��: ��> which we

will now state.

Claim 1. mo� �`Eo��: ����> for agiven ��� cannotbecomputedin polynomialtimewithnon-negligible

probability by an adversary whodoesnot possessm . Further, theadversary wouldnot beableto

distinguishbetweena randommo� and mo� �`Eo��: ���%> .

Proof: While this claim follows directly from thedefinitionof thepseudo-randomfunc-

tion, it is interestingto notethefollowing contradiction.Let usassumethatgiven ��� theadversary

cancomputem�� without m with non-negligible probability. And adversarywouldbeableto distin-

guish E from a randomfunctionwith non-negligible probabilityby generatinga mo� for a ��� and

checkingif E outputsm�� . Since E is pseudo-randomtheadversarycannotgeneratem�� or even

distinguishfrom arandomm � .
It is not enoughthat the adversarycannotgeneratem � sinceit might be ableto derive

a few bits or a relation on someof the bits. For this reasonwe also neededto claim also that

the adversarycould not even distinguishthe new key from a randomkey. This meansthat even

individual bitsor relationsamoungbits cannotbediscoveredby theadversary.

Therearetwo waysto view therelationshipbetweenmo� and ��� . First,becauseof theway

mo� is derived, m�� authenticates��� to someonein possessionof m . This is how theconstruction

is usedin MACs. We have chosento view therelationshipas � � describingm � . As will beshown

in thefollowing theorems,if mo� is usedasa secretto accessa storagedevice, thederivationof m��
allows theadministratorto describem�� using ��� . We capturedescribethis relationby sayingthat

��� is associatedwith m�� .

53

Definition 2. We say ��� is associatedwith mo� if mo� cannotbeusedwithout ��� and ��� describes

thecapabilitiesof mo� .

Thetechniquesusedin � 3.3dependon ��� beingassociatedwith m�� . It is becauseof this

associationthatwecanencodeattributesdescribingm � in � � . Thefollowing theoremdescribesthe

association.

Theorem 1. If a client presentsmo� ��Eo���@: ����> to a SCAREDdevicethat has m i , thedevicewill

beableto reproducem�� andverifywith overwhelmingprobability that theadministrator associated

��� with m�� .

Proof: BecauseE is a well know function, ��� is public, andthedevice is in possession

of m i , thedevice cancalculatemo� by applying E to ��� and m i . Claim 1 saysthatonly someone

in possessionof m i couldcomputem � for � � . Sinceonly theadministratoranddisk sharem i , m �
musthave beengeneratedby theadministratorusing m i . (Note,we areassumingthatclientsand

administratorsdon’t let their secretsbecompromised.)Theadministratorencodesthecapabilities

of mo� in ��� . Sinceonly the administratorcould have generatedthe pair �Fm�� q ���^� , ��� must be

associatedwith m�� .
This theoremallows the disk administratorto createcapabilitykeys or identity keys by

includingthemin thepublicdata.Otherattributesincludingexpirationtimescanbeincludedin the

public data. Sincethe administratorcreatesthe public data,it canbe usedto convey information

aboutthekey to thedevice.

Using theorem1 we have proven that the disk administratorcanderive keys for clients

andbind capabilitiesto thosekeys. To allow a greaterdegreeof delegationof accesswe needto

prove thatclientscanderive keys for otherclientsusingkeys they possess.

54

Theorem 2. If a client is in possessionof mo� , which is a secret thatcanbederivedby theSCARED

device, and ��� , which is thepublic dataassociatedwith mo� , theclient cangenerate a new secret

mon ��E�����: ��n�> , where ��n is somepublic data, such that the SCAREDdevice can reproduce mon
andverify with overwhelmingprobability that ��n and � � are associatedwith m�n .

Proof: Becausethe device canderive m�� from ��� , the device canapply ��n and m�� to

E to derive mon . Justas in theorem1 since E is a pseudo-randomfunction, m�n musthave been

producedusing ��n and mo� , thus ��n is associatedwith mon by aclient in possessionof m�� .
Usingthis theoremany client in possessionof a key canderive keys to beusedby other

clients.By bindingnew public datacreatedby thefirst client to thekey, thefirst client canrestrict

whatthesecondclienthasaccessto. Sincethefirst client’s key alsohaspublicdataassociatedwith

it, thedevice canverify that thesecondclient cannotusethekey for somethingthat thefirst client

did not allow. The public dataof the first client’s key is alsoboundto the key generatedfor the

secondclient, so thedevice canverify that thefirst client did not delegatemoreaccessthanit had

to delegate.

UsingTheorem2 wecannow generalizeTheorem1 to applyto derivedkeys.

Theorem 3. If a client presentsm�n ��E ��� : ��n�> to a SCAREDdevicethat has m i , thedevicewill

beableto reproducem�n andverify with overwhelmingprobability that ��n wasassociatedwith mon
by a partywhoseaccessis describedby ��� .

Proof: We prove this theoremby inductionon thenumberof derivationsfrom theinitial

key received from theadministrator. Thebasecaseis a key mo� hasbeenderived from m i by the

administrator.

Induction Base: m�� received from administrator.

55

By Theorem2, theSCAREDdevice canreproducem�n andverify that ��n and ��� is asso-

ciatedwith mon . By Claim 1, m�n canonly beproducedby theparty in possessionof mo� . Theorem

1 andDefinition 2 saysthat ��� describestheaccessof theparty thatpossessesmo� . Therefore,��n
wasassociatedwith mon by apartywhoseaccessis describedby � � .

Induction Step: Assumetrue for derivationsof depth lessthan or equal to �2��� . mon
hasa depth of � .

Theproof for the inductionstepis thesameasthe inductionbaseexceptthat insteadof

usingTheorem1 we usethe inductionhypothesis.Since mo� hasa derivation of depth ����� , the

inductionhypothesisshows that ��� is associatedwith m�� .
Theorem1 shows thattheadministratorcancreatea secretfor a client that it shareswith

the storagedevice and at the sametime associatedatawith that secretfor usewith the storage

device. With Theorem3 we have generalizedTheorem1 to includekeys derivedby clients.These

two theoremsallow us to encodeaccessinformationabouttheclientsin thekeys they use,so that

thedevicemaygrantaccessbasedonthis information.Wewill usethesetheoremsmorein thenext

chapter.

3.6 Summary

As network storagebecomesmore pervasive the importanceof authenticationwill be-

comeevenmoreevident. Thecurrentpublic key andsymmetrickey methodsof providing authen-

tication informationto network serversrequirestoo muchoverheadandinfrastructurefor usewith

network attachedstorage.Thekey derivationschemepresentedin this chapteroffersa way of pro-

viding strongauthenticationinformationto network attachedstoragewithout a lot of infrastructure

or computationalintensive operations.

56

TheSCAREDprotocolusesthekey derivation schemeto convey informationaboutthe

clients,aswell asset up sharedsecretsfor useby the SCARED wire protocol. The next chap-

ter presentstheSCAREDwire protocolthatwill build on theconceptsintroducedin this chapter.

Togetherthederivationschemeandthewire protocolwill beusedasthefoundationfor anauthen-

ticatedserverlessdistributedfile system.

57

Chapter 4

An AuthenticatedMessageprotocol for

SCARED

Whenfiles areaccessedby network clients,the requestsmustbeauthenticatedandper-

missionscheckedbeforetheaccessis allowed. Thefile serversgenerallydo this kind of checking.

However, if clientsareallowedto directlyaccessthedisks,thedisksmustalsobeableto verify the

authorityof theclient’s accessto thedata.

Theauthenticationprotocolspresentedin thenext sectionsusetheobjectabstractionand

key derivation schemeof the previous chaptersto implementauthenticationprotocolsthat do not

requireencryptionandsynchronizedclocks,while allowing for delegationof authorityandshared

keys thatarenecessaryfor building aserverlessfile system.

TheSeCureAuthenticationfor RemotelyEncryptedDevices(SCARED)protocolswere

developedat IBM researchfor usein network attachedstorage.Oneof the main designrequire-

mentswas minimizing the managementoverheadof the storagedevices. File servers requirea

substantialinvestmentin managementresources.By pulling the storageout of the servers and

58

network attachingthem,the numberof managednetwork devicesincreases.If theadministrative

requirementincreasesproportionallyto thenumberof devices,thesystemwould quickly become

unmanageable.Themanagementof network attachedstorageis furthercomplicateddueto thelack

of amanagementconsolewith akeyboardanddisplay. For thesereasonswepushtheadministrative

overheadout to theclients,wheretheadministrationof thestoragedevice canbedonealongwith

thenormalconfigurationof theclient to usethenetwork storage.

Storagedevicesaredeployed in environmentswith a wide varietyof existing authentica-

tion systems,suchasKerberosandpublic key basedsystems,so we did not want to assumetoo

muchabouttheenvironmentin whichthedevicesaredeployed.Theauthenticationoperationsdone

at thestoragedevicearesimple,andallow thedevice to beobliviousto thesecurityenvironmentin

which it exists.Sincekeysusedto interactwith thestoragedevicesaregeneratedandexchangedby

usersandadministratorswithout having to communicatewith the storage,the key exchangescan

take placewithin theexistingsystems.

SCAREDaddressesauthentication.We believe theconfidentialityrequirementsof stor-

agedevicesis bestsolvedby encryptinganddecryptingat theclients.Encryptingdatais expensive

in termsof processingoverheadandintroduceslatency. By doing the encryptionanddecryption

at the client, the datais encryptedover the network andon the storagemediaitself, without any

overheadat theserver. SCAREDdoesnot precludelink level encryption.Section4.4presentshow

encryptionkeys canbenegotiatedfor usein link level encryption.

Chapter3 introducedthe threeroles in SCARED:the client, the administrator, andthe

storagedevice. Thestoragedevice sharesa key with theadministrator. Theadministratorusesthis

key to generateotherkeys for useby theclients.Clientsusethederivedkeys to accessthestorage

devices.

59

An importantfeatureof theSCAREDprotocolis that theadministratordoesnot needto

beonlinewith thediskwhengeneratingsecretsfor theclients.Not only doesthis relaxthenetwork

topologyrequirements,but it alsoallows theadministratorto give new secretsto theclientsusing

off-line methodssuchaselectronicmail.

SCAREDaddressesthreeaspectsof security:identity/capability, integrity, andfreshness.

Whenamessageis received,therecipientneedsto validatewhothemessagewassentby or at least

thatthesenderwasauthorizedto sendthemessage.Next, thereceiverneedsto validatetheintegrity

of themessage,or in otherwords,that themessagewasnot changedin transit. It would seemthat

beingableto validatethesenderwould imply thattherecipientis alsoableto validatethemessage

wasthemessagesentby thatsender, but in practicethis integrity guaranteeis notalwaysavailable.

SCAREDenablesthenetwork storageto validateboth the identity of thesenderandthemessage

thatwassentby thesender. Finally, thereceiver mustbeableto validatethatthemessagewassent

recently(or thatthemessageis fresh),or at leastvalidatethatthemessageis notareplayof anolder

message.

The next sectionwill presentthe methodusedby SCAREDto provide identity andin-

tegrity guarantees.Section4.2shows how freshnessguaranteesaredone.Therequestandresponse

protocolsaredescribedin � 4.3.A securityanalysisof theprotocolis presentedin � 4.5.Thischapter

is summarizedin section4.6.

4.1 Integrity and Identity Guarantees

Sincewe assumeclientsandstoragedevicescommunicateover untrustedchannels,both

partiesmustbeableto verify the identity of theoriginatorof a messageandthat themessagewas

not changedin transit. Both of theserequirementsaresatisfiedby usinga cryptographicconstruct

60

calleda MessageAuthenticationCode(MAC). Thespecificconstructionwe useis basedon aone-

wayhashandis referredtoasHMAC[30]. [2] cryptographicallyanalyzesthestrengthof theHMAC

construction.

A MAC function takesa string anda secretkey andoutputsa fixed lengthstring. The

MAC hassomecryptographicpropertiesthat allow eitherparty to verify that the messagesender

wasin possessionof aspecifickey andthatthemessagewasnot changedin transit.

A preconditionto usinga MAC is thatbothpartiesarein possessionof thesamekey. If

we assumetwo parties,� and � , wish to exchangea message,� , usinga key, m , a MAC, can

becomputedby bothpartiesusing � ���f �9: �¡> . TheMAC is usedby attachingthecomputed

MAC to themessagebeingsent.For exampleif � sends� to � , � wouldsendthefollowing:

� ¢£�N¤�� q

Note that m is not sentover thenetwork andtheMAC functionpreservesthesecrecy of m when

usedto calculate . When � receives � , � canrecompute sinceit is in possessionof m . If
equalstherecomputedMAC, �¥�S ��: ��> , � will know that � wassentby someonein possession

of m .

