
Richer File System Metadata Using Links and Attributes

Alexander Ames
sasha@cs.ucsc.edu

Nikhil Bobb
nikhil@cs.ucsc.edu

Scott A. Brandt
sbrandt@cs.ucsc.edu

Adam Hiatt
adamh@cs.ucsc.edu

Carlos Maltzahn
carlosm@cs.ucsc.edu

Ethan L. Miller
elm@cs.ucsc.edu

Alisa Neeman
aneeman@cs.ucsc.edu

Deepa Tuteja
deepa@cs.ucsc.edu

Storage Systems Research Center
Jack Baskin School of Engineering

University of California, Santa Cruz

Abstract

Traditional file systems provide a weak and inadequate
structure for meaningful representations of file interrela-
tionships and other context-providing metadata. Existing
designs, which store additional file-oriented metadata ei-
ther in a database, on disk, or both are limited by the
technologies upon which they depend. Moreover, they do
not provide for user-defined relationships among files. To
address these issues, we created the Linking File System
(LiFS), a file system design in which files may have both
arbitrary user- or application-specified attributes, and at-
tributed links between files. In order to assure performance
when accessing links and attributes, the system is designed
to store metadata in non-volatile memory. This paper dis-
cusses several use cases that take advantage of this ap-
proach and describes the user-space prototype we devel-
oped to test the concepts presented.

1. Introduction

Traditional file systems provide a weak and inadequate
structure for meaningful representations of file interrela-
tionships and other context-providing metadata. Solving
this problem has become increasingly urgent as users are
faced with a growing amount of personal data such as
email, chat communications, digital photography, and on-
line music. Moreover, computational scientists continue
to bemoan the lack of mechanisms for cross-archival ac-
cess, retrofitting of metadata, and identifying groupings of
related results needed for data mining [38, 39]. A content-
neutral, file system-based mechanism for storage of arbi-
trary metadata provides one solution to this weakness. As
an application of this principle, we introduce the Linking
File System (LiFS). It extends file system metadata to in-

clude not only arbitrary, user-specifiable key-value pairs on
files but relationships between files in form of links with at-
tributes.

It is now often easier to find a document on the Web
amongst billions of documents than on a local file system.
Documents on the Web are embedded in a rich hyperlink
structure while files typically are not. Companies such as
Google are able to take advantage of links between Web
documents in order to deliver meaningful ranking of search
results using algorithms like PageRank [32]. In contrast,
search tools for traditional file systems do not have infor-
mation about inter-file relationships other than the hierar-
chical directory structure and ownership of files.

The reason for this dearth of relationships between files
is that the management of file system metadata is expen-
sive in traditional system architectures where volatile main
memory must be backed by much slower disk-based sec-
ondary storage. The advent of new non-volatile main mem-
ory technologies such as MRAM [8] promises to reduce
the cost of accessing file systems in an arbitrary or fine-
grain fashion with the development of novel file system de-
signs [16, 27, 49].

The promise of non-volatile main memory has prompted
designers to use such memory for the persistent storage of
file system metadata. Although memory-resident metadata
trivially speeds up certain common file system operations
(such asstat), a more remarkable benefit is the ability to
employ far richer metadata structures. File systems design-
ers will no longer be constrained by disk access speed, but
instead can focus on the needs of the user. Frequent ac-
cess, context-aware searches, and other operations that are
prohibitively expensive under traditional, disk-oriented file
system architectures will become feasible.

The Linking File System’s ability to assign attributes to
and establish attributed links between files in a standard-
ized fashion forms a powerful infrastructure capable of sup-

This paper was published in theProceedings of the 22nd IEEE / 13th NASA Goddard Conference on Mass Storage Systems
and Technologies (MSST 2005), Monterey, CA, April 2005.

porting a variety of different and extremely useful user, ap-
plication, and system operations. Attributed files directly
support enhanced file system searches. Attributed links
will support a number of recent efforts to extend hierar-
chical directory structures with more user-friendly and per-
sonalized file organizations [18, 28, 31, 35, 43]. Weighted
links between files can also be used to record access pat-
terns that are useful for pre-fetching, hoarding, indexing,
and search result ranking. Indeed, these links provide
an abstract model for file interrelationships previously un-
available at a file system level.

2. The Design of LiFS

The key features of LiFS are links between files and at-
tributes on both files and links. To ensure the performance
and reliability of LiFS, the design relies on both the non-
volatility and low latency of MRAM. At the most basic
level, a search within the file system traverses a series of
links across a graph of metadata. An in-memory structure
is crucial for this operation; random seeks on disk to in-
odes, even with some caching, would be prohibitively slow.
The low latency of MRAM will allow metadata operations
and searches to be performed almost instantaneously.

2.1. Links

Each link in LiFS has a source file, a target file, and a
non-empty set of attributes consisting of key-value pairs.
LiFS links differ from POSIX links in that LiFS links rep-
resent a relationship between files instead of simply a refer-
ence to a file. The attributes of the links express the nature
of the relationship.

Any file can potentially contain a link to any other file.
As a consequence, every file is also a directory and the dis-
tinction between files and directories is eliminated. The tra-
ditional notion of containment of a file within a directory is
simply one relationship among many that can be expressed
with links.

The key benefit of links is that they provide native sup-
port for a variety of relationships between files that are cur-
rently supported in anad hocmanner by individual appli-
cations and the operating system. In addition to contain-
ment, links can express a variety of other useful relation-
ships such as included-in, referenced-by, dependent-upon,
created-by, opened-by, and others. Links also allow for dy-
namically customizable views of the file system based on
the type of link followed.

2.2. Attributes

In our initial design both files and links can carry a num-
ber of attributes limited only by available memory. The size

dependency:included

cvs

mmst05-
linkingfs

fast02-
miller

linkingfs.
tex

templates

ieee.cls

linkingfs.
pdf

hierarchy:main

hierarchy:main

hierarchy:mainhierarchy:main

hierarchy:main

hierarchy:main

dependency:
source

Figure 1. Example use of links with attributes:
organizing files into a directory-like hierarchy
called “main” and keeping track of depen-
dencies between files.

of each key and its corresponding value is also currently
unconstrained. We anticipate putting an efficiency ceiling
on this size into the final implementation; excessively long
key and value strings might affect the ability to deliver high
performance.

Both the key and value members of an attribute can con-
tain arbitrary data, including binary data. This allows appli-
cations to have rich metadata such as thumbnails, preview
video clips, and cached printer spool files without the over-
head of special encoding. Sharing of metadata via file and
link attributes provides a powerful infrastructure for appli-
cation integration.

