
Long-Term Threats to Secure Archives

Mark W. Storer Kevin Greenan Ethan L. Miller
Storage Systems Research Center
University of California, Santa Cruz

mstorer@cs.ucsc.edu kmgreen@cs.ucsc.edu elm@cs.ucsc.edu

ABSTRACT
Archival storage systems are designed for a write-once, read-maybe
usage model which places an emphasis on the long-term preserva-
tion of their data contents. In contrast to traditional storage systems
in which data lifetimes are measured in months or possibly years,
data lifetimes in an archival system are measured in decades. Se-
cure archival storage has the added goal of providing controlled ac-
cess to its long-term contents. In contrast, public archival systems
aim to ensure that their contents are available to anyone.

Since secure archival storage systems must store data over much
longer periods of time, new threats emerge that affect the security
landscape in many novel, subtle ways. These security threats en-
danger the secrecy, availability and integrity of the archival storage
contents. Adequate understanding of these threats is essential to
effectively devise new policies and mechanisms to guard against
them. We discuss many of these threats in this new context to fill
this gap, and show how existing systems meet (or fail to meet)these
threats.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls; H.3 [Information
Systems]: Information Storage and Retrieval

General Terms
Design, Security

Keywords
secure storage, survivable storage, archival storage, secret splitting,
encryption, cryptography, threat modeling

1. INTRODUCTION
The drive to archive information in digital form brings new chal-

lenges. Recent legislation, such as Sarbanes-Oxley, have placed
strict demands on the preservation and retrieval properties of long-
term storage systems. Archival storage systems must meet specific
demands inherent to the usage model of write-once, read-maybe

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
StorageSS’06, October 30, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-552-5/06/0010 ...$5.00.

and long data lifetimes. In addition, there are novel security threats
that are unique to long-term storage.

Traditionally, the adversaries to storage security have been roughly
classified into two categories, passive and active. The active ad-
versary is a malicious entity that actively attempts to break in and
compromise an archive. In contrast, a passive adversary’s actions
are restricted to eavesdropping on communication channels. In the
realm of long-term storage, the long data lifetimes of the storage
contents suggest that time itself becomes an active adversary. It is
constantly working against the system and threatening to compro-
mise data. Throughout this discussion we will see that threats to
traditional data storage systems take on a different meaning when
viewed with the long view of the future that archival storagede-
mands.

Archival storage systems attempt to address the issues of longevity
that traditional storage systems have long ignored. As a result,
some have come to refer to our current era as the digital dark ages.
Danny Hillis noted [3], “For example, when we finally shut down
the old PDP-10 at the MIT Artificial Intelligence Lab, there was no
place to put files except onto mag tapes that are by now unreadable.
So we lost the world’s first text editor, the first vision and language
programs, and the early correspondence of the founders of artifi-
cial intelligence.” As our collective knowledge and artistic heritage
becomes increasingly digital, the need to preserve data indefinitely
becomes critical. For archival storage to succeed it is vital that we
have an understanding of the security threats it faces.

2. SECURITY THREATS
When dealing with archival storage, the time frames for datalife-

times extend from the rather short-term scale of months or years to
the longer-term scale of decades or even indefinite. The presence of
long data lifetimes introduces some unique security threats. Some
of these threats are variations on common concerns that takeon
new meaning in the area of archival storage while others are new
threats that traditional storage system are largely unaffected by.

2.1 Long-Term Secrecy
Secrecy in long-term storage presents a complex challenge.Of-

ten, systems that provide file secrecy do so through the use ofen-
cryption [8, 12, 14]. The use of encryption within a storage system
can be described in terms of the encrypted data’s relevant lifetime.
In long-lived encryption, such as for an encrypted file in an archival
storage system, the data is persistent and the key must be preserved
for an indefinite period of time. In contrast, an example of short-
lived encryption would be a communication channel that is secured
through the use of encryption and a key that is relevant only for the
duration of the session. Long-lived encryption introducesa number
of security threats.

In an archival storage system, data can be very difficult to re-
produce. The software, hardware and even users that produced the
data may no longer be available. Encryption keys are a singlepoint
of failure and key loss is effectively equivalent to data deletion.

With the long-data lifetimes of archival storage, the use ofen-
cryption usually introduces the related problem of re-encryption at
a future date. A number of scenarios could introduce the needto
re-encrypt the contents of long-term file storage, including key rota-
tions, compromised keys, compromised encryption algorithms and
the need for access revocation. In some cases, re-encryption may
only be needed for a few files, but in other cases, many petabytes
of data might need re-encryption.