Usinga MAC with keys derived accordingto theSCAREDprotocolrequiresthatmore

information is transmittedsincethe storagedevice doesnot directly possessthe key usedby the

client. For example,if aclient, � , is in possessionof akey, mo¦ , andthedataassociatedwith it, ��¦ ,
� couldsendamessageto thestorage,� usingthefollowing protocol:

��¢§�O¤�� q ��¦ q

Thestoragedevice canderive m�¦ since m�¦ �;EG: ��¦ q m�¨Q> , where m2¨ is thedisk key, sincethe

device is in possessionof m2¨ and ��¦ wassentby the client. Oncethe device hasderived mo¦ ,

61

 canbe recomputedto checkthe MAC. Because��¦ is boundto mo¦ , the storagedevice knows

informationaboutthe client in possessionof m�¦ asexplainedin chapter3, so the storagedevice

cancheckthecapabilityof theclient to take therequestedaction.

4.2 FreshnessGuarantees

Integrity and identity guaranteesarenot sufficient for an authenticationprotocol,since

oldermessagescanbereplayedwithout detection.Replayedmessageswill have valid MACssince

they weresentby theclient andhave not beenmodified. Freshnessguaranteesallow detectionof

messagereplaysby ensuringthemessageshave beensentin therecentpast,or werein responseto

apendingrequest.

The first phaseof the SCAREDprotocol is to establisha freshnessguarantee.After a

freshnessguaranteehasbeenestablished,theclientsandstorageusethemessageprotocolto send

responsesandreceive replies. Whenpresentingtheprotocols,it is assumedthat theclientsarein

possessionof thekeys neededfor accessingthestorage,andthat thestorageis only in possession

of thediskkey. Theaccesskey usedby theclient is denotedby mo� andthekey datacorresponding

to m � is denotedby � � . Theresponsekey is denotedby m?© andits key data��© .
To guaranteethe freshnessof messages,SCARED usestimers, nonces,and counters.

Whenusingtimers,all partiesinvolved in a transactionhave timers that arereasonablysynchro-

nized. Noncesandcountersdo not requireany kind of clocks,only that the nonceandcounters

never take on thesamevalue.Countersarealsorequiredto bemonotonicallyincreasing.

The clientsalwaysusenoncesto checkthe freshnessof a responsesincea nonceis a

freshnessguaranteewith the fewest requirements.When illustrating the protocol exchange,the

client noncewill bedenotedusing ª�� .

62

Storagedevicesrequireclientsto includea timer or counterin the requestto checkthe

freshnessof therequest.Sincetheclient mustbeableto calculatethefreshnessguaranteethat the

device is using,noncescannotbeused.If thecommunicationwith thedevice is sessionoriented,

thedevice cankey a countersynchronizedwith thedevice basedon thenumberof messagessent.

Otherwise,a timer mustbeused.

The storagecounteror timer will be denotedusing ª�« . In the following messageex-

changesª �f¬ ab�^L�abAbw and ª �f¬ alAJ��l��A^a correspondto constantsusedin thecommunicationpro-

tocol to indicatetherequestandresponseof a freshnessguarantee.Beforemakingrequeststo the

storage,theclient mustrequestthestoragecounteror nonceusingthefollowing protocol:

 �¢®�O¤ � ��¯ ª �f¬ a|�^L�alA|w q ª � q � ©^° q MAC�²±�: ��>
��¢® �¤�� ��¯ ª �f¬ abA��T^��A^a q ª � q ª�« ° q MAC�²±^: �¡>

Whenthestoragereceivestherequestin thefirst message,thestorageis ableto generatem © using

��© as shown in � 3.2. If MAC� ±�: ��> as calculatedby the storagedevice matchesMAC� ±^: �¡>
includedin therequest,thedevice knows that � wasgeneratedby a client in possessionof m © , so

it will generatearesponseusing m © . ª � is copiedunchangedby thestoragedeviceinto theresponse.

Whenthe client receivesthe secondmessage,it is ableto checkthe MAC sinceit is in

possessionof m © , andthusknow thatit camefrom thestorage.Thepresenceof ª � in theresponse

allows the client to know that the messageis in responseto the first message.After the message

exchangetheclient is in possessionof ª « , theserver freshnessguarantee,which it usesto establish

thefreshnessof futurecommunicationswith theserver.

63

4.2.1 Verifying FreshnessusingCounters

If thecommunicationwith thestorageis sessionoriented,countersareconvenientto use

for checkingthe freshnessof requestssincethey do not requireclocks. At the beginning of the

sessiontheclientwill obtain ª�« , theinitial sessioncounter. Eachtime theclient transmitsapacket,

it includesthecounterin therequestandincrementsthecounterfor thenext request.

Thedevice is ableto verify the freshnessof the requestby ensuringthat the requestin-

cludesa counterthat is onegreaterthanthepreviousrequestfrom theclient. This impliesthat the

storagedevice mustbeableto maintaina counterfor eachactive session.The initial countersent

to theclientmustbegeneratedin suchaway thatacounterusedin asessionwith thedevice by the

client wasnever usedin a requestby any client of thedevice in othersessions.In our implementa-

tion thecounteris 128-bits,sotheSCAREDdevice generatesa 64-bit nonce,basedon thecurrent

time, for thehigh64-bitsof thecounter, andinitializesthelower 64-bitsto zero.

4.2.2 Verifying FreshnessusingTimers

If thecommunicationwith thestoragedevice is notsessionoriented,timersareusedto al-

low thedevice to checkfreshnesswithouthaving to keepfreshnessinformationaboutall theclients.

To usetimers,all clientsintendingto communicatewith a storagedevice needto synchronizetheir

timerswith the timer of thestoragedevice. This is donein thefirst phaseof communicationwith

thediskby settingª²« to thecurrentdevice timer.

Theclientsynchronizesits timerwith thestoragedeviceby saving thedifferencebetween

its timer andthe storagedevice’s timer. Sincethe client maintainsa deltabetweenits timer and

the device’s, the storagedevicesneednot, andin mostcaseswill not, have synchronizedtimers.

Theclient includesthedevice’s currenttimer in all requeststo thestoragedevice. This enablesthe

64

devicesto checkthatthemessageis freshin thesensethatit wassentrecently.

Becauseof network latencies,clockdrift, andthelatency of responsesto requests,check-

ing timestampsalonedoesnotprovideastrictguaranteeof freshness.In particularanattackercould

replaytransactionsin asmalltimewindow. To thwart therecent-pastreplayattack,a list of message

authenticationcodesusedin the recent-pastarekept andchecked with eachmessage.If thecode

existsin thelist, themessageis considereda replay.

Tocompensatefor clockdrift, thestoragedeviceincludesits currenttimerin all responses.

The clientscanthenresynchronizetheir timerseachtime a responseis received from thestorage

device.

4.3 The Request/ResponseProtocol

Oncetheclient is in possessionof theserver freshnessguarantee,genericrequestscanbe

madeto the server. This sectionpresentsthe genericrequestandresponseprotocolsusedby the

clientsto communicatewith thenetwork attachedstoragedevices.

4.3.1 The RequestProtocol

Theclient requesthastheform:

 ¥¢®�O¤6� ��¯^³ ��a 8 v�w'´'l� q d�vZw+v q ��� q � © q ª � q ª�« ° q

MAC����µ_� ± : �¡>

Theoperationrequestedandthedatathatgoeswith theoperationarefollowedby thekey datafor

the accessandresponsekeys that areusedin this communicationwith the network storage.The

device is able to regeneratethe m�� and m © using ��� and � © , so that it canverify the MAC. ª²«

65

is includedto ensurethat themessageis fresh,usingeitherthecounteror timer basedtechniques

explainedin theprevioussection.

If theMAC is valid, thedevice knows thatthemessagearrivedintactandthatit wassent

by aclient in possessionof m � , but it still mustverify thattheclient is ableto requesttheoperation.

The two approachesusedby SCARED to checkaccessare identity basedandcapability based.

In identity basedsystems,the disk needsto be ableto checkaccessbasedon the identity of the

requester. In capabilitybasedsystems,the disk is only interestedin the ability of a requesterto

performa transaction.

Capabilitiesaregrantedby theadministratoror a client in possessionof a capabilityby

generatingan accesskey, m � , with the capabilitiescontainedin the key data, � � asexplainedin

� 3.3.1. Therefore,theclient in possessionof m�� is alsoin possessionof the capabilitieslisted in

��� . Since mo� maybederived from otheraccesskeys, thedisk mustensurethateachtime thekey

is derived from anotherkey, the capabilitiesin thekey dataof thederived key area subsetof the

capabilitiesof theoriginal key. To checkif theclient is ableto carryout the requestedoperation,

thedevice checksthattheoperationrequestedis listedasoneof thecapabilities.

If identitiesareused,� � will containtheidentity of therequester. In orderfor thedisk to

checktheability of a requesterto performanoperation,thediskmustmaintainaccesslistsoneach

object.Whena requestarrives,theidentity in ��� is checkedagainsttheaccesslist of therequested

objectto seeif theclient canrequesttheoperation.

4.3.2 ResponseProtocol

Theauthenticationneedsof theclient arequite a bit simplerthantheneedsof thedisk,

sinceit only needsto verify the responsewassentby thedisk in reply to theclient’s request.The

66

device responsehastheform:

�¶¢® ¡¤Z� ��¯ ¬ alAJ�T^��A^a q d�vZw+v q ª � q ª²« ° q MAC� ± : ��>

m © is usedin theMAC sinceit is thesecretsharedby theclientanddisk. Thecapabilityandidentity

keys may be sharedby differentclients,but the responsekey, m © will only be held by oneof the

clients.After validatingtheMAC, theclientwill know thattheresponsearrivedintactfrom thedisk.

Thepresenceof ª � allows theclient to checkthattheresponseis for therequestthatalsoincluded

ª � . ª�« is includedto compensatefor clock drifts if timersareusedby thedisk.

The key dataare not included in the responsesincethe requestermust alreadybe in

possessionof m © .

4.3.3 AsynchronousResponses

With oneexception,all messagessentby a SCAREDdevice arein responseto a request

thatoriginatedattheclient. Theexceptionis thecacheupdatecallback.Thisasynchronousmessage

is sentwhenanotherclient hascommittedchangesto anobjectcachedon theclient. Themessage

arrivesin theform of a response,asdescribedabove. Sincethereis no requestthatcorrespondsto

thecallback,we areleft with theproblemof determininga client freshnessguaranteeto put in the

response.

Sincetheguaranteemustbebasedon somethingchosenby theclient, theonly thing we

canuseis a freshnessguaranteeof a previous request.As it turnsout, we cansimply reusethe

freshnessguaranteeof the last responseto theclient. It is easyfor theclient to rememberthe last

guaranteethat it received in a response.To avoid replays,theclient mustkeepa historyof MACs

usedwith the last guarantee.As long as eachMAC is different, the client can be surethat the

asynchronousresponseis nota replay.

67

4.4 Encryption

A key featureof a securedistributedfile systemis the confidentialityof file data. Cur-

rently, of thecommercialdistributedfile systems,only DFS[15] hastheoptionof encryptingdata

exchangebetweenclient andserver.

A strongerlevel of dataprivacy canbeobtainedif thedatais encryptedby theclient and

sentto the server to be storedin its encryptedform. This kind of client sideencryptionis done

by theCryptographicFile System[6] (CFS),which encryptsdatabeforebeingstoredin a shadow

file systemand decryptsthe dataas it is read. Using CFS with SCARED would keepthe data

confidentialandavoid theperformanceimpactof encryptingat thestoragedevices.

CFShasa key distribution problem,sincetheencryptionkeys mustberememberedand

distributedby users.To overcomethisproblem,weproposestoringtheencryptionkeys in themeta-

dataencryptedwith groupanduserencryptionkeys. Thisallowskeys to beobtainedat themoment

they areneeded.

Oneof theproblemswith storingtheencryptionkeys in themeta-datais that if groupor

userencryptionkeys arechanged,all themetadataneedsto beupdatedby re-encryptingthekeys

usingthenew groupor userkeys.