The main benefit of attributes is that they enable users,
applications, and the system itself to annotate files and
links. This allows for fast and effective file searching, cat-
egorizing, partitioning, and manipulation, and provides in-
frastructure for other features that may not have been con-
sider by the file system designer. It also provides a far
richer context in which files can include information about
provenance, intended use, type, contents, creator, modifi-
cation history, version, and other information that a user,
application, or system may want to keep.

We also allow attributes to be executable. A special case
of executable file attributes arefile triggers. A file trigger
on a file specifies a pattern/action pair. A pattern specifies
the file system operation (such as a read or write) on the
file with which the executable attribute is associated. An

102

action specifies code that is executed whenever the asso-
ciated operation is invoked on the file. File triggers are a
powerful mechanism that simplifies the implementation of
a wide variety of file system services such as versioning,
mirroring, and others (as discussed in Section 3.5). File
triggers raise a rich set of interesting security and language
design issues that we are actively investigating.

2.3. Interface

LiFS supports an enhanced version of the POSIX inter-
face. Here, we present the key examples of the linking API.

2.3.1. Link Creation We introduce a new system call,
rellink , to create new (relational) links. Creating links
requires the specification of a source file, a destination file,
and one or more attributes. The inclusion of attributes ne-
cessitates our new system call; otherwise standard POSIX
semantics would be sufficient. For example,mkdir , where
the source is an existing directory and the target is the new
directory to be created, cannot be used because themkdir
call does not support attributes. Of course,mkdir can
be implemented as a special case ofrellink with the
source implicitly specified and the attributes set to reason-
able defaults.rellink creates ahard link from the in-
ode of the source file to the destination file. The paths to
source and target must identify each object, as opposed to
using the inode numbers directly. We provide a similar call,
relsymlink , that creates a soft link. This symbolic link
is much like the POSIXsymlink system call, but adds the
assignment of attributes on the link itself, like its hard link
counterpart. This allows the user to create relationships
with objects and names in addition to creating relational
links directly between objects,

2.3.2. Multiple Links and Identification In order to
provide the greatest flexibility for relationships, multiple
links are permitted between the same source and target. For
example, two different users could each define their own
relationships between the same pairs of files. However, to
prevent confusion, each link must beuniquely identifiable
by its attributes. In practice, this constraint is easily met
since we expect that multiple links between files will usu-
ally belong to different users and will therefore at a mini-
mum have different user attribute values.

Generally, a user may use LiFS like most conventional
file system representations, where paths containingnames
identify files. However, in LiFS, name may be just one
of many attributes given on the links between files. There-
fore, it is possible to have paths to files using some attribute
other than the conventional name. For example, we may
have links between documents representing citations,i. e. a
source document contains a link to a target when the source

cites the target. This allows finding documents by specify-
ing “citation paths.”

Nonetheless, in order for users to properly identify files
that they may wish to open, there must be a traversal of
identifiable links beginning with a file system entry point to
the target file, akin to root, or a path relative to the current
working directory. Unlike conventional file systems, there
need not be the same root directory for all users; in fact, a
user may be able to choose between one of many roots.

2.3.3. Link Accesses, Updates and DeletionsIn LiFS,
we introduce API calls to retrieve a single link, perform up-
dates to the link, and delete a link. Just as users must open
a single file in conventional systems, there are cases where
one needs to open a single link, such as to retrieve addi-
tional metadata about the relationship expressed in the link;
this is done with theopenlinkattrset call, which re-
trieves attributes for a specified link. Users must uniquely
identify a link, as discussed above, with a source path, tar-
get path, and enough attributes to uniquely match the at-
tribute set of the link to be retrieved. The call returns an
error if the specification does not match exactly one link;
matching zero links is an error, as is matching more than
one link. Similarly, the callsetlinkattr must uniquely
identify the link whose metadata one wishes to modify.
New attributes may be added, or the values of existing
ones may be modified where an attribute with the same key
already exists. An overriding constraint on this function
is that changes must not prevent other links from being
uniquely identified after the change is complete. Finally,
uniquely identified links may be deleted via an API call.

2.3.4. Link and Attribute Sets In addition to support-
ing standard POSIX operations and semantics, LiFS in-
cludes syntax for attribute-based searching and selection.
For searching, we introduce two functions for fetching sets
of links. The first,openlinkset allows the user to see
all links outgoing from a specific source. The second,
openmatchlinkset returns the links from a source
that have matching attributes. For this call we specify at-
tributes simply as a comma-delimited string. Our model
for these calls are the POSIX calls such asopendir ,
readdir , etc. Likewise, LiFS contains additional calls
readlinkset andcloselinkset .

To provide seamless POSIX compatibility,mkdir
creates a link with a distinguishing default attribute,
POSIX=TRUE. Similarly, open on a new file creates a
link from the current working directory to the file with
attributePOSIX=TRUE. Thus, we can search a directory
for a file created byopen using eitheropendir or
openmatchlinkset .

Attribute sets work in a similar fashion. The
openlinkattrset call retrieves the attributes for a

103

single link. When multiple links are retrieved with the
calls introduced above, the link sets contain references
to an attribute set for each link. We also have the calls
readattrset and closeattrset . Once read, the
attribute set structures have separate key and value string
components.

2.3.5. Querying and Link Traversal To take full ad-
vantage of attributes and links LiFS will provide a query
language that is more powerful than the POSIX interface.
We are currently experimenting with a declarative query
language that supports graph pattern matching, attribute
value constraints, and optional values.

We build the link traversal graph using several smaller
components and data structures. LiFS has three hash tables;
one containing the link set for each inode, one containing
file attributes, and one containing link attributes.

At the most basic level, each file and directory has a
unique inode number, and each link has a uniquel node.
We keep attribute sets for each file in linked lists. The lists
can be queried from theino hash hash table, where each
attribute list is hashed under the inode number of the file
it describes. Each relational link’s attributes are similarly
contained in a linked list and stored in a second hash table
under the relational link’s lnode number.

Each lnode contains an lnode number, and a name and
inode number of the file at which the link is pointing. The
l nodes for each file are contained in a linked list and stored
in a hash table by theinode numberof the file.

To traverse the graph, we simply need a file or directory
in the graph from which to start. Using the inode number
or name, we can consult the link set hash table for outgo-
ing links, and filter the resulting target inode numbers by
attribute (either file attribute or link attribute). From there,
we can continue outward in a pruned breadth-first traversal
for as many hops as desired. These data structures are much
more efficient than a database, since the high overhead of
a join operation is avoided. Additionally, the non-volatility
of MRAM provides an ideal environment for using linked
data structures.

