Long-Term Threats to Secure Archives

Mark W. Storer

Kevin Greenan

Ethan L. Miller

Storage Systems Research Center
University of California, Santa Cruz

mstorer@cs.ucsc.edu kmgreen@cs.ucsc.edu elm@cs.ucsc.edu

ABSTRACT

Archival storage systems are designed for a write-onced; nezybe
usage model which places an emphasis on the long-term paeser
tion of their data contents. In contrast to traditional st systems
in which data lifetimes are measured in months or possiblrge
data lifetimes in an archival system are measured in decgkes
cure archival storage has the added goal of providing chetrac-
cess to its long-term contents. In contrast, public ardlsyatems
aim to ensure that their contents are available to anyone.

Since secure archival storage systems must store data aebr m
longer periods of time, new threats emerge that affect therig
landscape in many novel, subtle ways. These security thezat
danger the secrecy, availability and integrity of the arahstorage
contents. Adequate understanding of these threats istedden
effectively devise new policies and mechanisms to guardhaga
them. We discuss many of these threats in this new contex to fi
this gap, and show how existing systems meet (or fail to nteete
threats.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Access controls; H.3hformation
System$: Information Storage and Retrieval

General Terms
Design, Security

Keywords

secure storage, survivable storage, archival storagestsgitting,
encryption, cryptography, threat modeling

1. INTRODUCTION

The drive to archive information in digital form brings netat-
lenges. Recent legislation, such as Sarbanes-Oxley, Havedp
strict demands on the preservation and retrieval proeofiéong-
term storage systems. Archival storage systems must meeifisp
demands inherent to the usage model of write-once, readenay

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SorageSS 06, October 30, 2006, Alexandria, Virginia, USA.

Copyright 2006 ACM 1-59593-552-5/06/001055.00.

and long data lifetimes. In addition, there are novel ségtinreats
that are unique to long-term storage.

Traditionally, the adversaries to storage security haeslbeughly
classified into two categories, passive and active. Theeeiil-
versary is a malicious entity that actively attempts to kriesand
compromise an archive. In contrast, a passive adversariiana
are restricted to eavesdropping on communication chanimethe
realm of long-term storage, the long data lifetimes of tlwagie
contents suggest that time itself becomes an active adyeisés
constantly working against the system and threatening rtapco-
mise data. Throughout this discussion we will see that terea
traditional data storage systems take on a different mgamiren
viewed with the long view of the future that archival storatge
mands.

Archival storage systems attempt to address the issuesggity
that traditional storage systems have long ignored. As altres
some have come to refer to our current era as the digital dpk a
Danny Hillis noted [3], “For example, when we finally shut dow
the old PDP-10 at the MIT Atrtificial Intelligence Lab, therasmno
place to put files except onto mag tapes that are by now urtseada
So we lost the world’s first text editor, the first vision anddaage
programs, and the early correspondence of the founderdiff ar
cial intelligence.” As our collective knowledge and aitisteritage
becomes increasingly digital, the need to preserve daadimtbly
becomes critical. For archival storage to succeed it i$ thtt we
have an understanding of the security threats it faces.

2. SECURITY THREATS

When dealing with archival storage, the time frames for tifga
times extend from the rather short-term scale of months arsy®
the longer-term scale of decades or even indefinite. Thepcesof
long data lifetimes introduces some unique security teregome
of these threats are variations on common concerns thatoake
new meaning in the area of archival storage while others ane n
threats that traditional storage system are largely uaefteby.

2.1 Long-Term Secrecy

Secrecy in long-term storage presents a complex challédfye.
ten, systems that provide file secrecy do so through the uea-of
cryption [8, 12, 14]. The use of encryption within a storagstem
can be described in terms of the encrypted data’s releviatitiie.
In long-lived encryption, such as for an encrypted file in eshaval
storage system, the data is persistent and the key must $eryed
for an indefinite period of time. In contrast, an example afrsh
lived encryption would be a communication channel that ¢sised
through the use of encryption and a key that is relevant anlyHe
duration of the session. Long-lived encryption introdug@simber
of security threats.

In an archival storage system, data can be very difficult to re

produce. The software, hardware and even users that prbduee
data may no longer be available. Encryption keys are a spujie
of failure and key loss is effectively equivalent to dataetiein.
With the long-data lifetimes of archival storage, the usef
cryption usually introduces the related problem of re-gption at

a future date. A number of scenarios could introduce the need

re-encrypt the contents of long-term file storage, inclgdiey rota-
tions, compromised keys, compromised encryption algmstand
the need for access revocation. In some cases, re-enerypag

only be needed for a few files, but in other cases, many petabyt

of data might need re-encryption.

user’s index learns very little about the other users’ dakas strat-
egy suffers in that the client then has more long-term resipdity.