If thestoragedevicesaretrustedto keepdataconfidential,theproblemswith encryption

key distribution canbe avoidedby encryptinganddecryptingat the storagedevices. To encrypt

thedatabetweentheclientsandstoragedevices,they mustshareanencryptionkey. They already

sharea responsekey, soanencryptionkey canbegeneratedby rehashingthe responsekey with a

publicconstant;but requiringthestoragedeviceto dolink level encryptionincreasestheprocessing

requirementsof thedevice.

Whetheror not thenetwork storageis involvedin ensuringtheconfidentialityof thedata,

68

theSCAREDprotocolsatisfiestheauthenticationrequirementsof network storage.

4.5 Analysis of MessageProtocol

Thepreviousanalysisshows thataderivedkey receivedby aclient is asecretsharedwith

the storagedevice. In addition,the analysisalsoshows that the key dataassociatedwith a key is

boundto thekey in sucha way thatwhena client usesthekey, thedevice canverify theattributes

associatedwith thekey.

In this sectionwe will analyzethetwo messageexchangesusedby SCARED:thefresh-

nessguaranteeexchange,andthegenericmessageexchange.

Therearetwo keys usedin theprotocols:theaccesskey, m � , andtheresponsekey, mo© .
Theaccesskey is usedto make requestsandhasaccessrightsof someform boundto it. Theaccess

key maybesharedby otherclientswho maynot necessarilytrusteachother. Theresponsekey is

usedto verify theorigin of a responseandis sharedwith, andreceivedfrom, trustedadministrators

andclients.

To begin our analysiswe must formally defineMACs. In our definition we definethe

propertiesof theMAC functionthatweuse.Otherpropertiesaredefinedin [46].

Definition 3. We define �¥�S � : �"> as a pseudo-randomfunctionwith the specificproperty that

givena message, � , anadversarywithout m wouldhavea low probabilityof findingin polynomial

timea such that � ���f �9: �¡> . Thispropertyholdsfor an adversary that is ableto seepast

messages,notequalto � , andtheresultingMAC.

To easethewordingof theproofs,we will usethetermcomputationallyfeasibleto refer

to anoperationthatcanbecomputedin polynomialtime andwith morethannegligible probability

69

of success.We alsousethe phrasewith overwhelmingprobability to refer to a probability over

the choiceof keys usedin the MAC function that is negligibly lessthan1 for every probabilistic

polynomialtimealgorithm.

In the following proofs the adversaryis allowed to watch, modify, and insert into the

messagesbetweenthe client andthe storagedevice. The adversaryis alsoallowed to be another

valid client or storagedevice. It shouldbe notedthat an adversarythat is anotherstoragedevice

would possessanddifferent m i thantarget realstoragedevice. An adversarythat is anotherclient

maypossessa mo� thatis sharedby therealclient if it sharesacapabilityor anidentitywith thereal

client (suchasbelongingto thesamegroup),but anadministratorgivesa uniquem © to eachclient,

so theadversaryandtherealclient cannotsharem?© . Theadministratoris trustedancannotbean

adversary.

4.5.1 Exchangingthe FreshnessGuarantee

Thefirst exchangebetweenaclientandservermustbearequestfor theserver’s freshness

guarantee,denotedª�« . The client includesa nonce, ª � generatedfor the request.The requestis

MACedusingakey, mo© , andincludesthepublicdata,��© , associatedwith m?© . Theserver responds

with ª�« andincludesª � MACedwith m © asfollows:

 ¥¢®�O¤ � ��¯ ª �f¬ a|�^L�alA|w q ª �·° q � © q MAC� ± : ��> (4.1)

�s¢® ¡¤¸� t ��¯ ª �f¬ abA��T^��A^a q ª�� q ª « ° q MAC� ±^: � t > (4.2)

Theorem 4. It is notcomputationallyfeasiblefor anadversaryto forgea responsefromthestorage

devicesuch that theclientwill acceptan ª²« thathasnotbeensentby thestorage device.

70

Proof: Thesameargumentby which we show that mo� is a derivedfrom ��� in Theorem

1 alsoshows that m © is derived from � © . Becauseresponsekeys arenot sharedamongclients, m ©
is asharedsecretbetweenthestoragedeviceandtheclient. (Note,theadministratoralsosharesthe

secret,but sheis implicitly trusted.)Sincethe client will checkthat ª�� is in the response,an ad-

versarywouldhave to senda responseof theform � t t ��¯ ª �f¬ alAJ�T^��A^a q ª � q ª t« ° q ���f �²±%: � t¹t > ,
whereª t« is aguaranteegeneratedby theadversary.

Sinceª � anoncegeneratedby theclient,thestoragedevicehasnevergeneratedamessage

with aprefix ª �f¬ alAJ�T^��A^a q ª � andMACedit with m © . So,theadversarywouldhave to beableto

compute���f � ± : � t¹t > whichviolatesthedefinitionof theMAC.

After the ª �S¬ abA��T^��Ala messageis received, the client andstoragedevice will have a

sharedª²« on which to build our genericmessageprotocol. Up to this point we have not taken

into accountwhetherthe freshnessguaranteeis a timer or counter. This will be consideredwhen

analyzingthegenericmessageprotocolin thenext section.

4.5.2 The GenericMessageProtocol

After theinitial freshnessguaranteeexchange,wecansendthenormalSCAREDrequests

to thestoragedeviceusingthegenericmessageprotocol.Genericmessagerequeststake thefollow-

ing form:

 ¥¢®�I¤Z� ��¯^³ ��a 8 v�w'´'l� q d�vZw+v q ª � q ª²« ° q ��� q � ©
MAC����µ_� ±^: �¡>

��� is thepublicdataassociatedwith theaccesskey mo� and � © is thepublicdataassociatedwith the

responsekey m © .

71

Theorem 5. Onreceiptof thegenericrequest,thedevicecanverifywith overwhelmingprobability

that themessage camefroma client in possessionof mo� and m © .

Proof: Thedevice canreproducem�� and m © from the ��� and � © includedin therequest

becauseit is in possessionof m i from which both keys are derived, so it can validatethat the

MAC is correct. m�� and m © aresecretsbecausethey arefrom m i usingapseudo-randomfunction.

Since mo� and m © aresecret,it wouldnotbecomputationallyfeasiblefor anadversarythatis not in

possessionof mo� and m © to computetheMAC. Therefore,themessagemusthave beensentby a

client in possessionof m � and m?© .

Theorem 6. Onreceiptof thegenericrequest,thedevicecanverifywith overwhelmingprobability

that themessage camefroma client whoseaccessis encodedin ��� .

Proof: By Theorem5 thedevicecanverify theclientpossessesmo� . A client in possession

of m�� hastheaccessencodedin ��� by Theorem1 or Theorem3, dependingonthederivationdepth

of mo� .
Of coursethedevicemustalsoprotectagainstreplaysof requests.An adversarycaneasily

replaypastmessageswhichwill have valid MACs.

Theorem 7. With overwhelmingprobabilityanadversarycannotreplaya requestwithoutdetection

by thestorage device.

Proof: Eachtime a requestis issuedto a device, the client must include a freshness

guarantee.This freshnessguaranteetakestheform of a counteror a timer. To prove this theorem,

we will examineeachcase.

Case1: Freshnessguaranteeusinga counter.

Device countershave the following properties: they areglobally unique,and they are

72

incrementedby the client with eachrequest. Globally uniquemeansthat the device will issue

freshnessguaranteesto clientsin sucha way thatno client will ever receive or generatea number

thatanotherclient receivedor generated.In our implementation,theinitial freshnessexchange,ª²« ,
will be initialized to a 128-bit counterwith a 64-bit nonce,basedon the time, asthe high 64-bits

andzeroasthelow 64-bits.

Eachtime thedevice receivesa request,it comparesthecounter, , with thecounter, t ,
that it received in thepreviousrequest.If »º� t H � , it is consideredinvalid. Sinceno previous

messagewill have thevalue , no previousmessageexiststo bereplayed.

Case2: Freshnessguaranteeusinga timer.

Whenusingatimer, thedeviceinitially givesoutthevalueof its currenttimerto theclient.

The client synchronizesits own timer with thedevice, anduseswhat it believesto be the current

device timerasthefreshnessguaranteein eachrequest.

Becauseof network latency andclock drift, thedevice allows thefreshnessguaranteeto

be within a few secondsof its timer beforeconsideringthe messageinvalid. If the replayoccurs

outsideof this window, the device will detectit whenthe freshnessguaranteeof the messageis

comparedwith the freshnessguaranteeof thedevice. If the replayoccurswithin thewindow, the

device is ableto detectthereplayby maintainingalist of all theMACsusedwithin thewindow.

Whentheclient receivesa response,it mustbeableto verify that the responsewasto a

requestthat it issuedandfrom thedevice to which it wasissued.We will first prove theorigin of

themessageandthenprove that theclient is ableto verify that it camein responseto its request.

Thegeneralform of theresponseis asfollows:

�¶¢® ¡¤Z� ��¯ ¬ alAJ�T^��A^a q d�vZw+v q ª � q ª²« ° q MAC�²±%: ��>

73

Theorem 8. Whena client receivesa response, it is able to verify with overwhelmingprobability

that theresponsecamefromthedeviceto which it senta request.

Proof: m © is received from theadministratorby theclient over thetrustedchannel.The

device is ableto producem © from � © sinceit possessesm i , but anadversarycannot.

Whenproving Theorem9, it is interestingto notethatit holdseventhoughthenonceneed

notberandom.Sinceanadversarycanpredictthevalueof ª � , weneedto usem © in therequest,as

well astheresponse.

Theorem 9. Whena client receivesa response, it is able to verify with overwhelmingprobability

that it is in responseto a particular request.

Proof: ª � is a noncethat is generatedby a client whenit accessesthedisk. This implies

that no two requestsgeneratedby a client will have the same ª � . Theorem8 allows the client

to verify that the responsecamefrom the storagedevice. An adversarycannotcausethe storage

device to generatea messageMACedwith mo© sincethe device will only MAC a responseusing

m?© if the requesthada valid triple : � � q ��© q ms> , where m � m �½¼ m?© and � is MACedwith m .

Soby Theorem5, a valid responsecanonly containan ª � from a previousrequestfrom theclient.

By Theorem7, a replayof a previous requestwill bedetectedby thestoragedevice. A replayby

the adversaryof previous responsesfrom the device would have an old ª � that the client would

reject.

It shouldbenotedthatthereis asecurityholein thecacheupdatecall-back.Althoughwe

candetectreplaysof thecacheupdatecall-back,we cannot detectif anadversaryblocksa cache

updatemessage.Beingableto blockacacheupdatemessageis muchmorepowerful thatbeingable

to replayanupdatemessage.A replayresultsin a degradationof file systemperformancesinceit

will causeunnecessaryreads,but will notcauseinvalid datato beused.Whenanupdateis blocked,

74

staleandinvalid datawill notbeinvalidatedfrom theclient cache,sotheadversarycouldcausethe

client to useold data. This is an artifact of thecachingprotocol. A strongerconsistency protocol

suchasthatemployedby DFSwouldavoid thisproblem,but would introduceothers,suchasdenial

of servicefrom clientsrefusingto releasecachetokens.

4.6 Summary

In this sectionwe have presenteda protocolto provide integrity, identity, andfreshness

guaranteesto both the client and storagedevice. The protocol will work in both sessionbased

transportsuchasTCPor annonsessionbasedtransportsuchasUDP. Eventhoughwe usetimers

in thenonsessionbasedcase,Wedo not requiregloballysynchronizedclocks.

Becauseof the derivation schemepresentedin theprevious chapter, not only is key ex-

changesbetweenthe storagedevicesavoided,we do not requirethat the administratorbe ableto

communicatewith thestoragedevice. Thisallows greaterfreedomin thenetwork topology.

Becauseof the few requirementswe make of the network, clients,andstoragedevice,

andthe securityguaranteeswe provide, SCAREDmakesa goodfoundationfor a distributedfile

system.In thenext chapterwe introducea file systemthatbuilds on theSCAREDobjectmodelto

managefilesanddirectoriesandthekey derivationandsecurityprotocolto authenticateaccessesto

thestoragedevice. Becauseof theservicesprovidedby SCAREDwe areableto avoid theneedfor

afile server.

