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Abstract

Power dissipation by storage systems in mobile comput-
ers accounts for a large percentage of the power consumed
by the entire system. Reducing the power used by the stor-
age device is crucial for reducing overall power consump-
tion. A new class of secondary storage devices based on
microelectromechanical systems (MEMS) promises to con-
sume an order of magnitude less power with 10-20 times
shorter latency and 10 times greater storage densities. We
describe three strategies to reduce power consumption: ag-
gressive spin-down, sequential request merging, and sub-
sector accesses. We show that aggressive spin-down can
save up to 50% of the total energy consumed by the device
at the cost of increased response time. Merging of sequen-
tial requests can save up to 18% of the servicing energy and
reduce response time by about 20%. Transferring less data
for small requests such as those for metadata can save 40%
of the servicing energy. Finally, we show that by applying
all three power management strategies simultaneously the
total power consumption of MEMS-based storage devices
can be reduced by about 54% with no impact on 1/O perfor-
mance.

1 Introduction

As a result of limitations in battery technology, mobile
computing devices such as laptop computers, personal dig-
ital assistants (PDASs), video camcorders and biomedical
monitoring devices must be designed to be energy efficient
in order to extend the amount of time that they can op-
erate autonomously. Storage devices account for a major
portion of total energy consumption in many of these de-
vices, consuming as much as 20-54% of the power in mo-
bile computers [2, 12]. However, a new class of secondary
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storage devices based on microelectromechanical systems
(MEMS) [1, 15, 20], currently being developed, promises
to reduce power use by an order of magnitude compared to
disk.

MEMS devices provide non-volatile storage using ei-
ther physical [20] or magnetic [1] recording techniques to
achieve extremely high density storage. To achieve these
high densities, MEMS-based storage designs use a non-
rotating storage device with storage media on one surface
and a large array of read/write heads on another surface
directly above the storage media (see Figure 1). By mov-
ing the surfaces relative to each other using actuators, each
read/write head can access a region of the surface. Access
latencies in these small devices are much lower than tra-
ditional secondary storage devices because physical move-
ments to locate data are extremely small. Though the bit
rate off each read/write head is slow compared to the single
read/write head in a disk, overall throughput is increased by
having many read/write heads active at once. Initial den-
sity estimates are in the range of 10 gigabits per square inch
with densities anticipated to reach 300 gigabits per square
inch in a few years [8, 19].

MEMS storage devices are expected to consume an or-
der of magnitude less power than disk drives [8]. These
devices are expected to have many other significant advan-
tages over disk, including better 1/0 performance, smaller
physical size, lower heat dissipation requirements, and in-
tegrated processing and storage [19]. For all of these rea-
sons, MEMS based storage devices are expected to be used
in mobile computing applications where power and size are
important.

MEMS-based storage has several features that lead to
lower power consumption. First, the moving sled in a
MEMS-based storage device has much less mass than a disk
platter and thus takes less power to move. Equally impor-
tant, MEMS devices have a much faster transition between
active and inactive modes—about 0.5 ms, as compared to
several seconds in a traditional disk drive. The electronics
of MEMS devices also require less power for read or write
operations. Furthermore, accesses are more flexible than in
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disk drives because different read/write heads can be turned
on or off as needed to allow for variable-sized accesses to
the device.

Power conservation strategies for disk drives such as
adaptive spin-down [9, 10, 12], caching [2], and non-
volatile solid-state memory [2, 22] have proven useful in
reducing power consumption. Some of these schemes may
not be applicable to MEMS storage devices due to its dis-
tinctive features, while others such as caching may be used
to further reduce power consumption regardless of the sec-
ondary storage device. Additionally, new strategies that
may not be feasible in disk drives can be considered in
MEMS storage devices. For example, accessing partial sec-
tors is not supported in disk drives but MEMS storage de-
vices may be able to conserve power by using small trans-
fers for metadata and other small requests.

Using the DiskSim [4] MEMS simulator, we investigated
the interaction between power consumption and 1/O perfor-
mance based on file system traces [18]. Our experimental
results show that the power consumption pattern of MEMS
is different from that of conventional disk drives. Based
on this analysis, we propose three MEMS power conser-
vation strategies: aggressive spin-down, sequential request
merging and subsector accesses. Our experimental results
using the DiskSim MEMS simulator show that aggressive
spin-down can save 50% of the total energy consumed by
the device, potentially at the cost of increasing response
time. Merging sequential requests can save up to 18% of the
servicing energy and reduce response time by about 20%,
and using subsector accesses for metadata requests can save
40% of the energy used to service file system requests. By
applying all three power management strategies simultane-
ously, we show that MEMS-based storage devices can re-
duce total power usage by about 54%, with no impact on
1/0O performance.