In order to minimize the metadata footprint, we store
names and values in a string pool which holds only one
copy of each unique binary value. This also facilitates fast
comparison since we need to perform a byte-by-byte com-
parison only when we add or change an attribute key or
value. For other operations, we may instead compare string
table indices. Additionally, we propose to use compression
techniques, similar to those used by Edel,et al.[16] to most
efficiently use MRAM space.

Link
Hash
tableQuery

Inode #

l_node
l_node#
dest.
inode #

File/Dir
Attrib.
table

Link
Attrib.
table

Traversal
Query
Inode#

key=x
value=y

key=s
value=t

Figure 2. Hash tables to support links and
attributes. A query returns links which can
by filtered by attribute and can also seed a
deeper traversal.

3. Use Cases for LiFS

The attributes and attributed links of LiFS enable a wide
variety of functionality. In this section we provide a use
case taxonomy that illustrates how users and applications
can take advantage of the features of LiFS.

3.1. Infrastructure Dependencies

Any use of a file requires a certain infrastructure. For
example, while ASCII-encoded text files can be displayed
by a large number of applications, the display of more com-
plex media such as movies or music is often dependent on

104

a particular version of a particular application with a par-
ticular set of plugins. The same is true for executing pro-
grams, which may depend on having the correct versions
of many dynamically-loaded libraries. Infrastructures to
support such software can be complex, even on a personal
computer, since a properly functioning system can often
depend on hundreds of applications and operating system
services. Each installation or upgrade can break some of
these dependencies if not handled properly [4]. The fol-
lowing are examples of how LiFS can help to tame this
complexity.

3.1.1. Multiple Concurrent Libraries Correctly con-
figuring library dependencies in Linux and BSD environ-
ments is often complex and time consuming [4]. LiFS al-
lows easy library dependency management by linking an
application to all of its dependent libraries via a depen-
dency attribute on each link. When starting an application
a shell creates a custom environment in which to run the
application from the information embedded in the file sys-
tem.

3.1.2. Multiple Platform Support Attributed links
simplify the support of multiple platforms within one file
system. Installations for multiple platforms link platform-
specific files to a common file system using links with a
platform attribute. This approach has the advantage over
the fat binary approach in that applying a platform-specific
update does not require recompilation of all platforms. In
addition, files that are particular to a subset of the platforms
are only visible on those platforms for which they are rele-
vant. This can include both machine-specific files, such as
host name information, as well as platform-specific files,
such as libraries or processor family-specific configuration
information.

3.1.3. Infrastructure Change Alerts When removing
or upgrading some infrastructure component such as hard-
ware, operating system modules, or application software,
infrastructure dependencies of digital objects might break,
resulting in an infrastructure that has lost the ability to cor-
rectly run programs or adequately display digital objects.
LiFS will not only be able to alert the user of infrastructure
dependencies but also list the files affected by the change.
These dependencies can also be a useful basis for deciding
on what data to backup.

Changes in infrastructure are the primary source of ob-
solescence that creeps into digital data over time. By the
time the user discovers the inability to display a file or ex-
ecute a program properly it can be difficult to fix the in-
frastructure due to unrecoverable software or hardware. By
maintaining dependency links to files necessary to interpret
a given file, the system can notify a user when a needed file
is about to be removed or changed.

3.2. Views and Contexts

Relationships between files and file attributes allow the
specification of views and contexts. A file system view is a
selection of the overall file system in terms of certain val-
ues of file and link attributes. A context refers to how a
particular file relates to other files.

3.2.1. Customizable Views of the File System and Jails
LiFS allows users to have customizable views of the file
system. This is achieved by linking a user’s personal root
directory, either directly or indirectly, to all desired files
across the file system. Once this view exists, the user is
free to install applications and libraries anywhere on the
file system instead of just being confined to personal direc-
tories. Moreover, a user can add his/her own links between
two files, and search for files using personal links first and
“default” system links second.

Such customizable views allow partitioning of the file
system in a fashion similar to that offered by the file
system-specific portions of BSD jails [21]. This functional-
ity could either be offered directly by overlaying a separate
file system hierarchy for the user in the jail, or indirectly
by instructing the system to only allow users to access and
follow links with an in-jail attribute particular to that user
or their group.

Views can be customized even further according to the
semantics of the attributes. For example, with a conference
paper currently open in the file system, a user can create a
view in which all referenced papers and figures are ordered
according to the authors, the levels of reference to the cur-
rent paper, and so on. To retrieve information about one
of the authors, another view can present the files associated
with the author such as pictures, contact information, and
papers written by him/her.

3.2.2. Personal Context The use of directories in tra-
ditional file systems and the use of brittle symbolic links
to circumvent limitations of a strict hierarchical structure
has proven woefully inadequate for personal information
management. Recently, a number of personal information
system applications have been developed that attempt to fix
the lack of relationships between files on the application
level [30, 34]. We believe that the lack of relationship be-
tween files is not an issue limited to personal information
management applications but rather a more general prob-
lem of data management and should therefore be solved in
the file system layer. Recent announcements by Microsoft
(WinFS) and Apple [2] (Spotlight) confirm this notion.

3.3. Provenance and History

All files in a file system have a history. The beginning of
a file’s history is its provenance. As files are manipulated

105

and moved history information accumulates automatically.
Provenance and history provide metadata that can be very
useful for finding and organizing information. A file can
be a result of computation, extracted from personal com-
munication, created locally, or downloaded from the Web.
Knowing the details of a file’s history can be useful in many
areas, including caching (files can often be refetched from
the Web), volatility and permanence, and intrusion track-
ing.

3.3.1. Computation In a strict sense, all files are re-
sults of computation. However, files originating from a
software build or a scientific calculation can often be re-
generated, while data created by a user cannot be recalcu-
lated. The huge data sets spread across many files that are
generated and examined in scientific computing, in partic-
ular, can benefit from relationships that can be expressed
using links with attributes. Links are also useful for in-
crementally rebuilding complex systems in the presence of
frequent changes.