The re-encryption of large amounts of data must be done in a
timely manner, especially if required for a key compromise or al-
gorithm exploit. However, the time to apply the new encryption
technique to a large amount of data will probably not be the limit-
ing factor; rather, issues with maintaining keys and actually reading
all of the old data quickly will be critical. Further, optimizations to
speed the migration likely come with an associated management
cost. For example, if a system chooses to save time by encrypting
over the old algorithm, it must have a way of dealing with key his-
tories and key distribution. In contrast, if the system chooses to de-
crypt the data before applying the new algorithm then it musthave
access to the users’ encryption keys. Further, this access must must
prevent a malicious user with system-level access from accessing
data she is not authorized to view.

Even the traditional security threats and precautions associated
with keyed encryption are made more difficult by the long datalife-
times found in archival storage. For example, cryptographyis only
computationally bound and it is very difficult to predict thefuture
of cryptography and cryptanalysis. Technology such as quantum
computing could usher in drastic changes to cryptography, and a
long-term archival system which provides secrecy through encryp-
tion must be capable of handling those changes.

2.2 Locating Data
While the archival model of storage is write-once, read-maybe,

users must still be able to find the data they stored should they de-
sire to read it. Perhaps due to the fact that archival storageis not
intended to be a user’s primary data storage solution, it suffers from
the potential problem of users forgetting where their data is stored.
If users are unable to locate their data within an archival system,
the availability aspect of security has been violated. For example,
the Sarbanes-Oxley act specifies not only that data must be retained
for a given period of time but also that it be retrievable in a timely
manner.

One aspect of this problem lies in the location of data indices.
A centralized index, maintained alongside the storage contents, has
the benefit of relieving the user of remembering the details associ-
ated with storing their data. The centralized index is similar to a
client that knows which bank their safety deposit box is in but not
which box is theirs. This client might rely on a bank-maintained
index which maps clients to their safety deposit box. One possible
danger with this strategy is that an attacker that can compromise the
centralized index is able to perform a much more targeted attack.

Another option, in contrast to the central index, places theonus
of maintaining an index upon the client. In the safety deposit box
analogy, the client would know which bank the safety depositbox
is in as well as the location or ID of the safety deposit box itself. In
this manner, even if a malicious person gained access to the vault,
he would still have a brute-force problem of locating a specific box.
With the personal index strategy, an attacker that compromises one

user’s index learns very little about the other users’ data.This strat-
egy suffers in that the client then has more long-term responsibility.

2.3 Authentication and User Accounts
In long-term secure storage, authentication must cope witha few

scenarios not usually encountered in other storage arenas.If the
storage system plans on providing file secrecy as part of security
then it follows that the users must be able to authenticate them-
selves to the system as a first step in authorization. In otherwords,
the users must show who they are before the system can determine
what they are allowed to do.

A challenge unique to long-term secure storage is the problem
that the user primarily attached to the data may no longer be available—
for example, the user may be dead. Suppose a user wants to se-
curely store their will in an archival storage system. The subse-
quent read may take place decades later by the owner’s next ofkin
after the owner had passed away. A secure, archival storage sys-
tem must thus be able to authenticate new users and establishtheir
relationship to resources attached to existing users.

Additionally, if an archival storage system is able to authenticate
a user to the system and determine her access permissions, itmust
be able to provide access to the entitled data in a meaningfulfash-
ion. For example, suppose a system utilizes encryption in order to
provide file secrecy. If a user with rights to the data can viewthe
file but has no access to the encryption key, she still has effectively
no access. To continue the previous example, if a deceased user’s
next of kin proves his legal right to the data, the secrecy mecha-
nism must function in the complete absence of the user that wrote
the file.

2.4 Integrity Guarantees
Due to the rather short lifetime and limited reliability of tradi-

tional storage components, data begins to degrade as soon asit is
placed on media. In short-term systems, this threat is relatively low
because a great deal of frequently used data is accessed and up-
dated on a regular basis. Archival storage assumes a write-once,
read-maybe access pattern, thus the integrity of the data inthe sys-
tem must be actively checked at regular intervals.