2 Background

Mobile secondary storage technology is dominated by
magnetic disks, but the mechanical characteristics of disks
limit their performance improvement. Moreover, the super-
paramagnetic effect will make it increasingly harder for im-
provements in disk technology to keep up with the improve-
ments in processor and memory. A new storage technol-
ogy based on Microelectromechanical Systems (MEMS) is
being developed with significant performance and cost im-
provement relative to magnetic disks. A more complete de-
scription of these devices can be found elsewhere [7, 8, 19];
we will summarize the design and performance characteris-
tics of MEMS-based storage devices.

Figure 1 shows the details of a MEMS-based storage de-
vice. The device consists of a surface coated with magnetic
media, called a media sled, and a two-dimensional array of
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Figure 1. Components of a MEMS-based stor-
age device

stationary read/write probe tips, called a tip array, as shown
in Figure 1(a). Figure 1(b) shows the media sled suspended
above the tip substrate by silicon beams that act as springs,
and moved in the x and y directions by forces generated by
lateral resonant microactuators. A request is satisfied by
first moving the sled to the correct position and then trans-
ferring data. To perform a seek, the microactuators move
the media sled to a specific (x,y) position. Once the seek is
complete, data is accessed by the fixed probe tips while the
media sled is moving at a constant velocity in the y direc-
tion. In contrast to disk, the tips remain nearly stationary
during a seek, with the exception of minor x and z dimen-
sion adjustments [8], while the sled keeps moving in the y
direction.

In contrast to disk, a MEMS-based storage device can
use multiple tips simultaneously to access data, achieving
a high degree of parallelism. Because of power, heat, and
wiring limitations, not all tips can be active at the same time.
For instance, in the CMU G2 model with 6400 probe tips,
only 1280 tips can be active at once, while in the G3 model,
3200 tips are expected to be active simultaneously [19].

The mediasled is logically divided into rectangles called
tip regions; each tip region is accessible by a single
read/write probe tip. The smallest unit of accessible data is a



tip sector, consisting of servo information (10 bits) and en-
coded data/ECC (8 bytes of data encoded as 80 bits). Each
tip sector is represented as a triple (x,y,tip), where x and
y are position coordinates and tip is a tip number. Groups
(or tip sets) of 64 tip sectors from the same position of sep-
arate regions are combined into 512 byte logical sectors,
analogous to logical blocks in a hard drive. In keeping with
disk terminology, the CMU MEMS research group applies
a direct low level data layout, such as tracks, cylinders etc.,
to MEMS-based storage device. The details of logical-to-
physical mapping are discussed in Section 5.

3 Redated Work

Prior research in optimization of power management
strategies for disks has been effective because disks can
be in several states that correspond to different power con-
sumption rates [6, 12]. The goal of power management is to
have a disk move between these states in order to minimize
power with little or no performance penalty. A common
scheme is to spin down drives during extended periods of
non-use. A simple spin-down policy uses a fixed threshold
to determine when to spin down the disk [3, 6, 12], reducing
energy use by as much as a factor of 10 over not spinning
the disk down at all. Using short spin-down delays (2-5 sec-
onds of idle time) was more effective than longer spin-down
delays (3-5 minutes) at reducing energy consumption, at the
cost of several spin-up delays per hour [6].

Wilkes proposed the use of a predictive algorithm for
disk management [21] by predicting and adjusting the spin-
down delay based on a weighted average of recent activity
durations. Golding, et al. placed this proposal in a more
general framework and studied a number of spin-down de-
lay prediction methods, including arithmetic and geometric
adjustments of predicted interarrival times [5]. Douglis, et
al. used predictive spin-down algorithms depending on pre-
vious reference patterns, but expressed disappointment with
their results [3]. Later, they varied the spin-down thresh-
old dynamically by adapting to the user’s access patterns
and priorities [12]. Their adaptive spin-down method can
reduce the number of spin-ups by up to 50% in some con-
ditions. Helmbold and Long, et al. also used prediction
combined with a simple and efficient machine learning tech-
nique, the share algorithm, to determine when to spin the
disk down [10]. Their algorithm outperforms any fixed
timeout and reduces disk power consumption by about 50%
over the energy consumed by a one-minute fixed time-out.