75

Chapter 5

Using SCARED in a Distrib uted File

System

UsingSCAREDwith network attachedstorage,we have thebuilding blocksfor aserver-

lessdistributedfile system,calledBrave. Thefile systemis serverlessin thesensethat it doesnot

needa file server to managethemetadata. Instead,the responsibilityfor managingthemetadata

is sharedbetweenthe clientsandthestoragedevices. The integrity of thefile systemitself is the

responsibilityof theclients.

It is useful to contrastBrave with other distributed file systemsand network attached

storage.On oneextremeareNFSandCIFSwhichmanagesthecompletefile systemon oneserver.

On the otherextremeareSAN storagedeviceswhich arebasicallySCSIdevicesconnectedto a

network. A slightly lessextremeexampleof a distributed file systemis AFS. AFS hasvolume

serverswhich managea subtreeof the distributedfile system.On the otherhand,a lessextreme

exampleof network attachedstorageis theNASD projectwhich usesa file server to managemeta

datafor thefile system,andallows thestoragedevicesto storefile datain objectsmanagedby the

76

Lookup
tag Version

Location
typeFilename

OID

Symlink

Entry
tag

Hostname

Figure5.1: Brave directoryentrylayout.

devices.

Brave falls exactly betweentheseextremes. Like NASD, Brave storesthe file datain

objectsmanagedby the SCARED storagedevices, but it also storesthe file systemmetadata.

However, it doesnotstoreawholedirectorysubtreelike AFSdoes.TheSCAREDdevicesmanage

thefile systemdataandmetadatain objectsthey manage,but theclientsimplementBrave in their

VFS layerto actuallyassociatetheobjectsstoredon theSCAREDdevicesinto afile system.

In the following section,we will explain the semanticsof the Brave file systemandits

methodof operation.To provide a basisfor theseexplanations,thenext sectionexplainshow the

dataandmetadatais organizedin thefile system.Section5.2will explain thesemanticsof thefile

system,and � 5.3will explain theway thevariousfile systemoperationsarecarriedout in Brave.

5.1 BraveFile SystemLayout

Sincewearebuilding afile systemontopof SCAREDdevices,thereis anaturalmapping

of file systemstructuresto SCARED structures:eachdirectory is storedin a metadataobject

and eachfile is storedin a dataobject. In our initial implementationwe maintain this one-to-

onemapping.In the future,files anddirectoriesmaybestripedacrossdataandmetadataobjects

to improve performanceand scaling. Mirroring may also be usedto improve performanceand

reliability. Evenwith stripingandmirroring, thebasicconceptspresentedhereremainunchanged.

To introduceBrave,wemustfirst introducethemountpointor rootof thefile system.The

77

rootof theBravefile systemis adirectory. In Brave thereis notanythingspecialabouttheroot,any

metadataobjectcanbeusedastherootof thefile system.Figure5.1shows thedatastructuresthat

arestoredin theentrydata.In additionto thesestructures,thehashof thefile nameis storedin the

lookuptag.

By storingthehashof thefile namein thelookuptag,theSCAREDdisk is ableto return

the desiredentry on a lookup without sendingall the directoryentriesto the client. This saves

network bandwidth,aswell asoptimizingoneof themostcommondirectoryoperations.Usinga

hashof thefile nameinsteadof thefile nameitself, thestoragedevice is ableto searchon a fixed

sizenumberandpreservesthesecrecy of thefile name,if needed.

Becausethe lookup tag is the hashof the file nameandnot the file nameitself, the file

nameof thedirectoryentryneedsto bestoredin themetadataentry. A SCAREDdevice doesnot

usethefile namesincelookupsaredoneonalookuptag,sothefile nameis storedin theentrydata,

which is storedwithout beinginterpretedby thestoragedevice.

Themainpurposeof a directoryentryis to provide a mappingbetweena nameanda file

or directory. For this reason,a pointerto thelocationof thefile or directoryfollows thefile name.

Thepointercomesin two forms: asymboliclink or anobjectidentifierandhostname(hardlink).

A hardlink is composedof thehostnameof theSCAREDdevice that storestheobject

containingthefile or directoryandtheobjectidentifier(OID) of thatobject.A hardlink preserves

referentialintegrity. Thismeansthatanobjectreferencedby ahardlink will notbedeleteduntil the

link is deleted.

Unlike a hardlink, a symboliclink doesnot retainreferentialintegrity. Instead,thesym-

bolic link is a stringthatis passedbackto theoperatingsystemto beresolved. Thestringneednot

referenceafile thatis partof theBravefile systemor evenafile thatexists.

78

Info block

Info block
Entry data
Entry data

Entry data
Entry data

Info block

File data

Figure5.2: An exampledirectorystructurestoredin ametadataobject.

Referentialintegrity is preserved by usingthe info block that is part of every SCARED

object. Theinfo block is storeduninterpretedby theSCAREDdevice. TheBrave clientsstorethe

entry tag, theOID, andthehostnameof themetadataentry that referencestheobject. Using the

entrydataandtheinfo block,clientshave pointersbetweentheentryandobjectandvice-versa.

Figure5.2 shows an exampleof a directorycontaininga file anddirectory. The file is

storedon the sameSCARED device as the directory, but the directory is storedon a different

device. It is importantto notethat theSCAREDdevice storesthe info block, the entry data,and

thefile data,but doesnotusethecontents.Thefigureshows boththeforwardlinks from theentries

to theobjectsthey reference,andthebackward links from theobjectsto theentriesthat reference

them.

79

5.2 BraveSemantics

As mentionedin the introduction,Brave extendslocal file systemsemanticsto network

storage.However, whenotherclientsalsohave accessto thenetwork storage,thereareadditional

semanticsthatarise.Network andclient failureconditionsalsoaddsemanticsnot presentin local

file systems.We presentBrave semanticsby first presentingthe file semanticsin � 5.2.1andthen

presentingthedirectorysemanticsin � 5.2.2.

5.2.1 File Semantics

In a local file system,a file is presentedasa logically contiguousstreamof bytes.Files

cangrow andshrink,andbytescanbereadandwritten at randomlocations.Filesmustbeopened

beforethey areaccessedandclosedafteraccessis complete.

To improve write performanceof files, UNIX usesa write back cachefor files. File

changescanbein thecachefor up to oneminutebeforeit is actuallywrittento non-volatile storage.

An applicationcanalsoimmediatelycommitchangesto non-volatile storageusingthesyncsystem

call. Eventhoughchangesmaynot becommittedto non-volatile storage,the local cachemanager

of a local file systemreflectsthechangesto otherapplicationson thelocal machine.

In a distributedfile systemthereis a cachemanagerin eachnetwork client, so any un-

committedchangescanbereflectedlocally at theclient wherethechangeoccurred,but not in the

otherclients. This problemis further complicatedby the fact that we do not requireclientsto be

ableto communicatewith eachother. For thesereasonswe write backchangesto the SCARED

deviceswhenthefile is closed,in additionto thenormalcommitprocessusingtheoneminutetimer

andthesyncsystemcall. This is similar to thecachingpolicy in AFS [24]; however, like JetFile

[21] we only dispatchnotificationsto otherclientswhenwrite backoccursinsteadof waiting for

80

thenotificationsto be received. Note, it is possibleto usea cachingpolicy that is closerto UNIX

semanticsby usingthecachingpolicy of Sprite[39], but wechoseto implementourcachingpolicy

becauseof its simplicity andrecoverability. This decisionmaybereevaluatedlater.

5.2.2 Dir ectory Semantics

Directorieshave morestructurethanfiles. They storea setof entriesindexed by a file

name.Directoryoperationsarealwayswritten throughto non-volatile storage.We maintainthese

semanticsin Brave. Justaswith files,directorycacheupdatesaredispatchedto clientsafterchanges

arecommittedanddo notwait for clientsto acknowledgetheupdates.

UNIX allows multiple hard links to a file. Hard links allow a file to be referencedby

multiple directoryentries.UNIX limits hardlinks to files andonly allows links to files on thesame

file systemasthedirectorycontainingthelink. Brave only allows a singlehardlink to a file. This

simplifiesthefile systemconsistency checks.

To allow links to files on otherfile systemsandto directories,UNIX alsohassymbolic

links. While hard links preserve referentialintegrity, symbolic links may not point to a file or

directorythatactuallyexistsandwill notbeupdatedif theobjectthey pointto is deletedor renamed.

Brave supportssymboliclinks.

5.3 BraveOperations

The SCAREDdeviceshandlethe managementof the storageof the metadataanddata

objects,somostof thefile systemoperationsmapdirectly to SCAREDobjectoperations.However,

to implementall of the semanticsthe client mustmanagethe relationshipbetweenthe directory

entriesandtheobjectsto which they point. Thefile operationscorrespondexactly to theSCARED

81

dataobjectoperations,sothey will notbereviewedhere.Instead,we will review thestepsrequired

to implementthe directoryoperations.The storagedevices treat metadataanddatadifferently,

which allows theSCAREDdevicesto storethefile systemmetadatawithout actuallymaintaining

it or usingit. Theclientsarein chargeof keepingthemetadataconsistentandupdated.

Brave maintainsconsistency of its directories. Sincethereis no centralfile server and

no inter-disk and inter-client communication,specialtechniquesareusedto maintainreferential

integrity of the metadataacrossstoragedevices. Thesetechniquesarebacklinks, orderedentry

creationanddeletion,andtest-and-setupdates.

Backlinks areusedto checktheconsistency of thefilessystem.In theinfo blockof every

object is the locationandid objectandthe creationtag of the metadatathat refersto the object.

Consistency canbecheckedby insuringthatobjectsreferencedby metadatahavealink backto that

metadata,andmetadataindexedby thebacklink of anobjectactuallycontainsa referenceto that

object.Theformercaseindicatestheentryis invalid andshouldbedeleted,andthelatter indicates

theobjectshouldbedeleted.

5.3.1 Creation

Entry creationis a particularly troublesomeoperationin termsof referentialintegrity,

sincemetadatastoredin the directory entriesmust be sychronizedwith the info blocks of the

objectsto which theentriesrefer. To copewith client anddisk crashesthatmayoccurin theentry

creationprocess,we have a well definedorderof operations.First, the metadatais addedto the

metadataobject.Next, theobjectis createdwith abacklink to themetadata.Finally, themetadata

is updatedwith thelookuptag,thename,andthelocationof thenew object.

If theclientor disk fail afterthefirst step,themetadatawill becleanedupwhentheback

82

link checkis donesincethemetadatadoesnot referto any object.Failureon thesecondstepwill

resultin theobjectbeingcleanedup,sincethemetadatadoesnot referencethenew object.

To avoid having to lock metadataobjectsin orderto updatethe metadata,testandset

updatesareused. If part of the metadatais to be updatedby a client, the old metadatamustbe

read,updated,andrewritten. Sinceanotherclient couldupdatethemetadatain themiddleof the

first client’s update,thefirst client shouldbeableto detectthis condition.This is doneby allowing

aclient to sendaversiontagof theold metadata.If thedisk receivesanupdatefor metadataanda

versiontagthatdoesnot correspondto thecurrentmetadata,theupdatewill berejected.

5.3.2 Deletion

Deletioncouldbeamuchsimpleroperationthancreationwereit notfor directorydeletion

semantics.Normalfile systemsrequirea directoryto beemptybeforeit canbedeleted.Because

of the distributednatureof Brave, we mustsynchronizethe deletionof directoryentrieswith the

object itself to ensurethat a directorythat is emptyat the startof the deletionoperation,remains

emptyfor thedurationof theoperation.We mustalsoensurethataclient failuredoesnot leave the

file systemin aninconsistentstate.

For thesereasons,we usea threephasedelete.Thefirst phasesetsa bit in theentrydata

to indicatethatadeletionoperationis in progressfor thatentry. Thenext phaseactuallydeletesthe

object.Finally, theentryis deleted.

By putting the pendingdeletebit in the entry data,we avoid having to addsemantics

to SCAREDwhile still insuringconsistency in the presenceof client failures. Whenever a client

encountersa directoryentry with a pendingbit set, it knows that it mustcheckthat the object is

presentbeforeusingtheentry. So,if aclientdoingadeletionfailsafterthefirstphaseof thedeletion,

83

theotherclientswill have to doanextra transactionto checktheexistenceof thereferencedobject,

but thefile systemwill still beconsistent.If theclient fails afterthesecondphase,theotherclients

will detecttheinvalid entrysincetheobjectwill no longerbepresentandwill ignoretheentry.

5.3.3 File SystemChecks

Althoughthefile systemremainsconsistentin thefaceof client failures,performanceis

adverselyaffectedif many invalid or emptyentriesarepresent.For this reasonit is importantto

periodicallyrunfile systemchecks.