2.3 Authentication and User Accounts

In long-term secure storage, authentication must copeanfithv
scenarios not usually encountered in other storage ardhése
storage system plans on providing file secrecy as part ofrisgcu
then it follows that the users must be able to authenticaenth
selves to the system as a first step in authorization. In etbedls,
the users must show who they are before the system can degermi
what they are allowed to do.

The re-encryption of large amounts of data must be done in a A challenge unique to long-term secure storage is the pnoble

timely manner, especially if required for a key compromisele
gorithm exploit. However, the time to apply the new encrgpti
technique to a large amount of data will probably not be thmtii
ing factor; rather, issues with maintaining keys and agtwahding
all of the old data quickly will be critical. Further, optimations to

speed the migration likely come with an associated manageme
cost. For example, if a system chooses to save time by eiregypt

over the old algorithm, it must have a way of dealing with kést h
tories and key distribution. In contrast, if the system cd&soto de-
crypt the data before applying the new algorithm then it nhase
access to the users’ encryption keys. Further, this accassmust
prevent a malicious user with system-level access fromssuug
data she is not authorized to view.

Even the traditional security threats and precautionscéetsul
with keyed encryption are made more difficult by the long diféa
times found in archival storage. For example, cryptograplonly
computationally bound and it is very difficult to predict theure
of cryptography and cryptanalysis. Technology such as tguan
computing could usher in drastic changes to cryptographg, za
long-term archival system which provides secrecy througirygp-
tion must be capable of handling those changes.

2.2 Locating Data

While the archival model of storage is write-once, read-beay
users must still be able to find the data they stored shouiddbe
sire to read it. Perhaps due to the fact that archival stoiaget
intended to be a user’s primary data storage solution, fessifrom
the potential problem of users forgetting where their datgtored.
If users are unable to locate their data within an archivatesy,
the availability aspect of security has been violated. Kkangle,
the Sarbanes-Oxley act specifies not only that data mustdieed
for a given period of time but also that it be retrievable innaety
manner.

One aspect of this problem lies in the location of data irglice

A centralized index, maintained alongside the storagestist has
the benefit of relieving the user of remembering the detat®oeai-
ated with storing their data. The centralized index is simib a
client that knows which bank their safety deposit box is i oot
which box is theirs. This client might rely on a bank-maintd
index which maps clients to their safety deposit box. Onesibtes
danger with this strategy is that an attacker that can comisethe
centralized index is able to perform a much more targetedlatt
Another option, in contrast to the central index, placesaings
of maintaining an index upon the client. In the safety deposk
analogy, the client would know which bank the safety deposit
is in as well as the location or ID of the safety deposit bolftdn
this manner, even if a malicious person gained access taatllg v
he would still have a brute-force problem of locating a sfiebiox.
With the personal index strategy, an attacker that commesmne

that the user primarily attached to the data may no longevéitahle—
for example, the user may be dead. Suppose a user wants to se-
curely store their will in an archival storage system. Thbssu
quent read may take place decades later by the owner’s n&ixt of
after the owner had passed away. A secure, archival stoysge s
tem must thus be able to authenticate new users and esttigish
relationship to resources attached to existing users.

Additionally, if an archival storage system is able to antfeate
a user to the system and determine her access permissionsstit
be able to provide access to the entitled data in a meanifaght
ion. For example, suppose a system utilizes encryptionderao
provide file secrecy. If a user with rights to the data can \ilesv
file but has no access to the encryption key, she still hastefédy
no access. To continue the previous example, if a deceased us
next of kin proves his legal right to the data, the secrecyhaec
nism must function in the complete absence of the user thatewr
the file.

2.4 Integrity Guarantees

Due to the rather short lifetime and limited reliability odi-
tional storage components, data begins to degrade as sabis as
placed on media. In short-term systems, this threat isivelgiow
because a great deal of frequently used data is accessedhand u
dated on a regular basis. Archival storage assumes a write-0
read-maybe access pattern, thus the integrity of the dakeeigys-
tem must be actively checked at regular intervals.