MEMS-based storage devices have been suggested as a
possible alternative to disks. They are expected to provide
higher storage densities with much lower operational en-
ergy. With no rotating parts and lighter mass, their unique
physical characteristics enable much simpler and efficient
power management, as described by researchers at Carnegie

Mellon’s Parallel Data Lab [7, 8, 19]. They suggest pow-
ering down the sled when the request queue is empty and
using fewer tips when possible; however, they do not eval-
uate the effects of these techniques on MEMS power con-
sumption, response time, and bandwidth, instead comparing
MEMS behavior using these techniques to that of a disk.
Madhyastha, et al. have also modeled the low-level behav-
ior of MEMS-based storage devices [13].

4 Power Modd

Before proposing techniques for reducing power con-
sumption, it is first necessary to discuss how energy is con-
sumed in a MEMS-based storage device. Since MEMS-
based storage is still in its infancy, some details of the de-
vice’s power model remain unknown. We have derived a
state transition diagram describing MEMS device power us-
age from specifications in earlier work [1, 19], and will use
this model to motivate our schemes to reduce power usage.

4.1 Power Model States

In order to determine how much energy can be saved by
power management, the power utilized by the device during
normal operations needs to be modeled. During data trans-
fer, each active probe tip and its signal processing electron-
ics consume 1 mW, and keeping the sled in motion requires
100 mW [1, 19]. Thus, a data transfer using 1000 active tips
would require (1000x1)+100=1100 mW. When the device
is in standby mode (the sled is “spun down) power con-
sumption is estimated to be only 50 mW. It takes 0.5 ms for
the sled to move from standby to active; during this time, the
sled consumes power as it does during active mode. This is
in contrast to disks that require several seconds and a large
amount of energy to spin up. Based on these guidelines, our
model allows a MEMS-based storage device to be in one
of five states: Inactive, Startup, Seeking, Accessing, and
Idle, as described in Figure 2.

In comparison, disk drives have four major power
modes [12]: OFF, in which the device is completely inac-
tive and consumes no energy; SLEEP, in which the disk is
powered up by the platter is not spinning; IDLE, in which
the disk is spinning but no data is being transferred; and
ACTIVE, in which the disk is spinning and either seek-
ing or accessing data. The key difference in the state dia-
gram between disks and MEMS-based storage is the much
shorter and lower energy transition between SLEEP and
IDLE for MEMS devices. Additionally, overall energy us-
age for MEMS-based devices is lower because they do not
need to rotate a relatively large platter at speeds exceeding
3600 RPM.
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time is 0.5 ms (5 x 10~ s) and no tips need to be active, the
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The actuators are moving the sled. In this mode, only the sled

contributes to power consumption because all tips are inactive.

Accessing The sled is moving and any necessary tips are activated to access
servo information and data. Thus, both the sled and active tips
use power.

Idle When there are no active requests in the queue, the device is
idle. During this time, the sled keeps seeking to the last sector
using some tips to access servo information. The duration of
time before the device switches to Inactive is called the idle
timeout; this time can be adjusted statically or dynamically.
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Figure 2. Power states in which a MEMS-
based storage device can operate
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Figure 3. Power consumption distribution in
Seagate and Snake workloads

4.2 Distribution of Power Consumption

We ran experiments on two workloads to find out how
much power a MEMS storage device consumes in each of
the five states. Our experiments used the CMU G2 MEMS-
based device, with idle timeout set to 1 second. One trace
workload, Seagate, is a validation workload of a Seagate
ST41601N disk drive and is included with the DiskSim
source code distribution. The other workload, Snake, was
collected from an HP-UX file server in 1992 [18]. We used
a one-day subset of the Snake workload with 77,372 re-
quests to conduct our experiments.

Table 1 and Figure 3 show the power consumed by the

Table 1. Power consumption distribution in
the Seagate and Snake workloads

| Energy (joules) \ Seagate | Snake |
Startup 5x10™ <<1%] 002 <<1%
Inactive 1075 << 1% | 1534 42.4%
Servicing:
- Seeking 0.41 18%| 206 0.6%
- Servo 018 08%| 092 0.3%
- Transferring data 1.41 6.1% 7.39 2.0%
Servicing (total) 2.00 8.6% | 10.37 2.9%
Idle 21.35 91.4% |198.07 54.7%
Total 23.35 100.0% | 361.82 100.0%

NOTE: The Snake trace had a scale factor of 0.1. The scale
factor of a trace is the value by which request start times are
multiplied; thus, a scale factor of 0.1 means a trace that is
replayed 10 times faster than the original trace.