Springmeyer,et al. note that scientists at Lawrence Liv-
ermore need better means for exploring and mining sci-
entific results [39]. LiFS can tie together a raw data set
by providing a user-customizable arbitrary out-of-core data
structure on a collection of files. For example, a clus-
ter based simulation may generate 16 files for a single
time step, multiplied by 100 time steps. Each file could
have links to its immediate neighbors within a single time
step, and to the same location in previous and following
time steps, essentially creating a 4-dimensional “megafile.”
Linked data sets can be particularly useful for data mining
techniques such as region growing or for isosurface extrac-
tion: once a file with a particular data characteristic has
been found, its immediate neighbors can be easily explored
for the same feature. Additionally, linked groups of data
sets can provide hints for other areas of exploration. By
providing the linking in the file system, LiFS enables mul-
tiple applications to share the infrastructure, much in the
same way that files and pipes in UNIX allowed multiple
text-based utilities to cooperate.

LiFS also allows compilers, editors, and other devel-
opment tools to software development information in the
file system. Currently, product-specific files can contain
development information such as compile and linking de-
pendencies. UNIX make specifications offer some level
of interoperability between environments, but are not per-
fectly flexible. As an alternative and potentially better so-
lution, LiFS can store dependency information in attributes
of links.

3.3.2. Personal Communication Email or instant mes-
saging can deliver attachments, calendar entries, “to-do”
items, and other files to users. Recording the provenance

of these attachments in file attributes or file links automat-
ically creates a useful record of the context in which these
files were acquired. Email and chats themselves can be
explicitly related to files representing correspondence part-
ners.

3.3.3. Web Context As soon as a web resource is
downloaded to a traditional file system it typically loses its
Web context, though programs such as DownloadComment
on the Macintosh can record source URLs as a file com-
ment [15]. This loss of context is a major reason that it is
often easier to find files on the web than in the local file sys-
tem. A file’s provenance URL allows a file system search
engine to tap into data available at web search engines in
order to rank files and to determine relationships between
downloaded files. With Web context information one can
determine whether a new version of a file is available or
whether the corresponding Web resource disappeared. The
latter case is important for decisions on how to digitally
preserve local copies.

3.4. Searching

Methods such as Google’s PageRank [32] show that rich
relationships between web resources can help to generate
useful ranking of search results. As mentioned in earlier,
search in file systems is handicapped by the low number
of inter-file relationships. We believe that relationships in-
troduced for the use cases mentioned above will provide a
wealth of information to make search result ranking more
relevant. For example, consider a scenario where priori-
tized “to-do” items are represented as files. These items
refer to projects that in turn link to other files. A user
searching for the files that need to be dealt with most imme-
diately could quickly identify the files associated with the
most urgent action items. Even though the files themselves
do not have a priority on them, the priority information on
the action items could be propagated to the files by a search
ranking algorithm.

3.5. Workflow and File System Services

The management of large collections of files frequently
requires batch processing with some workflow complexity;
examples include migration between physical storage me-
dia, migration between document formats, publishing, and
backups. Workflow states and histories can easily be rep-
resented in file and link attributes instead of relying on a
repository specific to a workflow management application.
We expect that many workflow actions can be implemented
by file triggers, discussed in Section 2.2.

When correctly used, file triggers can provide a pow-
erful infrastructure that simplifies the implementation of a

106

number of workflow services, including those that are of-
ten thought of as file system services, such as mirroring,
versioning, notification, data protection, digital rights man-
agement, and defragmentation.

Mirroring, copy-on-write, and snapshots can be imple-
mented so that each write either redirects the write or
causes an additional write. Versioning can be implemented
by having executable attributes convert basic writes into
differential writes. Code in executable attributes can con-
trol the degree of synchronization in mirrors or the granu-
larity of versioning by using persistent memory to aggre-
gate changes to some desired level. Scripts in file trig-
gers can record file system operations for accounting and
notification purposes. Read and write filters can imple-
ment encryption and real time virus checking using file
triggers that operate on read and write calls. File triggers
can also be used to implement operations such as file level
defragmentation, digital rights management, and dynamic
permissions. For example, file triggers can delete digital
rights-managed documents after a certain number of views
or after having their viewing limited to a certain time of
day. Thus, LiFS has the potential to facilitate copy protec-
tion on the file system level.

Different file system services will require different
forms of propagation of file triggers. For example, for the
implementation of snapshots propagation may need to oc-
cur immediately and globally while in other cases a lazy
propagation-on-access strategy may be more appropriate.

4. Implementation

To test our design, we implemented a prototype of LiFS
for Linux. This prototype runs in user space and can be
mounted through an interface provided by FUSE (File Sys-
tem in User Space), a Linux kernel module [41] that redi-
rects file system accesses to a user space program. This
approach significantly reduced development time by allow-
ing us to spend much less time on the intricacies of kernel
programming.

The POSIX standard includes no specification for any
entity comparable to the relational link and the develop-
ment of the Linux virtual file system has found no need
to provide such an extension. Therefore, we created user
space applications to replace nonexistent native system
calls. The mechanism to place attributes on links and files
was implemented in a similar fashion.

We used a PostgreSQL database [50] to hold LiFS
metadata. The database consisted three tables: one each for
file inodes, links, and link attributes. Since links were iden-
tified by their source and destination inodes, identifying the
links originating or terminating at a particular inode could
be done by a simple lookup. The use of a separate table for
link attributes allowed a simple design that permitted multi-

ple attribute-value pairs per link. The use of a database sim-
plified data storage and let us focus on defining functional-
ity without worrying about the complexity inherent in the
design of a space and speed conscious metadata store. Fu-
ture plans include replacing the database with light weight
data structures that are optimized for LiFS workloads. Ad-
ditionally, we use the underlying Linux file system on disk
as our store for file data.

For reasons of efficiency, dynamic link libraries (DLLs)
were chosen for triggers. This allowed the file system to
only have the minimal overhead of a function call in order
to call a trigger. To limit complexity, each file may have
only one trigger on each of its filesystem calls. Addition-
ally, the assumption was made that a filesystem with trig-
gers would have a proportional amount of MRAM to it’s
available disk storage.

Overall, the functionality of triggers was split into four
parts: the file system hooks, the trigger controller, the in-
terface for the individual modules, and the modules them-
selves. A module is defined as a group of triggers which
works together towards a specific end; each module is
stored in a DLL. The advantages of using a DLL include
high performance and no system downtime while replac-
ing modules or refreshing module data.

The trigger controller determines whether a trigger
should be activated on a particular filesystem call. It main-
tains a list of currently activated modules, and a table which
hashes the combination of system call and filename to a
function pointer to the relevant trigger. This hash table is
stored in main memory and is written through to simulated
MRAM.