Integrity checks often come in the form difsk scrubbing (also
called auditing) procedures. A scrubbing procedure periodically
scans sections of the data and uses strong hashes to detegt co
tion, recovering data that is damaged. A variety of problears
arise related to these scrubbing procedures. First, aracver
scrubbing procedure can contribute to media failures. thitiaah,
an under-active scrubbing procedure may provide no utilitgr
the absence of disk scrubbing. Xid, al. analyzed these prob-
lems [23], showing that opportunistic scrubbing providegoad
balance between overactive and under-active techniquefertu-
nately, opportunistic disk scrubbing policies requireudting re-
quests to piggy-back on regular access requests. In a anie;
read-maybe system such policies may not be sufficient.

In the long term, cryptographic hashes may not be sufficient f
integrity checking procedures. Given a reasonable amdiithe,
it is possible for an adversary to find collisions in the haséd.ifor
disk scrubbing. The adversary can update the original dita w
incorrect data, thus fooling the integrity checking praoed

Compared to the internal data integrity problem of data iwith
an archive becoming corrupted, distributed storage systeve an
additional external integrity challenge. These systemstihave a
method of ensuring that the other archives in the distribsies-
tem are behaving properly. In such systems, one popularatdeth
of monitoring external integrity is through the use of a tdrade-

response protocol. Of course, a secure system cannot redyoen or obsolesce of hardware, system updates and possibly etan d

tocols that compare data in-the-clear. movement as a security factor.

Some have suggested the use of algebraic signatures as a way In archival systems as in more traditional storage, hareviit-
of performing integrity checks without exposing too mucfoimn ure is inevitable [23]. A long-term system must thus be imenun
mation [16]. Algebraic signatures have the property thatsty- to the failure of any given component. Additionally, the atte-
natures of the parity equals the parity of the data signatuFer covery and migration of effected data to new hardware shoatd
example, suppose a RAID stripe uses single parity as anrerasu compromise the availability aspect of security.
encoding, where the data symbdisd,, ..., dn compute the parity Even if hardware failure were not a factor, storage techmolo
p. The XOR-sum of the algebraic signatures of the datid;) ® changes at a rapid pace. Storage systems today are quée diff

sig(dz) @ ... @ sig(dm), equals the signature of the parity element ent from those of decades past in terms of performance, itgpac
p. This scheme can also be extended to multiple erasure tiogec media and interfaces. It is not a stretch of the imaginatioas-

codes, such as XOR-based Reed-Solomon. sume that decades from now, today’s technology will seetrgisis
As long as data is striped across the archives into reltgigitoups, anachronistic as a punch card or drum storage device lodksy.to
a restricted distributed disk scrubbing algorithm can bedusith- A storage system that is intended to keep data secure foraseve
out disclosing too much information. If the disk scrubbirigaa decades must thus be able to adapt to these changes by iraterpo
rithm runs unrestricted, an adversary has the potentiaktiaet ing new technology and migrating data from outdated compine
information without proper authentication. For examplepEose However, it must do so without allowing any party to actually
that any party that can authenticate with an archive can gubm cover data.
an unbounded number of signature requests. If an adversary c Another possibility for the role of data migration in a sexur
structs enough sets of overlapping signature requestsacchive, long-term storage system is to use migration to effect gresscu-
then the sets form a system of linear equations that can bedsol rity. Moving data would create a moving target that couldpttel
to reveal data. limit an adversary’s ability to launch a targeted attackisTtrat-
egy might help to mitigate the effectiveness of the typeslofs
2.5 Slow Attacks attacks discussed in section 2.5.

When dealing with archival storage, the time frames for tifgta
times extend from the rather short-term scale of months aadsy 3. STORAGE SYSTEMS
to the longer-term scale of decades. This long lifetime giat In this section we examine a number of storage systems and how
tackers a much larger window within which they can attempt to they deal with the security threats that have been outlinetthé
compromise a security system. With archival storage arilassa Prévious section. The sampling of systems presented béioulcs
might have several decades of time to conduct an attack. not be considered an exhaustive list but rather a represemtat

One difficulty with slow attacks is intrusion detection. tietat- the diversity within the storage field. Most of these systemes
tack is methodical enough to make only the slightest of chang not specifically archival systems but they provide a usegutpec-
at any one time and each step was spaced far enough apart, ifive on the shortcomings of traditional storage systemesngiterm
would be difficult to detect by traditional signature matahial- roles. Examining the appropriateness of each system faagfkeof
gorithms. This technique compares audit data and netwaikitsc long-term secure storage illustrates the need to desigoragst
to a database of known attacks. Thus, if the audit data wtai SYStems expressively for the purpose of archival storage.cépa-
a slight enough anomaly, it may not be enough to trigger amatc bilities of each system with respect to the discussion prteskin
with a known attack signature. Section 2 are summarized in Table 1.