Integrity checks often come in the form ofdisk scrubbing (also
called auditing) procedures. A scrubbing procedure periodically
scans sections of the data and uses strong hashes to detect corrup-
tion, recovering data that is damaged. A variety of problemscan
arise related to these scrubbing procedures. First, an overactive
scrubbing procedure can contribute to media failures. In addition,
an under-active scrubbing procedure may provide no utilityover
the absence of disk scrubbing. Xin,et al. analyzed these prob-
lems [23], showing that opportunistic scrubbing provides agood
balance between overactive and under-active techniques. Unfortu-
nately, opportunistic disk scrubbing policies require scrubbing re-
quests to piggy-back on regular access requests. In a write-once,
read-maybe system such policies may not be sufficient.

In the long term, cryptographic hashes may not be sufficient for
integrity checking procedures. Given a reasonable amount of time,
it is possible for an adversary to find collisions in the hash used for
disk scrubbing. The adversary can update the original data with
incorrect data, thus fooling the integrity checking procedure.

Compared to the internal data integrity problem of data within
an archive becoming corrupted, distributed storage systems have an
additional external integrity challenge. These systems must have a
method of ensuring that the other archives in the distributed sys-
tem are behaving properly. In such systems, one popular method
of monitoring external integrity is through the use of a challenge-

response protocol. Of course, a secure system cannot rely onpro-
tocols that compare data in-the-clear.

Some have suggested the use of algebraic signatures as a way
of performing integrity checks without exposing too much infor-
mation [16]. Algebraic signatures have the property that the sig-
natures of the parity equals the parity of the data signatures. For
example, suppose a RAID stripe uses single parity as an erasure
encoding, where the data symbolsd1,d2, ...,dm compute the parity
p. The XOR-sum of the algebraic signatures of the data,sig(d1)⊕
sig(d2)⊕ ...⊕ sig(dm), equals the signature of the parity element
p. This scheme can also be extended to multiple erasure correcting
codes, such as XOR-based Reed-Solomon.

As long as data is striped across the archives into reliability groups,
a restricted distributed disk scrubbing algorithm can be used with-
out disclosing too much information. If the disk scrubbing algo-
rithm runs unrestricted, an adversary has the potential to extract
information without proper authentication. For example, suppose
that any party that can authenticate with an archive can submit
an unbounded number of signature requests. If an adversary con-
structs enough sets of overlapping signature requests to anarchive,
then the sets form a system of linear equations that can be solved
to reveal data.

2.5 Slow Attacks
When dealing with archival storage, the time frames for datalife-

times extend from the rather short-term scale of months and years
to the longer-term scale of decades. This long lifetime gives at-
tackers a much larger window within which they can attempt to
compromise a security system. With archival storage an assailant
might have several decades of time to conduct an attack.

One difficulty with slow attacks is intrusion detection. If the at-
tack is methodical enough to make only the slightest of changes
at any one time and each step was spaced far enough apart, it
would be difficult to detect by traditional signature matching al-
gorithms. This technique compares audit data and network activity
to a database of known attacks. Thus, if the audit data contains
a slight enough anomaly, it may not be enough to trigger a match
with a known attack signature.

Another difficulty with detecting slow attacks is the problem of
maintaining attack history. Security logging is especially impor-
tant for systems that utilize secret-sharing algorithms such as PA-
SIS [22], POTSHARDS [17] and others [18, 24]. Secret-sharing al-
gorithms, while provably secure, rely on keeping a sufficient num-
ber of secret shares secure. This method of insuring file secrecy
thus necessitates the maintenance of a history of compromises.

An example of the threat that slow attack presents is as follows.
Suppose a file is protected using a 3/5 scheme in which the file is
split into five pieces, three of which are required to rebuildthe file.
Now suppose that an attacker has compromised the system and ob-
tained one of the shares. A decade later that same attacker obtains
a second share. Due to the provably secure nature of the secret-
sharing algorithms it can be shown that the attacker can gainno
information about the data. However the system must deal with the
fact that the attacker is making progress. With one more share the
file would be revealed. Thus, the system must either immediately
deal with any compromise or maintain a history of compromises in
order to intelligently schedule corrective action.

2.6 Migration and Recovery
Due to the long data lifetimes of archival data, long-term storage

systems will witness events that require data to be moved between
archives. Reasons for this change include the inevitable failure

or obsolesce of hardware, system updates and possibly even data
movement as a security factor.