Thestoragedevice only storesthefile systemdata. It is oblivious to the relationshipof

theobjectsthatit stores.Sothefile systemchecksmustbedoneaclient. In practiceit will probably

betheadministratorthatchecksanindividual storagedevice,however anyonewith theappropriate

authorizationmaydo thecheck.

A checkis doneby simplysweepingthemetadataobjectsonadiskandcheckingthatits

directoryentriesreferencereferenceexisting objects.A secondsweepof all objectson thedisk is

neededto insurethateachobjecthasa backwardpointerin it’s info block thatpointsto a directory

entry with a forward pointer to the object. Any entriesor objectsthat fail the sweeparesimply

deleted.

Fortunately, no global locks needto be obtainedbeforedoing this kind of check,so the

checkscanbe donewhile the disk is servingdatato other clients. The metadataobject that is

beingfixeddoesnotevenneedto belockedsinceonly emptyor deletedentrieswill beremovedand

thereforenot affect theotherclients. This meansthat thedisksdo not needto be takenoff line or

clientsdeniedaccessto any partof thefile systemwhile thecheckis running.

84

5.4 Conclusion

By building onSCARED,Bravecanbeimplementedcompletelyat theclients,while pro-

viding consistentfile systemsemanticsto theusers.By takingadvantageof theobjectmanagement

facilitiesof SCARED,Brave avoidsrequiringclientsto beableto communicatewith eachother.

Thestructureof thefile systemallows directoriesandfiles to resideon any network disk,

thusenablinga high degreeof scalingbothin termsof storagesize,aswell asnetwork bandwidth.

At thesametime, referentialintegrity of thedirectoriesis preservedusingorderedupdatesandthe

objectsthemselvesassynchronizationpoints.

Becauseof thedistributednatureof Brave, it would beunfortunateif global lockshadto

beobtainedor accessdeniedto specificobjectsin orderto cleanup performancedegradesleft by

failed clients. Becauseof the semanticsof SCARED,no locking at all needsto be donefor file

systemchecks. SinceSCAREDmanagesthe entriesthemselves, a file systemcheckrunning in

thebackgroundcaneasilydeleteemptyentriesandentriespendingdeletion,without affecting the

accessesof otherclients.

Brave illustratesthe power of objectsemanticsat the network storage.Not only do we

gain thescalabilitybenefitsof a serverlessfile system,but we alsohave thestrongaccesscontrol

andauthenticationprovidedby SCARED.

85

Chapter 6

Implementing SCARED and Brave

To validateour file systemdesignandnetwork attachedstoragemodelwe implemented

SCAREDandBrave in bothJavaandC.TheC versionof theclientwasdonein theform of aLinux

Virtual File System(VFS). In thecourseof our implementation,we not only validatedour model,

but alsowereableto getanideaasto thecomplexity introducedinto theclientsandstoragedevices.

Brave usesTCP [45] becauseof its goodperformancein a variety of environments. It

allowsusto operatewell in LAN environments,aswell asWAN environments,suchastheInternet.

EventhoughTCPis a statefulprotocol,we cangracefullyrecover from TCPdisconnectsby trans-

parentlyreinitiatingthesessionswhenneeded.Thisallows usto avoid theoverheadof maintaining

sessionsthatarenot in use,andto recover from network storagereboots.

Although the necessaryconceptsto implementSCAREDandBrave have alreadybeen

introduced,it is necessaryto review someof themin termsof currentUNIX file systemsto fully

understandthe complexities introducedby SCAREDandBrave, andhow they integratewith the

VFS.

86

6.1 UNI X file systems

The Berkeley FastFile system(FFS) is the quintessentialUNIX file system[34] which

improved uponthe original UNIX file system[48]. Most local file systemsresembleit, andeven

thosethatdiffer greatlyin their design,endup adaptingto its structure.This adaptionis mandated

by theVFS interfacein UNIX.

Thetwo basicconceptsthatFFSis built on arei-nodesanddirectories.Thei-nodeman-

agesthestorageallocationandthedirectoriesmanagethenamespace.

6.1.1 I-nodes

Thebasicstoragemanagementunit in FFSis thei-node.Thei-nodecontainsownership

andaccessinformation, in addition to the locationsof the disk blocksthat storethe i-nodedata.

Becausethei-nodeis storedonasinglediskblock, thereis a limit to thenumberof datablocksthat

canbereferencedin thei-nodeitself. FFSmakesuseof indirectblocksto allow files largerthanthe

numberof blocksthancanbereferencedby thei-nodeitself.

An indirectblock storesa list of thelocationsof datablocksmakingup a file. They can

alsopoint to otherindirectblocksfor even larger files. Oneof the improvementsof FFSover the

traditionalUNIX file systemwasto increasethesizeof thedisk blocks,which reducedthenumber

of indirectblocksneededwhile improving disk I/O by actingon largerchunksof storage.They also

madeaneffort to allocateblocksin thesamefile closetogether.

6.1.2 Dir ectories

Directoriesarestoredin i-nodeandplay a specialrole in thefile system.Files arealso

storedin i-nodes,however, thedatacontainedin thefile datablocksarereadandwritten usingthe

87

file system,but thedataitself is notactuallyusedby thefile system.

Thedatablocksfor directoriesareusedby thefile system.As mentionedearlier, directo-

riesmanagethenamespaceof thefile system.In FFS,thedirectoriesstorethenamesof thefiles

andsubdirectoriesof theirchildrenalongwith ani-nodenumberin thedatablocks.Whena lookup

on a nameis done,thedirectorymapsthenameto ani-nodenumber. Thefile systemkeepsi-node

tablesto mapi-nodenumbersto theappropriatedisk blocksthatstorethei-node.

Applicationscannotreadandwrite the raw datablocks of a directory i-node. Instead

directorieshave operationsto add,change,remove, lookup, and readdirectoryentries. The file

systemtranslatesthedirectoryoperationsinto operationson thedatablocks.

6.1.3 Virtual File Systems

WhenNFSwasimplementedon UNIX, it becameapparentthat therewasa needfor an

interfacethatwould allow file systemswriters to exposetheir file systemto thekernel. To define

the interface,it wasnecessaryto chooseanabstractfile systemmodelthat thefile systemswould

implement.

The interfaceis calledtheVFS [28] andtheabstractmodelis patternedafterFFSusing

i-nodesanddirectories.Specifically, eachfile or directoryis representedby an i-node. The types

of operationson thei-nodedependon whethera file or directoryis represented.For files, thebasic

operationsareread,write, andtrunc.Thebasicoperationsfor directoriesarelookup,create,delete,

rename,andreaddirectory.

88

Brave

Page CacheVFS

Braved

Networking

Shared C Library

Dynamic
binding

Kernel
Pipe

Callback Callback

Kernel networking routines

Figure6.1: Brave integrationinto theLinux VFS.

6.2 Integrating Braveand SCARED into the VFS

Having introducedtheVFS, it is usefulto revisit briefly thenew objectparadigmintro-

ducedby SCARED.Normally, adiskexposesablock interface,sothefile systemmustmanagethe

mappingof blocksto i-nodes.This meansthat thefile systemmustkeeptrackof freelists,aswell

asmaintaintheblock locationsin thei-nodesandindirectblocks.

By usingobjectbasednetwork storage,we move themanagementof thedisk blocksand

i-nodesto thestoragedevice. Brave mapstheVFS i-nodeoperationsdirectly to operationson the

SCAREDobjects.This offloadstheblock allocationandmanagementtasksfrom theclient to the

network storage.

As mentionedin thepreviouschapter, someof themetadataoperationsrequireadditional

work by theclient file systemto preserve theintegrity of Brave. In our implementationthis turned

89

out to besurprisinglyeasy. Thebiggestcomplicationwascreatingani-nodefrom directoryentries.

In FFSa directoryentrysimply mappeda nameto ani-nodenumber. A SCAREDdirec-

tory entrymapsa nameto a location.Thereis no conceptof ani-nodenumberin eitherSCARED

or Brave. Whena lookup is doneandan i-nodemustbe created,Brave extractsthe information

on thelocationof theobjectfrom thedirectoryentryandinstantiatesani-nodeplacingthelocation

informationin a privatefile systemspecificmemberof the i-nodestructure.Thei-nodenumberis

ignoredby Brave.

Whenthei-nodeis used,Bravewill needto establishaconnectionto thenetwork storage.

Sincethehostnameof thenetwork storageis storedin thedirectoryentry, Bravewill needto resolve

the hostnameto an IP addressin orderto make the network connection.Brave usesa userlevel

daemon,braved, to resolve thenamesandcreatetheconnection.This is becauserulesandfunctions

to do hostnameresolutionarein thesharedC library, which is not loadedby thekernel.

Figure6.1shows links betweenBrave,theotherpartsof thekernel,andbraved. Whenthe

Brave moduleis insertedinto thekernel,it createsanew processandexecutesthebravedprogram.

Beforestartingexecutionit makes the standardinput andoutputstreamsof the new processend

pointsof pipes.TheBrave kernelmoduleandbravedthencommunicateover thesepipe.

Whenaconnectionneedsto beestablished,theBravekernelmodulewill sendamessage

throughthepipeto bravedcontainingthehostnameof thedevice to which theconnectionis to be

made.ThebravedprogramusesthePosixgethostbynameroutineto resolve theIP addressandthen

opena TCPconnectionto thathost. Either theopensocket numberor a ¾g¿ , if unsuccessful,will

be returnedto the kernel throughthe pipe. If the connectionsucceeds,the Brave kernelmodules

will find thesocket indexedby thesocket descriptorin thefile descriptortablefor bravedanduse

that socket to communicatewith thenetwork storage.A similar processis usedto closetheTCP

90

connection,aswell as,obtainthekeys to makeSCAREDrequests.

The final piecethat links Brave into the Linux kernel is the pagecache. Brave takes

advantageof theLinux pagecachesothatit only needsto handlereadsof pagesthatarenotalready

in thecacheandwrites. Whenever oneof theseconditionsoccur, a callbackis issuedby thepage

cacheon the Brave i-node. The readandwrite functionsare thendirectly mappedto SCARED

requeststo fulfill therequest.

6.2.1 Allocation Management

Braveallowsfilesanddirectoriesto resideondifferentSCAREDdevicesthantheirparent

directories.Sowhenanew file or directoryis created,theVFSneedsto decidewhichdevice to use.

If thesamedevice is alwaysused,theperformanceof Brave will be thatof a singledevice. Other

considerationsalsoneedto be taken into account,suchaswherethenew file or directoryis to be

used,network locality of accesses,thefreecapacityof availabledevices,theestimatedloadthatthe

new file or directorywill generate,andthecurrentloadof availabledevices.

We choseto usea simpleallocationpolicy thatwould allow behavior thatcouldbewell

understoodby usersof Brave andallow thevariablesmentionedabove to betaken into account.It

shouldbe notedthat many of the above variablesarereally only known by the userat allocation

time.

Our allocationpolicy is very simple,unlessindicatedotherwiseby the user, a new file

or directory is createdon the samedevice asits parent. A usermay indicatethat the new object

shouldbecreatedon a differentdevice usinga specialsyntax.Whenthenew file namecontainsa

substringof theform “@ À hostÁ ”, theVFS allocatesthenew objecton thedevice thatcorresponds

to thegivenhostname.Thespecialsubstringis removedbeforeit is insertedinto thedirectory. For

91

examplethefile “foo@ À host.domainÁ ” will becreatedasa file with thename“foo” on thedevice

thatcorrespondsto “host.domain”.

6.3 Implementing SCARED

The SCAREDobjectmodelwasdesignedto be assimpleaspossible,so we weresur-

prisedat thecomplexity of implementingtheSCAREDserver. SCAREDdoesnotneedto maintain

a file systemhierarchyor worry aboutreferentialintegrity, so it is simplerthana normallocal file

system.However, it mustmaintaintheinformationthat is normallycontainedin an i-nodeaswell

asthelist of freeblockson thedisk. Thus,theobjectbaseddisk is significantlymorecomplex than

adisk thatsimply needsto mapblock requeststo sectionsof adisk.

Our implementationof theSCAREDdevice bearsstrongresemblanceto FFS.An object

identity is mappedto a disk block that containsthe info block andACL for theobject,aswell as

pointersto thedatablocksor indirectblocksif needed.Thedevice mustalsomaintaina list of free

blocksjust like FFS.To provide fastrecovery from power failuresandreboots,we journalthemeta

datarequest.