Another difficulty with detecting slow attacks is the prablef
maintaining attack history. Security logging is espeyiathpor- 3.1 FreeNet

tant for systems that utilize secret-sharing algorithnehsas PA- FreeNet [4] is a peer to peer distribution system which inynan
SIS [22], POTSHARDS [17] and others [18, 24]. Secret-stpain ways is a stark.contrast to archival st.orage. While archlt.miage
gorithms, while provably secure, rely on keeping a sufficiem- is concerned with the long-term persistence of data, Freisiéa-

ber of secret shares secure. This method of insuring fileesgcr ~ Pressively created for distributing content and makele léiffort to
thus necessitates the maintenance of a history of compesmis maintain its contents’ persistence. . .

An example of the threat that slow attack presents is aswsllo ~One of the primary goals of FreeNet is to allow anonymous dis-

Suppose a file is protected using a 3/5 scheme in which thesfile i {ribution of data. It utilizes encryption over all storeceglbut this
split into five pieces, three of which are required to rebtfiie file. is primarily to provide a host with plausible deniabilityavtheir
Now suppose that an attacker has compromised the systenband o contents and not for secrecy.

tained one of the shares. A decade later that same attadie@n®b FreeNet relies on local data-stores and dynamic routirigsab

a second share. Due to the provably secure nature of thet-secre locate data. File migration is handled in a similar fashiés. re-
sharing algorithms it can be shown that the attacker can main ~ duests travel back through the system the requested datpieic
information about the data. However the system must dehlitvet 0 €ach host along the request path. Thus hot data is quiefli¢ r
fact that the attacker is making progress. With one moreestir ~ cated while the space occupied by cold data is eventuallgineed.
file would be revealed. Thus, the system must either immeigiat ~ This is clearly not conducive to long-term storage. Addiitly, in-
deal with any compromise or maintain a history of compromise tegrity in FreeNet is only assured through hashing of shtarigs

order to intelligently schedule corrective action. which accompany the data. These are susceptible to dicjiata
tacks due to their short length.
2.6 Migration and Recovery 3.2 OceanStore
Due to the long data lifetimes of archival data, long-terorage Oceanstore [9] is a global, persistent distributed stosygtem,
systems will witness events that require data to be moveddsst which stores data across sets of untrusted nodes. The system

archives. Reasons for this change include the inevitablerdéa jective is to provide an all-in-one, secure, highly- avialiéa global

Secrecy Authorization Integrity Slow Attacks Migration
FreeNet| encryption none hashing access based
OceanStorg encryption signatures versioning access based
FarSite| encryption certificates merkle trees continuous relogatio
PAST | encryption smart-cards immutable files
Publius| encryption password (delete) retrieval based
SNAD / Plutus| encryption encryption hashing
GridSharing| secret sharing replication
PASIS | secret sharing repair agents, auditing
CleverSafe| secret sharing high replication degree
POTSHARDS| secret sharing pluggable algebraic signatures
LOCKSS none vote based checking site crawling
Glacier node auth. signatures
Venti retrieval

Table 1: Capability overview of a variety of storage systemsEach of the systems discussed is listed along with a brief sieription of
the mechanism used to provide the stated aspect of long-tersecurity.

storage architecture. Oceanstore is designed aroundstmpton
that all of the nodes are untrusted and failure is inevitalidata
protection is achieved through encryption and replication

3.3 FarSite

Farsite [1] was designed to serve the same function as aatentr
ized file server. It utilizes a distributed architecturet tidempts to
utilize the unused resources across a network of looselgledu
insecure and unreliable machines.

Secrecy in Farsite is accomplished through the explicitafse
encryption. At file creation a symmetric key is generated emd
crypted with the public-keys of users authorized to acdesdike.

Locating data involves communicating with a directory grou
member. These nodes maintain the directory structure fatuwal
hierarchy. In Farsite, files are presented in a hierarchiesV but
there can be multiple views of the data. Each view has its own
root maintained by a set of directory root members. For lerg:
storage this makes locating data vulnerable to the failtitheodi-
rectory group members. If there is an unlimited allowablenbar
of roots however, it may be possible for each client to mainita
own view of the system.