In archival systems as in more traditional storage, hardware fail-
ure is inevitable [23]. A long-term system must thus be immune
to the failure of any given component. Additionally, the actof re-
covery and migration of effected data to new hardware shouldnot
compromise the availability aspect of security.

Even if hardware failure were not a factor, storage technology
changes at a rapid pace. Storage systems today are quite differ-
ent from those of decades past in terms of performance, capacity,
media and interfaces. It is not a stretch of the imagination to as-
sume that decades from now, today’s technology will seem just as
anachronistic as a punch card or drum storage device looks today.
A storage system that is intended to keep data secure for several
decades must thus be able to adapt to these changes by incorporat-
ing new technology and migrating data from outdated components.
However, it must do so without allowing any party to actuallyre-
cover data.

Another possibility for the role of data migration in a secure
long-term storage system is to use migration to effect greater secu-
rity. Moving data would create a moving target that could help to
limit an adversary’s ability to launch a targeted attack. This strat-
egy might help to mitigate the effectiveness of the types of slow
attacks discussed in section 2.5.

3. STORAGE SYSTEMS
In this section we examine a number of storage systems and how

they deal with the security threats that have been outlined in the
previous section. The sampling of systems presented below should
not be considered an exhaustive list but rather a representation of
the diversity within the storage field. Most of these systemsare
not specifically archival systems but they provide a useful perspec-
tive on the shortcomings of traditional storage systems in long-term
roles. Examining the appropriateness of each system for thetask of
long-term secure storage illustrates the need to design a storage
systems expressively for the purpose of archival storage. The capa-
bilities of each system with respect to the discussion presented in
Section 2 are summarized in Table 1.

3.1 FreeNet
FreeNet [4] is a peer to peer distribution system which in many

ways is a stark contrast to archival storage. While archivalstorage
is concerned with the long-term persistence of data, FreeNet is ex-
pressively created for distributing content and makes little effort to
maintain its contents’ persistence.

One of the primary goals of FreeNet is to allow anonymous dis-
tribution of data. It utilizes encryption over all stored files but this
is primarily to provide a host with plausible deniability over their
contents and not for secrecy.

FreeNet relies on local data-stores and dynamic routing tables to
locate data. File migration is handled in a similar fashion.As re-
quests travel back through the system the requested data is copied
to each host along the request path. Thus hot data is quickly repli-
cated while the space occupied by cold data is eventually reclaimed.
This is clearly not conducive to long-term storage. Additionally, in-
tegrity in FreeNet is only assured through hashing of short strings
which accompany the data. These are susceptible to dictionary at-
tacks due to their short length.

3.2 OceanStore
Oceanstore [9] is a global, persistent distributed storagesystem,

which stores data across sets of untrusted nodes. The system’s ob-
jective is to provide an all-in-one, secure, highly- available, global

Secrecy Authorization Integrity Slow Attacks Migration
FreeNet encryption none hashing access based

OceanStore encryption signatures versioning access based
FarSite encryption certificates merkle trees continuous relocation
PAST encryption smart-cards immutable files

Publius encryption password (delete) retrieval based
SNAD / Plutus encryption encryption hashing

GridSharing secret sharing replication
PASIS secret sharing repair agents, auditing

CleverSafe secret sharing high replication degree
POTSHARDS secret sharing pluggable algebraic signatures

LOCKSS none vote based checking site crawling
Glacier node auth. signatures

Venti retrieval

Table 1: Capability overview of a variety of storage systems. Each of the systems discussed is listed along with a brief description of
the mechanism used to provide the stated aspect of long-termsecurity.

storage architecture. Oceanstore is designed around the assumption
that all of the nodes are untrusted and failure is inevitable. Data
protection is achieved through encryption and replication.

3.3 FarSite
Farsite [1] was designed to serve the same function as a central-

ized file server. It utilizes a distributed architecture that attempts to
utilize the unused resources across a network of loosely coupled,
insecure and unreliable machines.

Secrecy in Farsite is accomplished through the explicit useof
encryption. At file creation a symmetric key is generated anden-
crypted with the public-keys of users authorized to access the file.

Locating data involves communicating with a directory group
member. These nodes maintain the directory structure for a virtual
hierarchy. In Farsite, files are presented in a hierarchicalview but
there can be multiple views of the data. Each view has its own
root maintained by a set of directory root members. For long-term
storage this makes locating data vulnerable to the failure of the di-
rectory group members. If there is an unlimited allowable number
of roots however, it may be possible for each client to maintain its
own view of the system.