Eventhoughthecodeis not muchsimplerthana local file system,SCAREDdoeshave

a shortercodepathwhendoing lookupsof objects.This is becausetheobjectidentifier is usedto

directly index thedisk block thatcontainstheobject’s datablock locations.This allows usto skip

the directorysearchingand the iterative lookupsthat areneededin the local file system. (These

lookupstake placein Brave at theclient.)

It shouldbenotedthatwe couldhave adopteda muchsimplerimplementationsimilar to

theBullet file system,thatwould have resultedin muchsmallercode;but would have left uswith

a defragmentationproblemaswell as requirementthat the clientsbe ableto cacheentirefiles at

92

locally. Fortunately, the objectabstractionallows for changingthe implementationof thestorage

managementandallocation.

6.4 Summary

In summary, wewereableto doaproofof conceptof BraveandSCAREDby implement-

ing a Brave file systemat the client anda SCAREDserver in both Java andC. The semanticsof

SCAREDmappedwell into theoperationsthatBrave require.

WhenimplementingtheLinux VFS, theonly difficulty wastheresolutionof hostnames

by the kernel. The useof host namesinsteadof IP addressesallows a level of indirection that

easesthe movementof network storageto different subnets.Becausenameresolutionis highly

configurable,we useauserspacedaemonto do theresolutionsusingtheC sharedlibrary.

TheC implementationof SCAREDillustratedthecomplexity thatis introducedby mov-

ing from a block interfaceto anobjectmodel. Eventhoughwe have adopteda very simpleobject

model,we have to do thesamemanagementof freespaceandstoragemanagementthata local file

systemmustdo. Theflat namespaceandobjectidentifiersdoesreducetheamountof codein the

implementationandthecodepathat runtimewhendoingmetadataoperationssuchaslookups.

93

Chapter 7

Conclusions

As clientsbecomesmoreconnected,it becomesimperative to have a scalableandsecure

methodof accessingnetwork attachedstorage.Wehave reviewedthecurrentmethodsof providing

distributedfile servicesandthecommonwaysof securingthem. We have identifiedtheproblems

with thesecurrentmethodsandproposedwaysto overcometheir deficiencies.

7.1 Contrib utions

By building upontheSCAREDobjectmodelandtheSCAREDauthenticationprotocol,

we have beenableto implementan authenticatedserverlessfile system,Brave. BecauseBrave is

implementedat the client anddoesnot requirea centralfile server, we remove the limitations to

scalabilitythatfile serversbring.

7.1.1 Comparison to RelatedWork

The mostpopulardistributedfile systems,NFS andCIFS, suffer from security, aswell

asscalability, problems.Both systemsareinappropriatefor usageon untrustednetworks because

94

of thesimplicity of compromisingtheir securitysystemsandbothrequirethefile systemto reside

entirelyon asingleserver.

ClusteringandNASD aretwo waysof increasingthescalabilityof thesingleserver. A

clusterthathasaclusterfile system,suchastheserverlessfile system,canexportanNFSfile system

from eachnodeof thecluster;whichallowstheclusterto handlemany moreclientsandexportmore

storagethanasingleserver, but it is still limited by thesizeof thecluster.

In similar ways,NASD allows theserver to grow by offloadingthefile dataserver func-

tion to thestoragedevices. It hasbettersecuritypropertiesthatallow confidentialityandintegrity

guaranteesbetweenclientsandstoragedevices,but it still relieson thefile server to serve themeta

dataandgeneratecapabilitykeys, which limits the scalabilityof the file system. NASD alsore-

quiresmodificationof theclientssothattheclientsareableto directfile datarequeststo thestorage

devicesinsteadof theserver. NASD doesnotuseidentity keys which increasesthenumberof keys

managedat theclient andobtainedfrom thefile server. Otheradvantagesof SCAREDover NASD

aresharedaccesskeys andmoreefficient freshnessguaranteeswhenusingsessionbasedprotocols.

In many ways, the Brave file systemis closestto AFS. It hasthe unified namespace

of AFS which allows it to scaleby distributing the file systemover multiple servers. Brave has

threemain advantagesover AFS. First, SCAREDdevicesdo not mandatea specificsecurityin-

frastructure,insteadthey canbeincorporatedinto theexistingsecurityinfrastructure.Second,AFS

managesfile systemtreesin termsof volumes.Eachvolumeserver maintainsthefile systemhier-

archyfor thatvolume. In effect, AFS transparentlymountsthesefile systemsto achieve a unified

namespace.SCAREDmanagesonly individual files anddirectories.This meansthatSCARED’s

allocationis muchfiner grainedthanAFS. It alsoallows files to be stripedacrossmultiple disks,

somethingthat cannotbedonewith AFS. Finally, theclientsmanagewhereobjectsareallocated.

95

Normally, AFS requiresan administratorto managea volumegroup,but Brave allows clients to

put files anddirectorieson any storagedevice they choose.This not only givestheclientsgreater

freedom,but alsoeliminatesamanagementtaskfor administrators.

7.1.2 Specificadvantagesof SCARED and Brave

Brave andSCAREDhave their own uniqueadvantages.Brave offersscalabilityin terms

of theamountof storage,aswell asthenumberof clients.Brave’sstrongauthenticationis theresult

of thestrongauthenticationof SCARED.Theobjectmodelusedby SCAREDis powerful enough

to eliminatetheneedfor a file server andstill provide authenticatedaccessto storage.Finally, the

SCAREDprotocolallows for simplified key managementwhile makingfew requirementson the

network topology.

The client directedallocationprovides two kinds of scalability. First, as the needfor

storageincreases,new SCAREDdevicescanbeaddedto thenetwork. Theadditionof thedevice is

independentof any centralauthority, sotheaggregationof storagecangrow withoutbound.Second,

theallocationdecisionsaremadeat the client. This meansscalingis not limited by management

overhead.Eachclient managesits own storage,soasthenumberof clientsandstoragegrows, so

doesthefile system.

BraveandSCAREDalsooffer strongauthenticationguarantees,allowing usto havemore

securitythanany of theavailablefile systems.Theability to controlaccessto thedisk is dependent

upontheSCAREDobjectmodel.Themodelgivesacontrolpoint for doingaccesscontrol.Without

anobjectmodel,accessis doneonablockbasis.Usually, asin thecaseof FibreChannel,thediskis

alsodividedinto partitions.Without theobjectmodel,accesscontrolcanonly beconvenientlydone

on a disk or partitionbasis.Theonly otherpoint of accesscontrol is thedisk block. Unfortunately,

96

thedisk blocksaresmallenoughthat to do accesscontrolon individual blockswould requirea lot

of work to convey to thediskwhichgroupof blocksaclient is allowedto access.

With theobjectmodel,thedisk blocksaregroupedinto objectswhich serve asan ideal

point of accesscontrol. We areableto attachaccesscontrol lists to theobjectsto allow easierkey

managementat boththeclientsandstoragedevices.

The ability to provide the correctgranularityof accesscontrol is reasonenoughto use

the SCAREDobjectmodel,but thereareeven moreadvantagesin termsof objectallocationand

management.By allowing thedisk to managetheallocationof disk blocks,many of thesynchro-

nizationissuesassociatedwith managingallocationscanbe“centrally” atthediskitself. In addition,

thedisk canalsobeusedasa synchronizationpoint for metadataoperations,suchasfile creation

anddeletion.

Along with theobjectmodel,wehavepresentedandanalyzedamethodof off-line shared

key derivation and an authenticatednetwork protocol. The key derivation avoids the computa-

tion overheadof public key operationsandthe infrastructurerequirementsof othersymmetrickey

authenticationmethods.Theauthenticationprotocolprovidesidentity, integrity, andfreshnessguar-

antees,without requiringtheuseof heavy cryptographicoperationsor encryption.

We have validatedboth SCARED and Brave by implementinga SCARED server and

Brave client in theform of a Linux VFS.Theimplementationvalidatedthesimplicity of theBrave

client whenusedwith SCARED.It also illustratedthe increasedcomplexity of a storagedevice,

whenit needsto do morethanjustdirectmappingof requeststo diskblocks.

In conclusion,SCAREDis a flexible objectmodelandsecurityprotocolwhich canbe

usedin a varietyof environments.Whenusedwith Brave, thecombinationresultsin a file system

that works well in both a LAN andWAN environment,makingit perfectfor useon the Internet

97

becauseof its scalingandsecurityproperties.Thesmall footprint of Brave allows it to beusedin a

smalldevice,aswell asa largeserver.

7.2 Futur e Work

The purposeof the currentwork wasto establisha basisfor building a distributed file

systembasedon authenticatednetwork attachedstorage.The currentdesignis robust enoughto

allow for additionalsemanticsto be addedto theSCAREDmodelandnew schemesfor mapping

file systemfiles anddirectoriesonto the SCAREDdevices. Specificallysemanticsmay be added

to enabledifferent forms of caching. Locking is alsomissingfrom Brave andmay be supported

by extendingSCARED.Allocation and load balancingcould aid in the performancescalingof

Brave. Stripingandmirror couldimprove theperformanceof largefilesandprovideredundancy for

performanceandreliability reasons.

7.2.1 Caching

Wehaveasimplenotionof cachecoherency thatallowsustohaveacachingmodelsimilar

to AFS without a lot of overheadat thestoragedevice. In our currentimplementationof theBrave

client, we do only in-memorycaches.Dependingon thenetwork bandwidthandlatency between

theclient andstoragedevice it maybemoreefficient to have a largeon-diskcacheat theclient,as

is usedwith AFS.

It is alsopossibleto simplify thestoragedeviceby usinga timebasedcachingpolicy like

NFS.Thiswouldeliminatetheneedto trackobjectstheclientsareinterestedin, aswell astheneed

to sendcachecall backs. On the otherextreme,a morestrict cachecoherency protocol, like the

oneusedin DFS,canbeused.This would requiremorestateat thestoragedevice,aswell asmore

98

communicationsbetweentheclientsandstoragedevice.

Becauseof thedistributednatureof Brave, we believe thebestpolicy would beto allow

clientsandstoragedevicesto negotiatethecachingpolicy onaperdevice,or evenperobject,basis.

Thiswouldallow for awidevarietyof clientsandstoragedevices.

7.2.2 Locking

Wehave not addressedlocking. Distributedfile systemsvary on their supportof locking.

NFShasa locking protocolthat is usedwith thefile sharingprotocol.CIFShasstrict locking built

into it. AFSdoesnot supportfile locking.

It is our belief that locking is bestdoneoutsidethe file system. However, locking se-

manticscanbeaddedto objectsor to directoryentries.Sincefiles maybestripedacrossmultiple

objects,doing the locking on the directoryentry would allow for centralizedmanagementof the

locksfor thesetof objectsthatconstitutethefile or directory.

Anotherapproachto locking would be to simply usea separatelocking service. Infor-

mationon which serviceto usecouldbeencodedinto thedirectoryentry. While this would allow

locking to bedonewithout having to addsemanticsto SCARED,work would needto be doneto

insurethat the authorizationsfor the locking serviceandSCAREDobjectsthat correspondto the

locksaresynchronized.

7.2.3 Striping and Mirr oring

Ourcurrentimplementationof Bravehasaone-to-onemappingbetweenafile or directory

andaSCAREDobject.Greaterperformancecanbeobtainedby stripingfilesanddirectoriesacross

SCAREDobjects.Replicatingfiles anddirectoriesover multiple objectsallows client accesseven

99

in thepresenceof network anddevice failures.Replicationalsoincreasesthenumberof clientsthat

areableto accessagivenfile or directory.

Theformatof thedirectoryentrydataallows for the locationof a file or subdirectoryto

bein a varietyof formats.Currently, theonly typesof locationsaresymboliclinks andpointersto

singleobject.Morecomplicatedlocations,suchasa list of objectsthefile or directoryis replicated

across,or a list of objectsanda stridesizefor striping, canbe storedin the entry datato allow a

varietyof stripingandmirroringschemes.

Thedifficulty managinga file or directorythat is storedon multiple objectsis thecoor-

dinationof the updates.Whenonly oneobject is involved, the device managingthe objectalso

servesasa point of synchronization.Whenmorethanoneobjectis involved,we no longerhave a

synchronizationpoint.