Reliability and integrity come from replication and the usfe
Merkle trees respectively. File migration is also providedthe
replication mechanism.

3.4 PAST

The PAST [6] system utilizes a overlay network to connectpee
across the Internet with the aim of providing persistentagje with
strong security. PAST achieves a high level of secrecy tjftou
the use of encryption on the client and authorization is exad
through judicious use of certificates. To facilitate this ST uti-
lizes smart-cards to assist with the certificate operatidmsaddi-
tion to the usual concerns with long-lived encryption, tekance
on specialized hardware raises other concerns for lomg-peeser-
vation. The authors do state that the role of smart-cardkl due
performed by trusted services.

Read requests are based on filelds and routed using the
try [15] routing and location scheme. The smart-card is used
many aspects of this process. From naming integrity andaquot
management the smart-card is an essential token for systerag-
tion. While convenient, for the long-term viability of thi®lution
there must be a procedure for dealing with a lost smart-card.

Integrity and persistence in PAST is achieved through a éwel|
approach. The first level attempts to prevent unwanted asang

by making all data in the system immutable. The second level i
through the randomized replication of data.

3.5 Publius

Publius [20] is another publishing system that gives the ase
familiar URL based interface to system contents. While itsed
to publish content it still utilizes encryption over the ¢ents of
the file as well secret splitting to manage the keys. Passhamel
used to control the deletion and updating of contents. Asudised
earlier, this reliance on encryption and passwords is acsoaf
concern for long-term storage. The concern is somewhagjatéd
as retrieval is limited to parsing a URL and the password ig on
used for deleting and changing contents. If the passworsbtsthe
worst case scenario is that the data becomes effectivelytaite.

In the Publius system, integrity is checked during retiiewith
a long-term archival system there are no guarantees for hew f
quently data will be accessed so this would be another areansf
cern. One possible solution would be to have an automateemys
which requests data for the sole purpose of insuring daggiiity.

3.6 SNAD and Plutus

Secure Network-Attached Disk (SNAD) [12] was designed for
secure storage. As such, it does not include any facilibetohg-
term archival usage beyond those present in many worksttjme
file systems. Data location is straightforward; SNAD entsyffles
individually, so any system that can store directory infation in
files, such as FFS [11] and ext3 [19] has location facilities.

Secrecy in SNAD is ensured using strong symmetric cryptogra
phy, with authorization accomplished using a public keyasfruc-
ture. Integrity in SNAD is ensured when the data is read tijinou
the use of hashes. Only a user that can decrypt the data can ver
ify the hash, however, making it difficult to use SNAD for airct
storage.

Since SNAD is intended for workstation file system use, it has
few mechanisms aimed to ensure long-term data survival efor

Pasample, there is no mechanism to recover a lost private kan- Si

ilarly, there is no defense against “slow attacks;” howgwers
unlikely that a slow attack would succeed because SNAD ig onl
vulnerable to discovery of users’ private keys.

Other workstation-type secure file systems, such as Pl8jus [
have similar properties with respect to long-term dataisatvThey
ensure that data will never be revealed without the appatpkiey,
but are not appropriate for long-term data storage bec#esedo

not address issues of key loss, algorithm compromise, atadl da authorization it is possible for the archives to collude aecbn-

longevity.

3.7 GridSharing and CleverSafe

The work of Subbiah and Bough [18] utilizes secret sharing to

build a secure and fault tolerant data storage. While thestesn
will function with a variety of secret sharing algorithmbetGrid-
Sharing system is designed for low-latency access and ttaiis t
testing shows that XOR secret sharing is the only viablerélgn.
While the use of secret sharing provides secrecy withouhéesl
for encryption, the GridSharing system shows that its usg Inea
limited in low-latency storage. The XOR algorithm in its las
form is anm of m scheme. This may be a problem in long-term
storage since the data could not survive the loss of any afebest
shares.

Integrity in GridSharing is achieved through the use ofimepl
tion. Using XOR based secret splitting would require verghhi
levels of replication as each secret share is required fourate
reconstruction and thus the loss or corruption of any sispkre
could compromise the entire file.

CleverSafe [5] has similar goals for data storage, pratgaata
using a custom-designed information dispersal algorithigener-
ate shares. As with GridSharing, CleverSafe provide Iftihc-
tionality to rebuild lost shares. Thus, CleverSafe cantmresdata
for long periods of time without extensive user interventio en-
sure that sufficient data shares survive for long periodsraf.t

Both GridSharing and CleverSafe suffer from the rebuilgingp-
lem that, in order to recover lost shares, the system mustéirs
build the data that contains the missing shares. While tlzikas
system implementation easier, it reduces security ancelotygby
exposing the system to long-term decay.