Reliability and integrity come from replication and the useof
Merkle trees respectively. File migration is also providedby the
replication mechanism.

3.4 PAST
The PAST [6] system utilizes a overlay network to connect peers

across the Internet with the aim of providing persistent storage with
strong security. PAST achieves a high level of secrecy through
the use of encryption on the client and authorization is achieved
through judicious use of certificates. To facilitate this, PAST uti-
lizes smart-cards to assist with the certificate operations. In addi-
tion to the usual concerns with long-lived encryption, the reliance
on specialized hardware raises other concerns for long-term preser-
vation. The authors do state that the role of smart-cards could be
performed by trusted services.

Read requests are based on fileIds and routed using the Pas-
try [15] routing and location scheme. The smart-card is usedin
many aspects of this process. From naming integrity and quota
management the smart-card is an essential token for system interac-
tion. While convenient, for the long-term viability of thissolution
there must be a procedure for dealing with a lost smart-card.

Integrity and persistence in PAST is achieved through a two level
approach. The first level attempts to prevent unwanted changes

by making all data in the system immutable. The second level is
through the randomized replication of data.

3.5 Publius
Publius [20] is another publishing system that gives the user a

familiar URL based interface to system contents. While it isused
to publish content it still utilizes encryption over the contents of
the file as well secret splitting to manage the keys. Passwords are
used to control the deletion and updating of contents. As discussed
earlier, this reliance on encryption and passwords is a source of
concern for long-term storage. The concern is somewhat mitigated
as retrieval is limited to parsing a URL and the password is only
used for deleting and changing contents. If the password is lost, the
worst case scenario is that the data becomes effectively immutable.

In the Publius system, integrity is checked during retrieval. With
a long-term archival system there are no guarantees for how fre-
quently data will be accessed so this would be another area ofcon-
cern. One possible solution would be to have an automated system
which requests data for the sole purpose of insuring data integrity.

3.6 SNAD and Plutus
Secure Network-Attached Disk (SNAD) [12] was designed for

secure storage. As such, it does not include any facilities for long-
term archival usage beyond those present in many workstation-type
file systems. Data location is straightforward; SNAD encrypts files
individually, so any system that can store directory information in
files, such as FFS [11] and ext3 [19] has location facilities.

Secrecy in SNAD is ensured using strong symmetric cryptogra-
phy, with authorization accomplished using a public key infrastruc-
ture. Integrity in SNAD is ensured when the data is read through
the use of hashes. Only a user that can decrypt the data can ver-
ify the hash, however, making it difficult to use SNAD for archival
storage.

Since SNAD is intended for workstation file system use, it has
few mechanisms aimed to ensure long-term data survival. Forex-
ample, there is no mechanism to recover a lost private key. Sim-
ilarly, there is no defense against “slow attacks;” however, it is
unlikely that a slow attack would succeed because SNAD is only
vulnerable to discovery of users’ private keys.

Other workstation-type secure file systems, such as Plutus [8],
have similar properties with respect to long-term data survival. They
ensure that data will never be revealed without the appropriate key,
but are not appropriate for long-term data storage because they do

not address issues of key loss, algorithm compromise, and data
longevity.

3.7 GridSharing and CleverSafe
The work of Subbiah and Bough [18] utilizes secret sharing to

build a secure and fault tolerant data storage. While their system
will function with a variety of secret sharing algorithms, the Grid-
Sharing system is designed for low-latency access and thus their
testing shows that XOR secret sharing is the only viable algorithm.
While the use of secret sharing provides secrecy without theneed
for encryption, the GridSharing system shows that its use may be
limited in low-latency storage. The XOR algorithm in its basic
form is anm of m scheme. This may be a problem in long-term
storage since the data could not survive the loss of any of thesecret
shares.

Integrity in GridSharing is achieved through the use of replica-
tion. Using XOR based secret splitting would require very high
levels of replication as each secret share is required for accurate
reconstruction and thus the loss or corruption of any singleshare
could compromise the entire file.

CleverSafe [5] has similar goals for data storage, protecting data
using a custom-designed information dispersal algorithm to gener-
ate shares. As with GridSharing, CleverSafe provides little func-
tionality to rebuild lost shares. Thus, CleverSafe cannot store data
for long periods of time without extensive user intervention to en-
sure that sufficient data shares survive for long periods of time.