The operation of triggers can be illustrated using the
example of trigger-based snapshots. The snapshot mod-
ule can be controlled on a per file basis. Snapshots can be
taken on any multiple of one second. To achieve snapshot-
ting, the snapshot module has a trigger on the write call.
This trigger checks if the set snapshotting frequency has
elapsed between the last write and the current write, and if
so mirrors the new call to MRAM, recording the time it was
made. If the frequency has not elapsed, the current write is
mirrored without recording the time it was made. This ap-
proach to snapshotting is advantageous in that it only has
overhead when writes are actually being made, and is gran-
ular on the file level.

While our current implementation of LiFS is functional,
it is still a prototype, and will require implementation using
more efficient data structures to make it sufficiently fast for
use in a real system. Challenges we face in accomplishing
this goal are discussed in Section 6.

107

5. Related Work

The concepts we use in the design of LiFS borrow from
various research areas ranging from semantic file systems
to databases and the Web. We first look at file systems with
queryable metadata, such as semantic file systems, and file
systems designed to run in nonvolatile memory. We then
touch upon upcoming advanced commercial systems and
advances in active infrastructures. Finally we look at the
Semantic Web and archiving, and how they try to convey
knowledge more accurately and for the long term.

5.1. Semantic and Other Queryable File Systems

The Semantic File System [18] was originally designed
to provide flexible associative access to files. File at-
tributes, expressed as key-value pairs are extracted auto-
matically with file type-specific transducers. A major fea-
ture of this work is the concept of virtual directories, in
which a user makes an attribute-based query and the sys-
tem creates a set of symbolic links to the files in the result
set, providing access that crosses the directory hierarchy. A
similar file system, Sedar [25], is a peer-to-peer archival file
system with semantic retrieval. Sedar introduces the idea
of semantic hashing to facilitate semantic searching and re-
duce storage and performance costs. A user may search
for files semantically similar to a query file, and, like SFS,
the user can request a directory to be created containing the
results of a query.

The Inversion File System [29] uses a database to store
both file data and metadata. The database also provides
transaction protection, fine-grained time travel, and instan-
taneous crash recovery. Each file is identified by a unique
ID, but also has a name and directory associated with it. A
hierarchical namespace is imposed, but one can also query
by file name and metadata. Moreover, Gupta,et al. cite
the difficulty of managing different but related sets of files
as motivation for their fan-out unification file system, in
which fan-out unification refers to merging two directories,
and implicitly, entries in a directory are treated as members
of a set [19].

The Logic File System (LISFS) uses a database to sup-
port queries for sets of files in the system [31]. Database ta-
bles are composed of mappings from keywords to objects.
Keywords look like directories, but keywords in a query
can be in any order on a directory path, so there is not a
strict hierarchy. The contents of a directory is the set of
objects that meets the criteria of the relation in the query.
The queries are very expressive; boolean expressions can
be used to differentiate among files with the same name.
Like the above mentioned file systems, the use of attributes
in LiFS allows a user to perform expressive queries to lo-
cate files. However, these file systems all use secondary

storage for metadata, either with or without a database, and
must operate under such performance constraints. Addi-
tionally, none contain a linking mechanism that supports
attributes, thus allowing inter-file relationships that can ex-
press the structure of the Web or establish data provenance
and history.

5.2. In-Memory File Systems

In the HeRMES system, we suggested that MRAM be
used to store file system metadata [27]. We noted that
metadata overhead for a file system is 1–2 percent (or
600 MB of RAM for 60 GB of storage), and suggested the
space requirements could be reduced using various com-
pression schemes and algorithms. Edel,et al. demon-
strated that inode storage space could be reduced by an
order of magnitude (from 128 bytes per inode to between
15 and 20 bytes) [16] by stripping out unused fields and
gamma-encoding others. They also found that there was
no significant difference in performance compared to non-
compressed metadata—the space saved by compressing
metadata was nearly free.

Conquest [49], another non-volatile memory-based file
system, utilizes persistent RAM for storage to alleviate disk
traffic. In addition to metadata, Conquest stores all small
files in persistent RAM. Unlike HeRMES and LiFS, which
plan to utilize MRAM, Conquest has explored the use
of battery-backed DRAM as its form of persistent RAM.
Also, Conquest uses a traditional hierarchical file system,
and lacks the advanced file system features facilitated by
utilizing persistent RAM.

5.3. Advanced Commercial File Systems

WinFS is Microsoft’s in-development file system, for
which they have published a preliminary description of
planned features1. WinFS appears to be a marriage of a
database for metadata and NTFS for file stream perfor-
mance, akin to our LiFS prototype usage of a database and
the underlying Linux file system for data storage. Initial
plans call for the file system to reside in a subdirectory of
the “main” file system, rather than completely replacing the
original file system. A key rationale for the file system
is the ability to search and share attributes and data from
diverse sources such as a user’s address book, song files,
and other material. The API is object-oriented; objects are
called Items. Items cover a full range of granularity from
simple descriptions, such as “author”, to collections such
as folders. The database backing allows SQL-type queries,
XPATH searches [12], and additional power coming from

1This comes with the caveat that all is sub-
ject to change. Further information is available at
http://longhorn.msdn.microsoft.com/portal nav.htm

108

Microsoft’s OPATH, a query language designed for a di-
rected acyclic graph of objects [36].

Apple Computer’s Spotlight technology will ship in
2005 with their new Tiger operating system [2]. Spotlight
is a metadata and content indexing system that is integrated
into the HFS+ file system. As with WinFS, metadata is
stored in a database; Spotlight indexes file content and in-
cludes the results in the database as well. The system in-
dexes a file when it is created, saved, moved, copied, or
deleted. Spotlight providesplugins to extract content and
attributes from well-known file types such as Word and
PDF documents, images, movies, email, and contact lists.
As with the Semantic File System’s transducers, a user can
write his/her own file type-specific plugin. Apple provides
simple command line tools to query for files based on at-
tributes and content, or to query the metadata description
for a file. Apple’s approach could benefit from a LiFS-
like linking mechanism with metadata allowing relation-
ships between content to be expressed; Spotlight currently
only allows indexing on files, not the links between them.

Sun Microsystems has designed their file system, ZFS,
for larger capacity, faster operation, and consistency check-
ing, with reduced administration costs. Moreover, ZFS al-
lows administrators to configure individual file systems for
users or application, all allocated from a single pool of stor-
age [1]. Like ZFS, LiFS allows for the definition of unique
and dynamic file systems per user or per application by
virtue of links with attributes. Thus, it is possible to create
file systems on demand utilizing either system. However,
ZFS does not contain the rich metadata constructs present
in LiFS.