3.8 PASIS

The PASIS [22] architecture is centered around providinigali+-
available, fault-tolerant, secure storage system. Sgarmdt redun-
dancy is provided using a general threshold sharing scheofeas
Shamir’s secret sharing scheme. Since the shares are placess
storage nodes, an intruder would have to compromise sesteral
age nodes in order to compromise data secrecy. PASIS relias o
directory service to translate file objects into the objéetres and
their respective location.

Integrity checking and correction is provided in PASIS tigh

the use of a repair agent on each storage node. The statushof ea

archive is actively monitored as part of the system’s agiveself-
maintenance features. Additionally, as each request isidered

suspect, PASIS also employs a system of versioning and seque

auditing. Audit logs allow the system to roll back any change
committed by a malicious user within a given window. Thidl sti
raises the issue of how long to maintain the audit logs. Igdtmtm
archival storage an intruder may be able to space out theyekan

a such a way that by the time the change is detected, the agdit |
required to undo the damage are no longer available.

Unlike CleverSafe and GridSharing, PASIS can rebuild Ibatss
in a secure way [21]. However, this approach is computaliipna
intensive and still may leak some information if sufficignthany
servers are compromised; the number of servers that mustinbe c
promised is lower than the number of servers required toilcebu
the data.

3.9 POTSHARDS

The POTSHARDS [17] system shifts data secrecy from encryp-

tion to authentication by using secret splitting to storerseshares
across multiple authentication domains. Additionallythaproper

struct any user’s data or even all data stored in the system.

Before distributing shares across a set of archives, fiegans-
formed by splitting the file into fragments using secret sitpal-
gorithms. User- level redundancy is provided by a secondl lev
of secret-splitting optimized for redundancy. The ressilaiset of
shards which are stored across a disjoint set of erasureleddail-
ure domains providing long-term, system-level redundaritie
shards in a lost archive can be rebuilt without revealing da-
cause there is no way for any archive to discover which shraeke
up which objects.

Each client is responsible for storing and preserving amxnd
over its own files. The user index is stored in the system suittha
can be reconstructed given proper authorization shoulddbine
lost or corrupted. A system-level index holds a shard toieech
mapping along with the information needed to reconstruidéda
archives.

Each archive in the POTSHARDS system is responsible forimain
taining the integrity of its own data. Archives check thesgrity of
their data by storing a cryptographic hash over sets of shémcbr-
der to ensure each archive is actively performing integfitgcks,
an outside party can perform distributed integrity checsisg al-
gebraic signatures.

3.10 LOCKSS

LOCKSS [10] is a content distribution system designed for li
braries that mimics the behavior of a web cache. As the parpbs
LOCKSS is to ensure public access to data, it specifically ca
include a secrecy aspect for securing the contents of files.

The data location aspects of LOCKSS are in keeping with its
web-cache like behavior. Since the data appears to oreginamn
its originally published source, the system does not pteteawn
index to the user. Instead, it relies upon existing indexiystems
and web content directories.

Integrity guarantees are provided through a voting meainani
The system’s contents are organized in archival units aralieyp
of voting uses cooperating systems to check the integriig @fUs
and repair any damage that may occur.

As with integrity checking, file replication is an active pess
within LOCKSS. In a three step process, nodes collect newty p
lished data from journal websites, distribute the data bingas
a proxy cache for local requests and preserve their corifeoiigh
the voting procedure with other LOCKSS systems.

3.11 Glacier

Glacier [7] is a decentralized storage system that relieslarge
number of replicas to insure availability. It was designadddl on
for environment described by Bolosky [2] which found an eotpd
node lifetime of 290 days.

There is no specific encryption mechanism for file secrecy in
Glacier, so it avoids the problems discussed earlier. Hewey
does utilize signed manifests for insuring integrity andstfstill
uses cryptographic primitives. In effect, while there isspecific
secrecy policy, it still suffers from the problems introéddy long-
term encryption.

Data location in Glacier is based on a circular naming stingct
and data location algorithm. This has the advantage ofvietie
the client from the onus of maintaining an index. The systess w
designed with large-scale correlated failure in mind ang tthis
technique may be more effective than the use of indices.