Both GridSharing and CleverSafe suffer from the rebuildingprob-
lem that, in order to recover lost shares, the system must first re-
build the data that contains the missing shares. While this makes
system implementation easier, it reduces security and longevity by
exposing the system to long-term decay.

3.8 PASIS
The PASIS [22] architecture is centered around providing a highly-

available, fault-tolerant, secure storage system. Secrecy and redun-
dancy is provided using a general threshold sharing scheme such as
Shamir’s secret sharing scheme. Since the shares are placedacross
storage nodes, an intruder would have to compromise severalstor-
age nodes in order to compromise data secrecy. PASIS relies on a
directory service to translate file objects into the object shares and
their respective location.

Integrity checking and correction is provided in PASIS through
the use of a repair agent on each storage node. The status of each
archive is actively monitored as part of the system’s aggressive self-
maintenance features. Additionally, as each request is considered
suspect, PASIS also employs a system of versioning and request
auditing. Audit logs allow the system to roll back any changes
committed by a malicious user within a given window. This still
raises the issue of how long to maintain the audit logs. In long-term
archival storage an intruder may be able to space out the changes in
a such a way that by the time the change is detected, the audit logs
required to undo the damage are no longer available.

Unlike CleverSafe and GridSharing, PASIS can rebuild lost shares
in a secure way [21]. However, this approach is computationally
intensive and still may leak some information if sufficiently many
servers are compromised; the number of servers that must be com-
promised is lower than the number of servers required to rebuild
the data.

3.9 POTSHARDS
The POTSHARDS [17] system shifts data secrecy from encryp-

tion to authentication by using secret splitting to store secret shares
across multiple authentication domains. Additionally, with proper

authorization it is possible for the archives to collude andrecon-
struct any user’s data or even all data stored in the system.

Before distributing shares across a set of archives, files are trans-
formed by splitting the file into fragments using secret sharing al-
gorithms. User- level redundancy is provided by a second level
of secret-splitting optimized for redundancy. The result is a set of
shards which are stored across a disjoint set of erasure encoded fail-
ure domains providing long-term, system-level redundancy. The
shards in a lost archive can be rebuilt without revealing data be-
cause there is no way for any archive to discover which shardsmake
up which objects.

Each client is responsible for storing and preserving an index
over its own files. The user index is stored in the system so that it
can be reconstructed given proper authorization should it become
lost or corrupted. A system-level index holds a shard to archive
mapping along with the information needed to reconstruct failed
archives.

Each archive in the POTSHARDS system is responsible for main-
taining the integrity of its own data. Archives check the integrity of
their data by storing a cryptographic hash over sets of shards. In or-
der to ensure each archive is actively performing integritychecks,
an outside party can perform distributed integrity checks using al-
gebraic signatures.

3.10 LOCKSS
LOCKSS [10] is a content distribution system designed for li-

braries that mimics the behavior of a web cache. As the purpose of
LOCKSS is to ensure public access to data, it specifically does not
include a secrecy aspect for securing the contents of files.

The data location aspects of LOCKSS are in keeping with its
web-cache like behavior. Since the data appears to originate from
its originally published source, the system does not present its own
index to the user. Instead, it relies upon existing indexingsystems
and web content directories.

Integrity guarantees are provided through a voting mechanism.
The system’s contents are organized in archival units and a policy
of voting uses cooperating systems to check the integrity ofits AUs
and repair any damage that may occur.

As with integrity checking, file replication is an active process
within LOCKSS. In a three step process, nodes collect newly pub-
lished data from journal websites, distribute the data by acting as
a proxy cache for local requests and preserve their contentsthough
the voting procedure with other LOCKSS systems.

3.11 Glacier
Glacier [7] is a decentralized storage system that relies ona large

number of replicas to insure availability. It was designed based on
for environment described by Bolosky [2] which found an expected
node lifetime of 290 days.

There is no specific encryption mechanism for file secrecy in
Glacier, so it avoids the problems discussed earlier. However is
does utilize signed manifests for insuring integrity and thus still
uses cryptographic primitives. In effect, while there is nospecific
secrecy policy, it still suffers from the problems introduced by long-
term encryption.

Data location in Glacier is based on a circular naming structure
and data location algorithm. This has the advantage of relieving
the client from the onus of maintaining an index. The system was
designed with large-scale correlated failure in mind and thus this
technique may be more effective than the use of indices.