5.4. Active Infrastructures

There have been several document management sys-
tems that have embodied concepts similar to those used
in LiFS. Dourish, et al.’s active document management
system called Placeless Documents includes both passive
name/value properties and active properties attached to
documents [14]. Each active property consists of a name
and an executable Java object. Sample activities include
automatic backup, versioning, and consistency checking of
document copies. Execution of active properties can be
triggered by requests such as read, write, or delete in a
way similar to LiFS file triggers. Dourish,et al. note that
the composition of active properties can create significant
complexities since a single request can trigger multiple ac-
tions. The issue of composition of active properties on doc-
uments is very similar to that of file triggers, and a similar
approach can be taken to simplify the issue of composi-
tion. Placeless Documents uses a two-pronged approach
in which properties are separated into three phases and are
then explicitly ordered. The three phases are the verify,

perform, and notify phase. Properties run during the ver-
ify phase are those which are involved in deciding whether
a specific operation is allowed, such as a property grant-
ing access permission. Properties run during the perform
phase are those that carry out an operation itself such as
a compressed read. Lastly, properties run during the no-
tify phase are those which are involved with clean-up after
an operation or notification upon an operation’s comple-
tion. This two-pronged approach is directly applicable to
making the composition of file triggers more manageable.
LiFS’ file triggers are a generalization of active properties
in that they are integrated in a file system as opposed to a
document management system.

5.5. The Semantic Web

The original World Wide Web has expanded upon the
ability of traditional documents to convey knowledge by
adding links. Traditional references in documents, if given
at all, would require a reader to manually find the “referred
to” document. However, within the World Wide Web and
hypertext documents in general, links allow readers to auto-
matically traverse from one document to another when the
document refers to the other. The Semantic Web expands
upon this by allowing the links themselves to contain in-
formation about that particular relationship from one docu-
ment to another. On top of that basic framework, one may
devise ontologies to further convey knowledge in ways not
possible through previous means. [6].

To make the Semantic Web possible, authors at the W3C
have been developing various standards for its implemen-
tations in a way analogous to the standardized HTML and
HTTP for the World Wide Web. The group of Semantic
Web standards fall into layers, with URI and unicode on
the bottom, XML, name spaces, and schemas to comprise
the self-descriptive document layer in the middle, and the
RDF layer on top. The function of this layer is to provide a
common framework for metadata across applications. Atop
the three bottom layers are additional layers for ontology
vocabularies, logic, proof, and trust [5, 22]. The ontology
layer has room for different attempts to devise languages in
which to describe ontologies, such as OIL [17].

We envision three potential expectations for the Seman-
tic Web. For humans, it may be a readily accessible univer-
sal library. Moreover, and in line with the ideas of its inven-
tors, the Semantic Web has increased potential for machine
processing of its contents, and this introduces the other two
perspectives: the knowledge navigator and the federated
knowledge or database [26].

Whereas the Semantic Web allows for the addition of
richer metadata for the World Wide Web, it does so on a
global scale. LiFS allows for the same depth of knowledge
representation through its links and attributes. It accom-

109

plishes this within the scale of the local file system, which
to many users, contains the data oh which the semantics
of relationships matter most. Additionally, the Semantic
Web RDF format can be basically broken into tuples of a
subject, property, and object. Links within LiFS likewise
contain source, attributes and a target. Thus, we can ex-
press the same relationships locally that are possible given
the richness of the Semantic Web. Based on their similar-
ities, LiFS could make an excellent file system or storage
layer for Semantic Web data.

5.6. Digital Preservation

Digital objects do not survive until one makes a con-
scious effort to preserve them. This is in contrast to artifacts
such as books, papyrus, and cuneiform tablets which exist
until someone or something actively destroys them. One
reason for the ephemeral quality of digital media is unreli-
able physical media: the shelf life of magnetic tape, hard
drives, and CD-Rs can be less than a decade [11, 33, 3].
However, the loss of data due to unreliable media pales in
comparison to the loss of data due to the rapid obsoles-
cence caused by technological change. The rate of obso-
lescence is exacerbated by the fact that viewing of digi-
tal objects relies upon a complex infrastructure of software
that is itself subject to frequent changes. Moreover, dig-
ital objects are often related to other digital objects that
might change names or disappear entirely [7]. There are
now large national and international efforts to address these
issues; these efforts aim to provide standards for an exhaus-
tive list of aspects for digital preservation in museums and
libraries [46, 23, 44].

Trusted digital repositories [37] adhering to the now
dominant international standard of the OAIS Reference
Model [13] are an important component of digital preser-
vation. Examples of digital repositories are DSpace [42],
a collaboration of MIT and HP, New Zealand’s Greenstone
Digital Library Software [20], and Fedora [40], which is
developed by the University of Virginia and Cornell. Com-
mon challenges of these digital repositories are scalability,
interoperability with other repositories, and efficient work-
flow support for the entry (also calledingest) of large num-
bers of digital objects.

All these digital repositories are designed for use on an
institutional level. However, the combination of unreliable
storage and obsolescence unintentionally destroys much of
digital media long before it can be considered for digital li-
braries. Personal correspondence and images that survived
from earlier times form a significant part of our cultural
heritage [24]. Today, personal correspondence in the form
of email and chats as well as personal photos and movies
are largely kept on home computers that neither meet stan-
dards nor follow practices of national digital libraries and

are therefore unlikely to survive. In the future our period
will be referred to as the “digital dark ages,” according to
Stewart Brand [10] and the list of significant losses of in-
valuable digital data during the last thirty years is daunt-
ing [45].

The design of LiFS provides the infrastructure to make
digital preservation an integral part of file systems. Links
and attributes can be used to explicitly represent the de-
pendencies of digital objects on the software infrastruc-
ture thereby preventing accidental obsolescence or at least
alert users to obsolescence events introduced by a particular
change in the software infrastructure. Our hope is that this
will make it easier for users to maintain good digital preser-
vation practices so that at least the data that users want to
preserve actually survives.

6. Conclusions and Future Research

LiFS is currently in an initial prototype state. However,
the design and implementation work has already produced
a number of new concepts and interesting challenges that
are very encouraging. As we illustrated in Section 3, main-
taining relational links and attributes in file system meta-
data turns out to be useful. Provenance links and attributes
can embed local files into either the Web’s hyperlink struc-
ture or threads of email or chats allowing for a new level
of integrated search for Web resources, personal communi-
cation, and local files. Links are also a useful mechanism
for prefetching, hoarding, and virtualization. File attributes
provide a simple but powerful infrastructure for application
integration. File triggers allow for a straightforward imple-
mentation of a variety of useful file system services.