3.12 Venti J. R., THEIMER, M., AND WATTENHOFER, R. FARSITE:

Venti [13] is a system specifically designed for archivalrsto Federated, available, and reliable storage for an incaelgle
age. Key to the system is content-addressable storage.piidiis trusted environment. IRroceedings of the Sth Symposium
vides built-in consistency checking information and eoéw an on Operating Systems Design and Implementation (OSDI)
immutable data policy that fits into the archival model. Ope-c (Boston, MA, Dec. 2002), USENIX.
cern with content-addressable storage is that users musthaay [2] BoLosky, W. J., DOUCEUR J. R., Y, D., AND
of remembering exactly what they are looking for. Put anoivey, THEIMER, M. Feasibility of a serverless distributed file
content-addressable storage is great for filing but bad fairfg. system deployed on an existing set of desktop pcs. In
Some, such as Howard Besser, may argue that searching on meta ~ Sigmetrics00 (2002), pp. 33 —43.
data is a better fit for archival storage. [3] BRAND, S.The Clock of the Long Now, new york, ny ed.

Integrity in Venti is performed primarily at retrieval tim@&oth Basic Books, 1999.
the client and server are able to perform an integrity chadkey [4] CLARKE, |., SANDBERG, O., WILEY, B., AND HONG,
are able to compute the fingerprint of the data and compavetiet T. W. Freenet: A distributed anonymous information storage
request fingerprint. and retrieval systeni.ecture Notesin Computer Science

Venti’'s properties make a it good candidate to act as the stor 2009 (2001), 46+.
age layer in a archival system, but as a stand-alone systéoest [5] CLEVERSAFE. Highly secure, highly reliable, open source
not address the full needs of long-term storage. Funciiyrtaiat storage solution. Available from http://www.cleversafey/,
deals with archive loss, and data migration might be impleet: June 2006.
in higher layers. [6] DRUSCHEL, P.,AND ROWSTRON A. PAST: A large-scale,

persistent peer-to-peer storage utility Aroceedings of the
4. CONCLUSION 8th |EEE Workshop on Hot Topics in Operating Systems

Long-term archival storage systems introduce integritthenti- (HotOSViI1) (2001), pp. 75-80.

cation and privacy threats that do not generally exist in-aahival [7] HAEBERLEN, A., MISLOVE, A., AND DRUSCHEL, P.

Glacier: Highly durable, decentralized storage despite

storage systems. We have presented a general model foesecur - . :
massive correlated failures. Rroceedings of the 2nd

long-term storage systems and a set of threats that maydesyd-))
tem compromise. The focus of this paper was not to solve thiyyma Symposium on Networked Systems Design and
problems that may arise in long-term system, but rather enate Implementation (NSDI) (Boston, MA, May 2005), USENIX.

potential threats. We have presented new threats speciftoeto [8] KALLAHALLA , M., RIEDEL, E., SVAMINATHAN , R.,

long-term storage problem and existing threats from thepeer- WANG, Q.,AND Fu, K. Plutus: scalable secure file sharing
tive of long-term storage. on untrusted storage. Proceedings of the Second USENIX
In an effort to motivate the need for storage systems spetific Conference on File and Sorage Technologies (FAST) (San
tailored for the archival storage model, we have examined &0 Francisco, CA, Mar. 2003), USENIX, pp. 29-42.
variety of existing systems deal with the threats to longatdata [9] KusiaTowicZ, J., BINDEL, D., CHEN, Y., EATON, P.,
survivability. While many of these systems are still beirgyel- GEELS, D., GUMMADI, R., RHEA, S., WEATHERSPOON
oped and modified none of them specifically addressed allef th H., WEIMER, W., WELLS, C.,AND ZHAO, B. OceanStore:
security concerns. Of greater concern is that there arattwehich An architecture for global-scale persistent storage. In
none of the system addressed. In particular the risk from stom- Proceedings of the Sth International Conference on
promises is an area that must be addressed in future arstivatje Architectural Support for Programming Languages and
systems. To deal with hardware changes, migration will B&san Operating Systems (ASPLOS) (Cambridge, MA, Nov. 2000),
area that a long-term system must be able to accommodats. Thi ACM.
demonstrates the need for storage systems that are spgbciiea [10] MANIATIS, P., RoussopPouLosM., GiuLl, T. J.,
signed for the write-once, read-maybe usage model anddeatey- ROSENTHAL, D. S. H.,AND BAKER, M. The LOCKSS
lifetimes found in archival storage. peer-to-peer digital preservation syste®tM Transactions
An important aspect of documenting and discussing thesatr on Computer Systems 23, 1 (2005), 2-50.
to long term secure storage is that is has assisted us in fignde [11] McKusick, M. K., Joy, W. N., LEFFLER, S. J.,AND
of our own archival storage system. Our hope is that by listire FABRY, R. S. A fast file system for UNIXACM
threats that such a system must contend with, future etiotisild Transactions on Computer Systems 2, 3 (Aug. 1984),
secure archival storage systems will be more focused angdleten 181-197.
[12] MILLER, E. L., LONG, D. D. E., REEMAN, W. E.,AND
Acknowledgments REED, B. C. Strong security for network-attached storage.
) In Proceedings of the 2002 Conference on File and Sorage
We thank Kaladhar Voruganti and the other members of the Stor Technologies (FAST) (Monterey, CA, Jan. 2002), pp. 1-13.