3.12 Venti
Venti [13] is a system specifically designed for archival stor-

age. Key to the system is content-addressable storage. Thispro-
vides built-in consistency checking information and enforces an
immutable data policy that fits into the archival model. One con-
cern with content-addressable storage is that users must have a way
of remembering exactly what they are looking for. Put another way,
content-addressable storage is great for filing but bad for finding.
Some, such as Howard Besser, may argue that searching on meta-
data is a better fit for archival storage.

Integrity in Venti is performed primarily at retrieval time. Both
the client and server are able to perform an integrity check as they
are able to compute the fingerprint of the data and compare it to the
request fingerprint.

Venti’s properties make a it good candidate to act as the stor-
age layer in a archival system, but as a stand-alone system itdoes
not address the full needs of long-term storage. Functionality that
deals with archive loss, and data migration might be implemented
in higher layers.

4. CONCLUSION
Long-term archival storage systems introduce integrity, authenti-

cation and privacy threats that do not generally exist in non-archival
storage systems. We have presented a general model for secure
long-term storage systems and a set of threats that may lead to sys-
tem compromise. The focus of this paper was not to solve the many
problems that may arise in long-term system, but rather enumerate
potential threats. We have presented new threats specific tothe
long-term storage problem and existing threats from the perspec-
tive of long-term storage.

In an effort to motivate the need for storage systems specifically
tailored for the archival storage model, we have examined how a
variety of existing systems deal with the threats to long-term data
survivability. While many of these systems are still being devel-
oped and modified none of them specifically addressed all of the
security concerns. Of greater concern is that there are threats which
none of the system addressed. In particular the risk from slow com-
promises is an area that must be addressed in future archivalstorage
systems. To deal with hardware changes, migration will alsobe an
area that a long-term system must be able to accommodate. This
demonstrates the need for storage systems that are specifically de-
signed for the write-once, read-maybe usage model and long-data
lifetimes found in archival storage.

An important aspect of documenting and discussing these threats
to long term secure storage is that is has assisted us in the design
of our own archival storage system. Our hope is that by listing the
threats that such a system must contend with, future effortsto build
secure archival storage systems will be more focused and complete.

Acknowledgments
We thank Kaladhar Voruganti and the other members of the Stor-
age Systems Research Center (SSRC) for spirited discussions that
helped focus the content of this paper. We also thank the spon-
sors of the SSRC, including Los Alamos National Lab, Livermore
National Lab, Sandia National Lab, Hewlett-Packard Laboratories,
IBM Research, Intel, Microsoft Research, Network Appliance, Rock-
soft, Symantec, and Yahoo.

5. REFERENCES
[1] A DYA , A., BOLOSKY, W. J., CASTRO, M., CHAIKEN , R.,

CERMAK , G., DOUCEUR, J. R., HOWELL, J., LORCH,

J. R., THEIMER, M., AND WATTENHOFER, R. FARSITE:
Federated, available, and reliable storage for an incompletely
trusted environment. InProceedings of the 5th Symposium
on Operating Systems Design and Implementation (OSDI)
(Boston, MA, Dec. 2002), USENIX.

[2] BOLOSKY, W. J., DOUCEUR, J. R., ELY, D., AND

THEIMER, M. Feasibility of a serverless distributed file
system deployed on an existing set of desktop pcs. In
sigmetrics00 (2002), pp. 33 –43.

[3] BRAND, S.The Clock of the Long Now, new york, ny ed.
Basic Books, 1999.

[4] CLARKE , I., SANDBERG, O., WILEY, B., AND HONG,
T. W. Freenet: A distributed anonymous information storage
and retrieval system.Lecture Notes in Computer Science
2009 (2001), 46+.

[5] CLEVERSAFE. Highly secure, highly reliable, open source
storage solution. Available from http://www.cleversafe.org/,
June 2006.

[6] DRUSCHEL, P.,AND ROWSTRON, A. PAST: A large-scale,
persistent peer-to-peer storage utility. InProceedings of the
8th IEEE Workshop on Hot Topics in Operating Systems
(HotOS-VIII) (2001), pp. 75–80.

[7] HAEBERLEN, A., M ISLOVE, A., AND DRUSCHEL, P.
Glacier: Highly durable, decentralized storage despite
massive correlated failures. InProceedings of the 2nd
Symposium on Networked Systems Design and
Implementation (NSDI) (Boston, MA, May 2005), USENIX.