MEMS device in each of the five states under the two work-
loads. Total servicing energy includes power consumed in
seeking, accessing servo information and accessing data. In
the Seagate workload, energy consumed in Idle dominates
the system power consumption, consuming about 90% of
the total energy. In the idle state, even though there are no
active requests in the queue, the sled still keeps moving and
active tips keep accessing servo information until the time-
out expires. If the sled could spin down as soon as it com-
pleted the last request before the idle period, this idle time
power consumption could be eliminated or reduced. In the
Snake workload, requests are further apart than in the Sea-
gate workload; thus, the device often goes into the Inactive
state. As a result, only 55% of the energy is consumed in
the Idlestate, and another 42% is consumed in the I nactive
state. Since the Inactive state consumes much less power
than Idle, this indicates that the device is inactive for a large
fraction of the trace period.

5 Power Conservation Strategies

In designing our power conservation strategies, we no-
ticed that startup energy can be omitted because so little en-
ergy is consumed moving the device from Inactiveto Idle.
Energy consumed when the device is in the I nactive state
cannot be further reduced without changing the device it-
self because there is no lower-power state. Energy spent in
the Seek state could be reduced; however, doing so would
require reorganizing the data on the MEMS device and is
beyond the scope of this paper. This leaves two states in
which power savings can be realized: 1dle and Accessing.

After evaluating the existing power conservation ap-
proaches and taking the characteristics of MEMS-based
storage into consideration, we have developed three strate-



gies for power conservation in MEMS-based storage de-
vices: aggressive spin-down?, request merging, and subsec-
tor access. Aggressive spin-down eliminates idle energy but
slightly increases service time. Request merging and sub-
sector access reduce servicing energy at the same time as
they reduce service time sufficiently to cancel out the per-
formance cost of aggressive spin-down. Each of these tech-
niques is described in more detail in the following sections.

5.1 Aggressive Spin-down

Aggressive spin-down deactivates the storage device
when there are no requests in the queue, completely avoid-
ing the idle state. This approach eliminates energy con-
sumed in Idle by spending all inactive time in I nactive, re-
ducing overall power consumption accordingly. The trade-
off in this policy is increased 1/0 latency for requests that
arrive when the device is in I nactive.

Aggressive spin-down is usually not the best solution for
a disk because the delay to spin up from the inactive to idle
state is much higher than access latency in the idle state
and spin-up energy may exceed the energy saved by spin-
ning down if the next request arrives too soon. In particu-
lar, spinning the disk down immediately after each access
is likely to use more energy than is saved because it is so
time-consuming and energy-intensive to accelerate a disk
to over 3600 RPM. Instead, fixed or adaptive heuristics are
used to decide when to spin down the disk. This motivation,
however, is not as applicable to MEMS-based devices. As
Section 4.1 shows, only 1072 J is consumed when a MEMS
device starts up, and it only takes 0.5 ms for this to take
place. In comparison, a disk drive can take 2 seconds and
6 J to spin up, and 1 second to spin down [12]. Since idle
power consumption for a disk is 1 W, spinning a disk down
and back up again requires as much energy as leaving it idle
for 6 seconds. The comparable figure for a MEMS-based
storage device is 50 ms—the time it takes to switch from
Inactive to Idle. In other words, a MEMS-based device
saves energy if spun down when it will be inactive for more
than 50 ms. The benefits of this scheme and potential trade-
offs in performance are discussed in Section 6.1.

5.2 Request Merging

Servicing energy ranks second after idle energy in terms
of power consumption. Any reduction in servicing energy
is likely to carry with it a corresponding reduction in servic-
ing time, which can help to mitigate the performance cost of
the aggressive spin-down discussed in the previous section.
The choice of scheduling algorithms and data placement,

Lugpin-down” refers to stopping the rotation of a disk platter. MEMS
devices do not have rotating media; nonetheless, we will continue to use
the term “spin-down” to refer to the transition between Idleand Inactive.
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Figure 4. Example of MEMS device low-level
data layout

though they may significant affect 1/0O performance, only
influence energy expended during seek—a small fraction
of the overall servicing energy. Thus, modified schedul-
ing schemes are unlikely to significantly reduce servicing
energy or overall power consumption.