If lockingsemanticswereavailableto theBrave clients,they wouldbeableto coordinate

updatesto the objects;althoughrecovery from client failureswould still needto be addressed.It

wouldbenicerto beableto providetheability to dothenecessarycoordinationwithout full locking

semantics.

7.2.4 Allocation and Load Balancing

Currently, weallow theuserscompletecontroloverwherenew objectsareallocatedwhen

a file or directoryis created.This typeof allocationis usefulbecausea usermayhave a betteridea

of how, where,andwhenafile will beusedthanafile server couldpossiblyhave. As filesareused,

a file server, if therewereone,would beableto detectaccesspatternsandhot spots,move files to

localizeclient access,andspreadhot spotsacrossdevices.

Theproblemwith this kind of load balancingandallocationmanagementis the lack of

100

a centralserver. Potentially, a device could gatherlocal information on object accessesand an

allocationmanagercouldgatheraccessstatisticsto make moreglobalallocationdecisions.

101

Appendix A

KeyData Encoding

SCAREDkey datais madeupof asetof attributesthatcorrespondto akey. Eachattribute

is encodedby a byte representingtheattribute type,a byte representingthe lengthof theattribute

data,followedby theattributedata.Usingthisencodingatmost254attributedtypescanbeencoded

sincethetypeszeroand255arereserved.Also, theattributedatacanbeatmost255bytesin length.

Thedatathatcorrespondsto a SCAREDkey is madeup of a setof attributesthatcorre-

spondto akey appendedto theattributesof thekeys from which it wasderived.Sincethekeys can

bederivedfrom a numberof otherkeys, theattributesof theparentkeys needto bedelimited.We

delimit eachsetusingtheoctet0xff. Thus,key datawill becomposedof setsof attributesdelimited

by theoctet0xff, wherethefirst setof attributesaretheattributesassociatedwith thefirst key from

whichall of thesubsequentkeys arederived.

TableA liststhedefinedattributetypes.Theseattributesfall into threecategories:identity,

capability, and informational. The attributesin eachof thesecategorieswill be describedin the

following sections.SectionA.4 describesthealgorithmfor evaluatingtheattributesto checkaccess.

102

octet type
0x01 client id
0x02 objectid
0x03 permission
0xfd expiration
0xfe salt

TableA.1: SCAREDattributetypesfor key data.

A.1 Identity Attrib ute

Theidentity attributeconveys theidentity of thepossessorof thekey. This identity could

take the form of a 16-bit UID or GID, or a variablelengthstring,or any othersequenceof bytes

identifying a client. In our current implementationwe have chosento have the user identifiers

restrictedto 128-bitnumbers.This allows for globally uniqueidentifiersto begeneratedandused.

Thuseachidentityattributewill have 16bytesof attributedataassociatedwith it.

While it is conceivablethata key couldhave only oneidentity associatedwith it, in our

applicationswe associatemultiple identitieswith a key. A userwill generallyhave her 128-bit

identity in thekey data,aswell asthe128-bitgroupids of thegroupsto which shebelongs.Each

identity will beaseparatedattribute in thekey data.

Whenevaluatingthekey, theidentitiesin anattributesetwill betreatedasa union. This

meansthataddingan identity to anattributesetwill broadentheaccessa key has.Whenderiving

a key thatcontainsanidentity attribute,thederivedkey will only have a subsetof theaccessof the

parentkey. This meansthata key, Â�Ã that is derived from a key, Â with the identity attributesfor

Ä
, Å , and Æ , andhastheidentity attributesfor Å and Ç in thekey datafor Â�Ã , will only identify

thepossessorof Â Ã asB. EventhoughD is in thekey datafor Â Ã , it is ignoredsinceit is not in the

key datafor Â .

103

Permission Mask
read 0x0001
write 0x0002
delete 0x0004
admin 0x0008

TableA.2: Permissionmasksfor thepermissioncapabilityattribute.

A.2 Capability Attrib utes

Theoctets0x02and0x03arecapabilityattributes.They describewhatthekey cando as

opposedto whopossessesthekey. Theoctet0x02is theobjectcapabilityandrestrictsthecapability

to aspecificobject,andtheoctet0x03is thepermissioncapabilityanddescribesthepermissionsof

thecapability.

The objectcapabilitybinds the capability to a specificobject. It is always16 bytesin

lengthandtheattributedatawill containtheOID of theobject.If therearemultipleobjectsattributes

in anattributeset,thecapabilitywill applyto bothobjects.As with identityattributes,aderivedkey

mayincludeobjectcapabilitiesto furtherrestricttheobjectsto which a capabilityapplies,but they

cannotincreasethenumberof objectsto whichacapabilityapplies.

By itself, the objectcapabilityattribute doesnot carry any permissions,so unlessit is

derived from a key with permissionattributesor an identity attribute, the key would not be able

to do anything. A permissioncapability attribute gives permissionto the holder of a key. The

permissionattribute is usually16-bitsin size.It is abit mask,whoseinterpretationis givenin table

A.2. Only thefirst setof attributescanadda permissionto a key. Permissioncapabilitiesin any of

theotherattributesetswill only furtherrestrictthepermissionsof a key. If thepermissionattribute

is notaccompaniedby anidentityor objectcapabilityattributeandis notderivedfrom akey with an

identity or objectcapabilityattribute, thepermissionappliesto all theobjectson a storagedevice.

104

Soa key with just thereadpermissioncapabilityattribute would beableto readall objectson the

storagedevice.

It shouldbe notedthat capability attributesand identity attributescan be mixed. For

example,if the readcapabilityattribute occurswith the identity attribute for Å , thekey is ableto

readall objectsthat Å canread.Anotherexamplewouldbeanobjectcapabilityattributefor object

È
andtheidentity attribute for Å . This key would beableto read

È
if Å couldread

È
, but it would

notbeableto read É evenif Å couldread É .

A.3 Key Inf ormation Attrib utes

Therearetwo attributesthathave informationaboutthekey itself andareorthogonalto

thecapabilityandidentity aspectsof thekey. Theoctet0xfd hasexpiration informationaboutthe

key, andoctet0xfe describesthe salt usedto derive thekey. Both of theseattributesenhancethe

securityaspectsof thekey by providing a way to limit thelifetime of thekey andto randomizethe

generationof thekey.

Limiting thelifetime of thekey limits thewindow of opportunityfor anattacker to usea

compromisedkey. Theexpirationtime is relative to the local timer on thestoragesincewe do not

requireaglobalclock. Thetimer is a64-bit big-endiannumberandtheunitsareseconds.

A salt is anumberthatis addedto thederivationof thekey to introducerandomness.The

salt itself neednot berandom.Saltsareusually128-bitnumbers.Thestoragedevice doesnot use

thesaltfor anything.

Sinceresponsekeys mustbeuniquebut do not carryany accessrights, their key datais

only madeup of salt. For example,a responsekey will usually take the form of the octet0xfe

followedby thelengthof thesalt,usually16, then16 arbitrarybytes.Thesaltdoesnot have to be

105

randombut mustbeuniquein relationto anetwork storagedevice.

A.4 KeyData Evaluation

To determinetherightsandvalidity of a key, thestoragedevice mustevaluatethesetsof

attributesin thekey datastartingwith thefirst setof attributes.Thefirst stepin attributeevaluation

is to checkfor an expiration attribute. If one is presentandexpired, the key will be rejectedas

expired.

Thenext stepis to checkfor an identity attribute. If oneis presenttheaccesslist for the

targetof therequestis checkedto insurethattheoperationis permitted.

Assumingthattheaccesslist permitstheoperation,thethird stepis to checkthattheOID

of the target is in oneof the object capabilityattributes. If thereareobject capabilityattributes

presentandthetargetof theoperationis not in oneof thecapabilities,therequestwill berejected.

The fourth andfinal stepis to checkfor the permissionattribute. If thereis no identity

attributeandthereis no permissionattributeandthefirst attributesetis beingevaluated,thekey is

rejectedasinvalid. If a permissionattribute is present,thekey is rejectedif oneof thepermission

attributesdoesnotallow therequestedoperation.

The stepsare repeatedfor eachset of attributes in the attribute set. If the key is not

requestedin any of thepasses,theoperationis permittedby thekey data. Beforetheoperationis

actuallycarriedout,thefreshnessguaranteesmuststill becheckedandthekey correspondingto the

key datamustbegeneratedandtheMAC checked.

106

Appendix B

Pseudo-RandomFunctions

Thefollowing wastakenfrom thelecturenotes[14] of CynthiaDwork’s Foundationsof

CryptographyclassatStanford.Thesenotesdraw heavily from [37, 19, 33].

A truly randomfunction ÊsËxÀbÌ0Í|¿^Á|Î�¾xÏÐÀbÌ0Í|¿^Á|Î hasno short(polynomialin Ñ -sized)
representation.Intuitively, a pseudo-randomfunction ÒsÓ;Ò@Ô?Ë�ÀbÌ0Í|¿^Á Î ¾TÏ ÀbÌ0Í|¿^Á Î ,
specifiedby a short(say, ÕoÖVÑ�× -bit) seed,is polynomial-timeindistinguishablefrom a
truly randomfunction, in thata polynomial-timeboundedadversary, queryinga func-
tion Ø at adaptively chosenpoints ÙhÚÛÀbÌ0Í|¿^Á Î , cannotdeterminewhetherØ is pseudo-
randomor truly random.

Ü�Ü�Ü

Notation. Let Ý denotethe setof all naturalnumbers.Let
È Î denotethe setof all

Ñ -bit strings, ÀbÌ0Í|¿^Á|Î . Let Þ Î denotethe randomvariableuniformly distributedoverÈ Î .
Thefollowing definitionsaretakenfrom [37]. Seealso[19, 33].

Informally, apseudo-randomfunctionensembleis anefficientdistribution of functions
that cannotbe efficiently distinguishedfrom the uniform distribution. That is, an ef-
ficient algorithmthat getsa function asa black box cannottell (with non-negligible
successprobability)from which of thedistributionsit wassampled.To formalizethis,
we first definefunctionensemblesandefficient functionensembles:

Definition 4 (function ensemble).Let ß and à beanytwo ÝâáÏ£Ý functions.An
È%ã áÏÈ�ä

functionensembleis a sequenceå;ÓæÀbå Î Á ÎZç^è of randomvariables,such that the
randomvariable å Î assumesvaluesin thesetof

È�ãJé Î%ê�áÏ È ä é Î%ê functions.TheuniformÈ%ã áÏ È ä functionensemble, ë¡Ó�Àbë Î Á Î�çlè , has ë Î uniformlydistributedover theset
of
È ã+é Î�ê áÏ ÈZä é Î�ê functions.

107

Definition 5 (efficiently computablefunction ensemble).
A functionensemble, å�Ó�Àbå Î Á ÎZç^è , is efficiently computableif there exist probabilis-
tic polynomial-timealgorithms,ì and í , anda mappingfromstringsto functions,î ,
such that î�ÖïìðÖ+¿ Î ×J× and å Î are identicallydistributedand íSÖVñ�ÍJÙ"×òÓXÖ
î�ÖVñz×J×·ÖVÙ"× .
We denoteby Ê^ó thefunctionassignedto ñ (i.e. Ê^ó�ô·õDöÓ£î�ÖVñ+×). We refer to ñ asthekey of
Ê ó andto ì asthekey-generating algorithmof å .

For simplicity, we concentrateon the definition of pseudo-randomfunctionsandon
their constructionon length-preservingfunctions. Thedistinguisher, in our setting,is
definedto beanoraclemachinethatcanmake queriesto a length-preservingfunction
(which is eithersampledfrom thepseudo-randomfunctionensembleor from theuni-
form functionensemble).We assumethaton input ¿·Î theoraclemachinemakesonly
Ñ -bit queries.For any probabilisticoraclemachine,÷ , andany

È Î áÏ È Î function, Õ ,
we denoteby ÷ùø1Ö+¿·Îú× thedistribution of ÷ ’s outputon input ¿·Î andwith accessto
Õ .

Definition 6 (efficiently computablepseudo-randomfunction ensemble).Anefficiently
computable

È ÎháÏ È Î functionensemble, åûÓüÀbå Î Á Î�çlè , is pseudo-randomif for ev-
ery probabilistic polynomial-timeoracle machine ÷ , every polynomialý�Özþÿ× , and all
sufficiently large Ñ ’s

�������� ÷��
	xÖ+¿ Î ×�Ó¡¿��-¾ ����� ÷��	TÖ+¿ Î ×�Ó¡¿�� ���� ¿
ý�ÖVÑ�×

where ë¥Ó�Àbë Î Á Î�çlè is theuniform
È Î áÏ È Î functionensemble.