[8] K ALLAHALLA , M., RIEDEL, E., SWAMINATHAN , R.,
WANG, Q., AND FU, K. Plutus: scalable secure file sharing
on untrusted storage. InProceedings of the Second USENIX
Conference on File and Storage Technologies (FAST) (San
Francisco, CA, Mar. 2003), USENIX, pp. 29–42.

[9] K UBIATOWICZ , J., BINDEL , D., CHEN, Y., EATON, P.,
GEELS, D., GUMMADI , R., RHEA, S., WEATHERSPOON,
H., WEIMER, W., WELLS, C., AND ZHAO, B. OceanStore:
An architecture for global-scale persistent storage. In
Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (Cambridge, MA, Nov. 2000),
ACM.

[10] MANIATIS , P., ROUSSOPOULOS, M., GIULI , T. J.,
ROSENTHAL, D. S. H.,AND BAKER, M. The LOCKSS
peer-to-peer digital preservation system.ACM Transactions
on Computer Systems 23, 1 (2005), 2–50.

[11] MCKUSICK, M. K., JOY, W. N., LEFFLER, S. J.,AND

FABRY, R. S. A fast file system for UNIX.ACM
Transactions on Computer Systems 2, 3 (Aug. 1984),
181–197.

[12] M ILLER , E. L., LONG, D. D. E., FREEMAN, W. E.,AND

REED, B. C. Strong security for network-attached storage.
In Proceedings of the 2002 Conference on File and Storage
Technologies (FAST) (Monterey, CA, Jan. 2002), pp. 1–13.

[13] QUINLAN , S.,AND DORWARD, S. Venti: A new approach
to archival storage. InProceedings of the 2002 Conference
on File and Storage Technologies (FAST) (Monterey,
California, USA, 2002), USENIX, pp. 89–101.

[14] RIEDEL, E., KALLAHALLA , M., AND SWAMINATHAN , R.
A framework for evaluating storage system security. In
Proceedings of the 2002 Conference on File and Storage
Technologies (FAST) (Monterey, CA, Jan. 2002).

[15] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable,
distributed object location and routing for large-scale

peer-to-peer systems. InProceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms
(Heidelberg, Germany, Nov 2001), pp. 329–350.

[16] SCHWARZ, S. J., T.,AND M ILLER , E. L. Store, forget, and
check: Using algebraic signatures to check remotely
administered storage. InProceedings of the 26th
International Conference on Distributed Computing Systems
(ICDCS ’06) (Lisboa, Portugal, July 2006), IEEE.

[17] STORER, M., GREENAN, K., M ILLER , E. L., AND

MALTZAHN , C. POTSHARDS: Storing data for the
long-term without encryption. InProceedings of the 3rd
International IEEE Security in Storage Workshop (Dec.
2005).

[18] SUBBIAH , A., AND BLOUGH, D. M. An approach for fault
tolerant and secure data storage in collaborative work
environements. InProceedings of the 2005 ACM Workshop
on Storage Security and Survivability (Fairfax, VA, Nov.
2005), pp. 84–93.

[19] TWEEDIE, S. EXT3, journaling file system, July 2000.
[20] WALDMAN , M., RUBIN , A. D., AND CRANOR, L. F.

Publius: A robust, tamper-evident, censorship-resistant, web
publishing system. InProceedings of the 9th USENIX
Security Symposium (Aug 2000), pp. 59–72.

[21] WONG, T. M., WANG, C., AND WING, J. M. Verifiable
secret redistribution for threshold sharing schemes. Tech.
Rep. CMU-CS-02-114-R, Carnegie Mellon University, Oct.
2002.

[22] WYLIE , J. J., BIGRIGG, M. W., STRUNK, J. D., GANGER,
G. R., KILIÇ ÇÖTE, H., AND KHOSLA, P. K. Survivable
storage systems.IEEE Computer (Aug. 2000), 61–68.

[23] X IN , Q., SCHWARZ, T. J. E.,AND M ILLER , E. L. Disk
infant mortality in large storage systems. InProceedings of
the 13th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication
Systems (MASCOTS ’05) (Atlanta, GA, Sept. 2005), IEEE.

[24] ZANIN , G., MEI, A., AND MANCINI , L. V. A secure and
efficient large scale distributed system for data sharing. In
Proceedings of the 26th International Conference on
Distributed Computing Systems (ICDCS ’06) (Lisboa,
Portugal, July 2006), IEEE.