The first technique we propose for reducing servicing en-
ergy is request merging, which enhances 1/O performance
while reducing power consumption. In MEMS devices, the
mapping of logical block numbers to physical location is
optimized for sequential accesses [8]. Sequential logical
blocks are mapped to 64 corresponding sectors from ad-
jacent tip sets, allowing logically sequential blocks to be
accessed simultaneously. Because many 1/O requests are
sequential and very bursty, sequential 1/O requests in the
queue can be merged by simultaneously activating more tips
to service the combined larger request with shorter time and
less energy. This method increases the parallelism of con-
current active tips to increase 1/0 bandwidth and reduce re-
sponse time. Moreover, it can reduce the energy consumed
by reducing the number of sled motions required.

Figure 4 shows a simple example in which it is assumed
that one logical block contains only two tip sectors. Sup-
pose a request in the queue is for logical block 0, and the
next request is for logical block 1. These two blocks can
be read in parallel by merging since the four tips are in the
same positions.

In MEMS-based devices, when the tips access data, the
media sled moves in the y direction. If we do not merge
these two requests, then after fulfilling the first request, the
sled has to move back to the start point of logical block 1
to handle the second request. The original strategy in-
curs more seeking overhead and thus increases the response
time. With request merging, requests 1 and 2 can be com-
pleted simultaneously. This scheme saves power and im-



proves performance by using a single sled motion to satisfy
two requests.

Currently, the DiskSim MEMS simulator does not pro-
vide request merging; a general mechanism for merging
requests is a complicated and challenging problem. We
adopted a simple policy for our experiments: if there are
two adjacent requests in the I/O queue to sequential loca-
tions and both are reads, they are combined into a single
large request that replaces the original two requests. We
expect that additional gains can be achieved using more ad-
vanced merging schemes such as combining requests that
differ by a small number of blocks and are accessible by
non-contiguous sets of tips with the same sled motion.

5.3 Subsector Accesses

MEMS-based storage devices have the ability to adjust
their power consumption during data accesses by reading
or writing at a smaller granularity than standard 512 byte
blocks. Since active tips dissipate considerably more power
than the moving sled during data transfers, reading or writ-
ing only the necessary data could save power.

As mentioned in Section 2, a tip sector consists of servo
information (10 bits) and encoded data/ECC (80 bits of en-
coded data) [19]. Groups (or tip sets) of 64 tip sectors from
the same position of separate regions are combined into
512 byte logical sectors, analogous to logical blocks in a
hard disk. In a disk, it is impossible to access regions of
data smaller than 512 bytes, due in part to the need to read
the ECC associated with each block. For efficiency reasons,
the sector size is also limited by the seek and rotational la-
tencies which would make smaller block accesses less effi-
cient. However, accessing subsectors in MEMS is feasible
because the error correcting codes can be computed over
data striped across multiple tips. During a request, only the
necessary subsectors need be accessed and corresponding
tip sets activated; unused tips can remain inactive to con-
serve power. Moreover, the sizes of the subsectors may be
varied on demand.

As a simplified example, if the last block of a request is
logical block 0 in Figure 4, the useful data of the last block
may only be stored in tip 0. In this situation, tip 1 is useless
and should be left inactive. Using subsector accesses, only
tips transferring data will be active, saving the power that
would have been used by the other tips.

6 Experimental Results

We simulated all three of our power management
schemes using DiskSim [4] and the CMU MEMS-based
storage device model [6, 19]. DiskSim is a well-validated
disk simulator that includes several commercial disk mod-

els as well as models for other devices such as MEMS-based
storage.

As described in Section 4.2, we used two trace files in
our experiments. The Seagate trace file uses relative times-
tamps while the other, the Snake trace, contains absolute
timestamps. The relative timestamps in the Seagate trace
are useful in measuring the influence on throughput and re-
sponse time, while the absolute timestamps in the Snake
trace can be used to measure the queued requests. Thus,
we used the Seagate trace file to test aggressive spin-down
and the Snake trace file to experiment with request merging
and subsector accesses. We also combined the three meth-
ods together and tested their overall effect on both power
consumption and I/O performance on the Snake trace.

6.1 Aggressive Spin-down

We first simulated the effect of inactivating the MEMS
storage device on energy consumption and performance.
We simulated different delays before switching the MEMS
device from I dleto I nactive. As expected, power consump-
tion is lowest when the device is switched to inactive mode
as soon as the the request queue is empty, as shown in Fig-
ure 5(a). This is in contrast to disks, for which the longest
and shortest time-outs consume more energy than interme-
diate time-out values [10].