age Systems Research Center (SSRC) for spirited discssthian [13]
helped focus the content of this paper. We also thank the-spon to archival storage. IRroceedings of the 2002 Conference
sors of the SSRC, including Los Alamos National Lab, Livereno on File and Storage.'l'echnologies (FAST) (Monterey
National Lab, Sandia National Lab, Hewlett-Packard Latmwies, California, USA, 2002), USENIX, pp. 89101 '
IBM Research, Intel, Microsoft Research, Network Applianeock- ! ' ' P)
soft, Symantec, and Yahoo.

QUINLAN, S.,AND DORWARD, S. Venti: A new approach

[14] RIEDEL, E., KALLAHALLA , M., AND SWAMINATHAN , R.
A framework for evaluating storage system security. In
Proceedings of the 2002 Conference on File and Sorage

5. REFERENCES Technologies (FAST) (Monterey, CA, Jan. 2002).

[1] ADYA, A., BOLOSKY, W. J., CASTRO, M., CHAIKEN, R., [15] ROWSTRON A., AND DRUSCHEL, P. Pastry: Scalable,
CERMAK, G., DOUCEUR, J. R., HOWELL, J., LORCH, distributed object location and routing for large-scale

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

peer-to-peer systems. Rroceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms
(Heidelberg, Germany, Nov 2001), pp. 329-350.
SCHWARZ, S.J., T.AND MILLER, E. L. Store, forget, and
check: Using algebraic signatures to check remotely
administered storage. Proceedings of the 26th
International Conference on Distributed Computing Systems
(ICDCS’06) (Lisboa, Portugal, July 2006), IEEE.
STORER, M., GREENAN, K., MILLER, E. L.,AND
MALTZAHN, C. POTSHARDS: Storing data for the
long-term without encryption. IRroceedings of the 3rd
International |EEE Security in Siorage Workshop (Dec.
2005).

SUBBIAH, A., AND BLOUGH, D. M. An approach for fault
tolerant and secure data storage in collaborative work
environements. lProceedings of the 2005 ACM Wbrkshop
on Sorage Security and Survivability (Fairfax, VA, Nov.
2005), pp. 84-93.

TWEEDIE, S. EXTS3, journaling file system, July 2000.
WALDMAN, M., RUBIN, A. D., AND CRANOR, L. F.
Publius: A robust, tamper-evident, censorship-resistaeb
publishing system. IiProceedings of the 9th USENIX
Security Symposium (Aug 2000), pp. 59-72.

WoONG, T. M., WANG, C.,AND WING, J. M. Verifiable
secret redistribution for threshold sharing schemes. Tech
Rep. CMU-CS-02-114-R, Carnegie Mellon University, Oct.
2002.

WYLIE, J. J., BGRIGG, M. W., STRUNK, J. D., GANGER,
G. R., KILIGCOTE, H., AND KHOSLA, P. K. Survivable
storage system$EEE Computer (Aug. 2000), 61-68.

XIN, Q., SCHWARZ, T. J. E.,AND MILLER, E. L. Disk
infant mortality in large storage systems.Rroceedings of
the 13th International Symposium on Modeling, Analysis,
and Smulation of Computer and Telecommunication

Systems (MASCOTS' 05) (Atlanta, GA, Sept. 2005), IEEE.
ZANIN, G., MEI, A., AND MANCINI, L. V. A secure and
efficient large scale distributed system for data sharimg. |
Proceedings of the 26th International Conference on
Distributed Computing Systems (ICDCS’ 06) (Lisboa,
Portugal, July 2006), IEEE.