Our initial work suggests many avenues for future re-
search. In the near term, we plan to investigate efficient
graph data structures in place of a database. Other avenues
for exploration include deployment on a distributed system,
providing a means for seamless search and traversal across
both local and distributed links. This opens up a further
issue of metadata placement among nodes to balance load
and avoid hot spots. We will explore how we can leverage
outcomes of the Semantic Web standardization efforts [48]
for this effort. For example, the design of the LiFS query
language is inspired by early results of an RDF query lan-
guage [47].

As an alternative to traditional indexed searches we are
investigating the use of multi-point indices which are im-
plemented via index indirection. Indices in such a sys-
tem would be organized hierarchically starting from a root
index which points further down the tree. On a file sys-
tem with arbitrary views of its structure for each user, this
approach would be more secure because it would limit a
user’s searching of other users’ structures. Implementing
such a level of security with traditional indices would re-

110

quire the index to carry access information or to cross-
reference with the system, both of which slow down search-
ing. Additionally, we are hoping multi-point indices will
offer compelling efficiency improvements.

File triggers present many issues which are yet unre-
solved; among them are the issues of protection and com-
position. Out of the approaches we have investigated, the
Open Kernel Environment (OKE) [9] seems a likely can-
didate to resolve the related issues. The OKE uses a com-
bination of trust management, a customized version of C
(OKE-Cyclone), and a specialized compiler to provide pro-
tection with minimal runtime cost. The protection provided
includes control over resources like processing time, stack
space, and access to kernel data structures. Ideally, there
would be a system of rules which predetermines an upper
bound on the resource requirements of a trigger, partially at
compile time and partially at run time, and then this upper
bound would be used by the OKE as a hard limit on the
resource usage of the trigger.

The addition of links and attributes to the file system
opens the possibility of exploring file relationships to im-
prove many applications, including data mining and visual-
ization. Beyond simply improving applications, however,
LiFS has the potential to improve the user experience by
making data easier to organize, find, and retrieve. LiFS pro-
vides a rich infrastructure of files with attributes connected
by attributed links that can be used and shared by current
programs as well as applications that are as yet unimagined.

Acknowledgments

This research was funded in part by National Science
Foundation grant 0306650. Additional funding for the
Storage Systems Research Center was provided by sup-
port from Engenio, Hewlett Packard Laboratories, Hitachi
Global Storage Technologies, IBM Research, Intel, Mi-
crosoft Research, Network Appliance and Veritas.

References

[1] Anonymous. In a class by itself - the Solaris 10 operating
system. Technical report, Sun Microsystems, Nov. 2004.

[2] Apple Developer Connection. Working with Spotlight.
http://developer.apple.com/macosx/tiger/spotlight.html,
2004.

[3] Associated Press. CDs, DVDs not so immortal. In
CNN.com, May 6 2004. last viewed on Jan 9, 2005 at
http://www.longnow.org/10klibrary/darkarticles/ArtCDROT.htm.

[4] S. Beattie, S. Arnold, C. Cowan, P. Wagle, C. Wright, and
A. Shostack. Timing the application of security patches
for optimal uptime. InUSENIX 16th Systems Administra-
tion Conference (LISA 2002), Philadelphia, PA, Dec. 2002.
USENIX.

[5] T. Berners-Lee. Semantic web roadmap, Sept. 1998. Avail-
able at http://www.w3.org/DesignIssues/Semantic.html.

[6] T. Berners-Lee and E. Miller. The semantic web lifts off.
ERCIM News, 51, Oct. 2002.

[7] H. Besser. Digital longevity. In M. Sitts, editor,Handbook
for Digital Projects: A Management Tool for Preservaton
and Access, chapter 9, pages 164–176. Andover: Northeast
Document Conservation Center, 2000.

[8] H. Boeve, C. Bruynseraede, J. Das, K. Dessein, G. Borghs,
J. De Boeck, R. C. Sousa, L. V. Melo, and P. P. Freitas.
Technology assessment for the implementation of mag-
netoresistive elements with semiconductor components in
magnetic random access memory (MRAM) architectures.
IEEE Transactions on Magnetics, 35(5):2820–2825, Sept.
1999.

[9] H. Bos and B. Samwel. Safe kernel programming in the
OKE. In Proceedings of OPENARCH’02, New York, USA,
2002.

[10] S. Brand. Written on the wind. Civilization
Magazine, 5(5), October/November 1998. avail-
able at http://web.archive.org/web/19991110120021/
www.civmag.com/articles/C9811F04.html.

[11] F. R. Byers. Care and handling of CDs and
DVDs: A guide for librarians and archivists. Re-
port 121, Council on Library and Information Re-
sources and National Institute of Standards and Technol-
ogy, October 2003. Last viewed on Jan 5, 2005 at
http://www.clir.org/pubs/reports/pub121/contents.html.

[12] J. Clark and S. DeRose. XML path language (xpath), 1999.
[13] Consultative Committee for Space Data Systems. Refer-

ence model for an open archival information system (oais).
Standards Recommendation 650.0-B-1 (Bluebook, Issue 1),
CCSDS, January 2002. This Recommendation has been
adopted as ISO 14721:2003.

[14] P. Dourish, W. K. Edwards, J. Howell, A. LaMarca,
J. Lamping, K. Petersen, M. Salisbury, D. Terry, and
J. Thornton. A programming model for active documents.
In Proceedings of the 13th Annual ACM Symposium on
User Interface Software and Technology (UIST ’00), pages
41–50, 2000.

[15] Ecamm Network. DownloadComment software for Mac
OS X. http://www.ecamm.com/mac/free/, 2004.

[16] N. K. Edel, D. Tuteja, E. L. Mlller, and S. A. Brandt.
MRAMFS: a compressing file system for non-volatile
RAM. In Proceedings of the 12th International Symposium
on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS ’04), pages 596–
603, Oct. 2004.

[17] D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness,
and P. Patel-Schneider. Oil: An ontology infrastructure for
the semantic web.IEEE Intelligent Systems, 16(2):38–44,
2001.

[18] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W.
O’Toole, Jr. Semantic file systems. InProceedings of
the 13th ACM Symposium on Operating Systems Principles
(SOSP ’91), pages 16–25. ACM, Oct. 1991.