In this thesiswe usethe term “pseudo-randomfunctions” as an abbreviation for “effi-

ciently computablepseudo-randomfunction ensemble”.We alsorefer to the key, ñ , of Ê^ó asthe

secretusedwith thepseudo-randomfunction.

108

Bibliography

[1] M. G. Baker, J. H. Hartman,M. D. Kupfer, K. W. Shirriff, andJ. K. Ousterhout,“Measure-

mentsof a distributedfile system,” in Proceedingsof the13thSymposiumon Operating Sys-

tems, pp.198–212,ACM, October1991.

[2] M. Bellare,R.Canetti,andH. Krawczyk,“K eying hashfunctionsfor messageauthentication,”

in Advancesin Cryptology – Crypto96 Proceedings, pp.1–15,1996.

[3] M. Bellovin andM. Merritt, “Limitations of theKerberosauthenticationsystem,” in Proceed-

ingsof theWinter 1991USENIXConference, pp.253–267,January1991.

[4] S.M. Bellovin, “Securityproblemsin theTCP/IPprotocolsuite,” ComputerCommunication

Review, vol. 19,pp.32–48,April 1989.

[5] R. Bird, I. Gopal,A. Herzberg, P. Janson,S. Kutten,R. Molva, andM. Yung, “The Kryp-

toKnight family of light-weightprotocolsfor authenticationandkey distribution,” IEEE/ACM

Transactionson Networking, vol. 3, pp.31–41,February1995.

[6] M. Blaze,“A cryptographicfile systemfor UNIX,” in FirstACM Conferenceon Communica-

tion andComputingSecurity, pp.9–16,November1993.

[7] R. C. Burns,R. M. Rees,andD. D. E. Long, “Safe cachingin a distributed file systemfor

109

network attachedstorage,” in InternationalParallel and DistributedProcessingSymposium,

May 2000.

[8] B. Callaghan,B. Pawlowski, andP. Staubach,“NFS version3 protocolspecification.” RFC

1813,June1995.

[9] J.P. Chandler, D. C. Arrington,D. R. Berkelhammer, andW. L. Gill, IdentificationandAnal-

ysisof ForeignLawsandRegulationsPertainingto theUseof Commercial EncryptionProd-

uctsfor VoiceandDataCommunications. NationalIntellectualPropertyLay Institute,George

WashingtonUniversity, Washington,D.C.,January1994.

[10] J. S. Chase,D. C. Anderson,A. J. Gallatin,A. R. Lebeck,andK. G. Yocum,“Network I/O

with trapeze,” in HOT Interconnects, IEEE,August1999.

[11] M. Dahlin,ServerlessNetworkFile Systems. PhDthesis,Universityof CaliforniaatBerkeley,

1995.

[12] T. DierksandC. Allen, “The TLS protocolversion1.0.” RFC2246,January1999.

[13] W. Diffie andM. E. Hellman,“New directionsin cryptography,” IEEE Transactionson Infor-

mationTheory, pp.644–654,November1976.

[14] C. Dwork, “The non-malleability lectures.” http://Theory.Stanford.EDU/˜gdurf/cs359-

s99/notes1a.ps,1999.Excerptquotedin appendixB.

[15] C. Everhart,“Securityenhancementsfor DCEDFS.” OSFRFC90.0,February1996.

[16] S.Floyd, V. Jacobson,C. Liu, S.McCanne,andL. Zhang,“A reliablemulticastframework for

lightweightsessionsandapplicationlevel framing,” IEEE/ACM Transactionson Networking,

vol. 5, pp.784–803,December1997.

110

[17] G. A. Gibson,D. F. Nagle,K. Amiri, J.Butler, F. W. Chang,H. Gobioff, C. Hardin,E. Riedel,

D. Rochberg, andJ.Zelenka,“A cost-effective, high-bandwidthstoragearchitecture,” in Pro-

ceedingsof the 8th Conferenceon Architectural Supportfor ProgrammingLanguages and

Operating Systems, pp.92–103,October1998.

[18] H. Gobioff, Securityfor a High PerformanceCommodityStorage Subsystem. PhD thesis,

Carnegie Mellon University, 1999.

[19] O. Goldreich,S.Goldwasser, andS.Micali, “How to constructrandomfunctions,” Journalof

theAssociationfor ComputingMachinery, vol. 3, no.4, pp.792–807,1986.

[20] O. Goldreich,Foundationsof Cryptography (Fragmentsof a Book). WeizmannInstituteof

Science,February1995.

[21] B. Grönvalli, A. Westerlund,andS. Pink, “The designof a multicast-baseddistributed file

system,” in Proceedingsof theThird SymposiumonOperatingSystemsDesignandImplemen-

tation, pp.251–264,USENIX, September1999.

[22] J.H. HartmanandJ.K. Ousterhout,“The Zebrastripednetwork file system,” in Proceedings

of the14thSymposiumon Operating SystemsPrinciples, pp.29–43,ACM, December1993.

[23] D. Hitz, J. Lau, andM. Malcom, “File systemdesignfor an NFS file server appliance,” in

USENIXSanFrancisco1994Winter Conference, pp.235–246,January1994.

[24] J. H. Howard, M. L. Kazar, S. G. Menees,D. A. Nichols, M. Satyanarayanan,R. N. Side-

botham,andM. J.West,“Scaleandperformancein a distributedfile system,” in ACM Trans-

actionson ComputerSystems, vol. 6.1,pp.51–81,February1988.

111

[25] IBM, IBM General Parallel File Systemfor AIX: InstallationandAdministration Guide, sec-

onded.,October1998.

[26] R. H. Katz, “High performancenetwork andchannel-basedstorage,” Tech.Rep.UCB/CSD

91/650,Universityof CaliforniaatBerkeley, Sept.1991.

[27] M. L. Kazar, B. W. Leverett, O. T. Anderson,V. Apostolides,B. A. Bottos, S. Chutani,

C. F. Everhart,W. A. Mason,S.-T. Tu, andE. R. Zayas,“DEcorumfile systemarchitectural

overview,” in Proceedingsof theUsenixSummer1990Technical Conference, (Berkeley, CA,

USA), pp.151–164,UsenixAssociation,June1990.

[28] S. R. Kleiman, “Vnodes: An architecturefor multiple file systemtypesin Sun UNIX,” in

USENIXsummerconference, pp.238–247,USENIX, 1986.

[29] J. T. Kohl and B. C. Neuman,“The Kerberosnetwork authenticationservice.” RFC 1510,

September1993.

[30] H. Krawczk,M. Bellare,andR.Canetti,“HMA C: Keyed-hashingfor messageauthentication.”

RFC2104,February1997.

[31] E. K. LeeandC. A. Thekkath,“Petal: Distributedvirtual disks,” in 7th InternationalConfer-

enceonArchitectural Supportfor ProgrammingLanguagesandOperatingSystems(ASPLOS-

96), pp.84–92,October1996.

[32] D. D. E.Long,B. R.Montague,andL.-F. Cabrera,“Swift/RAID: A distributedRAID system,”

ComputingSystems, vol. 7, pp.333–359,Summer1994.

[33] M. Luby, Pseudorandomnessand Cryptographic Applications. PrincetonUniversity Press,

1996.

112

[34] M. K. McKusic,W. N. Joy, S.J.Leffler, andR.S.Fabry, “A FastFile Systemfor UNIX,” ACM

Transactionson ComputerSystems, vol. 2, pp.181–197,August1984.

[35] R. Merkle, “Securecommunicationover insecurechannels,” Communicationsof the ACM,

vol. 21,no.4, pp.294–299,1978.

[36] P. V. Mockapetris,“Domainnames– conceptsandfacilities.” RFC1034,November1987.

[37] M. NaorandO. Reingold,“Synthesizersandtheir applicationto theparallelconstructionof

pseudo-randomfunctions,” JCSS:Journalof ComputerandSystemSciences, vol. 58,1999.

[38] R. M. NeedhamandM. D. Schroeder, “Using encryptionfor authenticationin largenetworks

of computers,” Communicationsof theACM, vol. 21,pp.993–999,dec1978.

[39] B. Nelson,B. Welch, andJ. Ousterhout,“Caching in the spritenetwork file system,” ACM

Transactionson ComputerSystems, pp.134–154,January1988.

[40] C. NeumannandT. Ts’o, “K erberos:An authenticationservicefor computernetworks,” IEEE

CommunicationsMagazine, September1994.

[41] The OpenGroup, Protocols for X/OpenPC Internetworking: SMB, Version 2, September

1992.

[42] J.K. Ousterhout,H. D. Costa,D. Harrison,J.A. Kunze,M. Kupfer, andJ.G. Thompson,“A

trace-drivenanalysisof theUNIX 4.2BSDfile system,” in Proceedingsof the10thSymposium

on Operating SystemsPrinciples, pp.15–24,December1985.

[43] J.K. Ousterhout,H. D. Costa,D. Harrison,J.A. Kunze,M. Kupfer, andJ.G. Thompson,“A

trace-drivenanalysisof theUNIX 4.2BSDfile system,” in Proceedingsof the10thSymposium

on Operating SystemPrinciples, pp.15–24,December1985.

113

[44] D. A. Patterson,G. Gibson,andR. H. Katz,“A casefor redundantarraysof inexpensive disks

(RAID),” in Proceedingsof the1988ACM Conferenceon Managementof Data (SIGMOD),

pp.109–116,June1988.

[45] J.Postel,“RFC 793: Transmissioncontrolprotocol.” RFC793,September1981.

[46] B. Preneel,A. Bosselaers,R. Govaerts,andJ.Vandewalle, “A chosentext attackon themod-

ified cryptographicchecksumalgorithmof cohenandhuang,” in Advancesin Cryptology –

Crypto89 Proceedings, pp.154–163,1989.

[47] E. Riedel and G. Gibson, “Understandingcustomerdissatisfaction with underutilizeddis-

tributedfile servers,” in Proceedingsof the Fifth NASAGoddard SpaceFlight CenterCon-

ference, September1996.

[48] D. M. Ritchie andK. Thompson,“The UNIX time-sharingsystem,” Communicationsof the

ACM, vol. 17,pp.365–375,July1974.

[49] R. Rivest,“The MD5 message-digestalgorithm.” RFC1321,April 1992.

[50] R. L. Rivest,A. Shamir, andL. M. Adleman,“A methodfor obtainingdigital signaturesand

public-key cryptosystems,” Communicationsof theACM, pp.120–126,February1978.

[51] M. RosenblumandJ.K. Ousterhout,“The designandimplementationof a log-structuredfile

system,” in Proceedingsof the 13th Symposiumon Operating SystemsPrinciples, pp. 1–15,

ACM, October1991.

[52] M. Sach,A. Leff, andD. Sevigny, “LAN andI/O convergence:A survey of the issues,” in

IEEE Computer, pp.24–32,December1994.

114

[53] R. Sandberg, D. Goldberg, S. Kleiman,D. Walsh,andB. Lyon, “Designandimplementation

of the Sunnetwork file system,” in USENIXConferenceProceedings,USENIXAssociation,

Berkeley, CA,Summer, pp.119–130,1985.

[54] C. A. Thekkath,T. Mann,andE. K. Lee,“Frangipani:A scalabledistributedfile system,” in

2ndSymposiumon Operating SystemsDesignand Implementation(OSDI-96), pp. 224–237,

USENIX, October1997.

[55] U.S.Departmentof State,“Internationaltraffic in armsregulations(ITAR).” 22CFR120-130,

Officeof MunitionsControl,November1989.

[56] U.S. Departmentof State,“Defensetraderegulations.” 22 CFR 120-130,Office of Defense

TradeControls,May 1992.

[57] U.S. Government,“Proposedfederal information processingstandardfor digital signature

standard(DSS).” FederalRegister, August1991.

[58] U.S. Government,“Proposedfederalinformationprocessingstandardfor securehashstan-

dard.” FederalRegister, January1992.

[59] R. vanRennesse,A. S. Tanenbaum,andA. Wilschut,“The designof a high-performancefile

server,” in Proceedingsof the9thInternationalConferenceonDistributedComputingSystems,

IEEE, pp.22–27,June1989.

[60] M. Wittle andB. Keith, “LADDIS: Thenext generationin NFSfile server benchmarking,” in

USENIXSummerConference, pp.111–128,USENIX, June1993.