[19] P. Gupta, H. Krishnan, C. P. Wright, M. Zubair, J. Dave, and
E. Zadok. Versatility and Unix Semantics in a Fan-Out Uni-
fication File System. Technical Report FSL-04-01, Com-

111

puter Science Department, Stony Brook University, January
2004.

[20] K. J. Jon, D. Bainbridge, and I. H. Witten. The de-
sign of greenstone 3: An agent based dynamic dig-
ital library. Technical report, Department of Com-
puter Science, University of Waikato, Hamilton New
Zealand, December 2002. last viewed on Jan 9, 2005 at
http://www.sadl.uleth.ca/greenstone3/gs3design.pdf.

[21] P.-H. Kamp and R. N. Watson. Jails: Confining the omnipo-
tent root. InProceedings of the 2nd International System
Administration and Networking Conference (SANE 2000),
Maastricht, Netherlands, May 2000.

[22] M.-R. Koivunen and E. Miller. W3C semantic web activity,
Nov. 2001.

[23] Library of Congress. Library of Congress an-
nounces awards of $15 million to begin build-
ing a network of partners for digital preservation.
http://www.digitalpreservation.gov/about/pr093004.html,
September, 30 2004.

[24] C. Lynch. The battle to define the future of the book in the
digital world. First Monday, 6(6), June 2001. available at
http://firstmonday.org/issues/issue66/lynch/index.html.

[25] M. Mahalingam, C. Tang, and Z. Xu. Towards a semantic,
deep archival file system. Technical Report HPL-2002-199,
HP Laboratories, Palo Alto, July 2002.

[26] C. C. Marshall and F. M. Shipman. Which semantic web?
In HYPERTEXT ’03: Proceedings of the fourteenth ACM
conference on Hypertext and hypermedia, pages 57–66.
ACM Press, 2003.

[27] E. L. Miller, S. A. Brandt, and D. D. E. Long. HeR-
MES: High-performance reliable MRAM-enabled storage.
In Proceedings of the 8th IEEE Workshop on Hot Topics
in Operating Systems (HotOS-VIII), pages 83–87, Schloss
Elmau, Germany, May 2001.

[28] S. Nickell. GnomeStorage.
http://www.gnome.org/˜seth/storage/index.html, Octo-
ber 2004.

[29] M. A. Olson. The design and implementation of the Inver-
sion file system. InProceedings of the Winter 1993 USENIX
Technical Conference, pages 205–217, San Diego, Califor-
nia, USA, Jan. 1993.

[30] Open Source Application Foundation. What’s com-
pelling about Chandler: A current perspective.
http://www.osafoundation.org/ChandlerCompellingVision.htm.

[31] Y. Padioleau and O. Ridoux. A logic file system. InPro-
ceedings of the 2003 USENIX Annual Technical Confer-
ence, pages 99–112, San Antonio, TX, June 2003.

[32] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageR-
ank citation ranking: Bringing order to the web. Technical
Report 1999-66, Stanford, Nov. 1998.

[33] M. Pollitt. Ever decreasing circles. InThe Indepen-
dent, 21 April 2004. Last viewed on Jan 5, 2005 at
http://www.fbia.org/print.asp?ID=27963.

[34] D. Quan, D. Huynh, and D. R. Karger. Haystack:
A platform for authoring end user semantic web ap-
plications. In 2nd International Semantic Web Con-
ference (ISWC2003), Sanibel Island, FL, USA, Oct
20-23 2003. Last viewed on Jan 10, 2005 at
http://haystack.lcs.mit.edu/papers/iswc2003-haystack.pdf.

[35] H. Reiser. Future vision.
http://www.namesys.com/whitepaper.html, October
2004.

[36] T. Rizzo and S. Grimaldi. Data access and storage developer
center: An introduction to “WinFS” OPath, 2004.

[37] RLG. Trusted digital repositories. Report, RLG-OCLC,
Mountain View, CA, May 2002. Last viewed on Jan 9, 2005
at http://www.rlg.org/en/page.php?PageID=583.

[38] D. Schade, P. Dowler, R. Zingle, D. Durand, S. Gaudet,
N. Hill, S. Jaeger, and D. Bohlender. A data mining model
for astronomy. InAstronomical Data Analysis Software and
Systems IX, pages 3–30, San Francisco, CA, 2000.

[39] R. Springmeyer, N. Werner, and J. Long. Mining scientific
data archives through metadata generation. InFirst IEEE
Metadata Conference, Apr. 1996.

[40] T. Staples. The Fedora Project: An open-source digi-
tal object repository management system.D-Lib Maga-
zine, 9(4), April 2003. Last viewed on Jan 9, 2005 at
http://www.dlib.org/dlib/april03/staples/04staples.html.

[41] M. Szeredi. File System in User Space README.
http://www.stillhq.com/extracted/fuse/README, 2003.

[42] R. Tansley, M. Bass, M. Branschofsky, G. McClellan, and
D. Stuve. DSpace system documentation. Documentation,
MIT Libraries, August 10 2004.

[43] J. Teevan, C. Alvarado, M. S. Ackerman, and D. R. Karger.
The perfect search engine is not enough: a study of orien-
teering behavior in directed search. InProceedings of the
2004 Conference on Human Factors in Computing Systems
(CHI ’04), pages 415–422. ACM Press, 2004.

[44] The Joint Information Systems Committee. Supporting
digital preservation and asset management in institutions.
http://www.jisc.ac.uk/index.cfm?name=programme404,
October 2004.

[45] The Long Now Foundation. Digital dark age:
Digital data loss and preservation resources.
http://www.longnow.org/10klibrary/darkage.htm.

[46] U.S. National Archives & Records Admin-
istration. National Archives names two
companies to design an electronic archives.
http://www.archives.gov/mediadesk/pressreleases/nr04-
74.html, August 3 2004.

[47] w3c. W3C RDF Data Access Working Group.
http://www.w3.org/2001/sw/DataAccess/, October 2004.

[48] w3c. W3C semantic web. http://www.w3.org/2001/sw/,
October 2004.

[49] A.-I. A. Wang, G. H. Kuenning, P. Reiher, and G. J. Popek.
Conquest: Better performance through a disk/persistent-
RAM hybrid file system. InProceedings of the 2002
USENIX Annual Technical Conference, Monterey, CA, June
2002.

[50] J. C. Worsley and J. D. Drake.Practical PostgreSQL.
O’Reilly, 1st edition, 2002.

112