Figure 5(a) shows the effect on power consumption of
increasing the idle time-out from 0 ms to 40 ms. As ex-
pected, overall power consumption is lowest when the de-
vice is switched immediately to the Inactive state, and is
twice as high with a 40 ms time-out. With a longer idle
timeout, the MEMS-based device must wait longer before
switching to the power-conserving | nactive state, spending
more time in the power-hungry I dle state. Power consump-
tion is reduced by 50% by using a time-out of 0 ms and
switching immediately to I nactive when there are no out-
standing requests.

Quickly switching to the Inactive state reduces power
consumption, but may also increase response time and re-
duce bandwidth by increasing the latency of any request
arriving while the sled is inactive. We measured this ef-
fect using two metrics: average response time and aver-
age throughput. Figure 5(b) shows that as the time-out
decreases from 40 ms to 0 ms, average response time in-
creases by about 66%. Note that the extra response time is
about 0.5 ms, which is the startup timeout, indicating that
most requests have a startup overhead when the sled is ag-
gressively spun down. Therefore, the average response time
increases by the startup cost. Since the response time only
increases by 0.5 ms, however, we believe that this added re-
sponse time will not be noticed by users as long as overall
bandwidth is not affected.

Fortunately, an aggressive spin-down policy does not
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Figure 5. Effect of idle timeout

significantly affect throughput, as Figure 5(c) shows. As
the time-out decreases from 40 ms to 0 ms, throughput only
drops by about 4%. For this workload, bandwidth is thus
largely unaffected by aggressive spin-down, and latency in-
creases by 0.5 ms, hardly noticeable for most users. Thus,
we believe that aggressive spin-down with no delay is the

best choice for MEMS-based storage devices.

6.2 Request Merging

Request merging requires thata MEMS device allow suf-
ficient tips to be active to read two sectors at the same time.
The average request size in the Snake workload is 8 KB,
requiring that 16 x 64 = 1024 tips be activated at the same
time. Since a G3 device allows 3200 tips to be active, more
than twice as many tips to be active as needed for a single
8 KB request, two adjacent requests can usually be merged
together.

We tested the straightforward strategy of combining ad-
jacent requests in the queue when the requests contain se-
quential logical blocks using the Snake workload. Fig-
ure 6(a) shows that this simple merging method saves up
to 18% of the servicing energy for longer request queues.
Figure 6(b) shows that merging sequential requests also re-
duces average response time by about 20%. Improvements
in both response time and servicing energy show that using
request merging on MEMS-based storage devices is a good
idea.

6.3 Subsector Accesses

The third power reduction scheme, accessing subsectors,
relies upon the MEMS device’s ability to use relatively few
tips to access the desired data. This technique is only effec-
tive if the operating system knows about the device’s ability,
however, since a naive system will write an entire (large)
sector even if it would be possible to write a small amount.
This is reflected in the traces, which were gathered on sys-
tems with a relatively large block size. If the workload were
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Figure 6. Effect of request merging

gathered at the file system level, we could treat the last few
bytes of a file as a subsector read or write. For disk level
workloads, if the request size is specified in terms of bytes,
only the last logical block of a request can be accessed as a
subsector. When disk level traces are used to simulate the
subsector method, we assume that the size of the subsector
is uniformly distributed for the last logical block of each re-
quest. In other words, the number of active tips is randomly
selected from 1 to 64 for the last subsector.

We used the Snake trace and the CMU G3 device pa-
rameters to measure the effectiveness of the subsector ac-
cess approach. Figures 7(a) and 7(b) show the results of
using subsector accesses on power consumption and re-
sponse time as compared with those of the original simu-



12 T T T T T T T T T

0+

Sector
Subsector -------

Servicing Energy (J)

o N A O ©
T

1 1 1 1 1 1 1 1 1
0O 10 20 30 40 50 60 70 80 90 100
Scale factor of Trace Inter-Arrival Time (1/x)

(a) Effect of subsector access on servicing energy

140 T T T T T T T T T
120 Sector
100 F Subsector -------
80 -
60 -
40
20 -

0 Il 1 1 1 1 1 1 1
0O 10 20 30 40 50 60 70 80 90 100

Scale factor of Trace Inter-Arrival Time (1/x)

Average Response Time (ms)

(b) Effect of subsector accesses on response time

Figure 7. Effect of subsector accesses

lation. These results illustrate that subsector accesses can
only save about 3% of the servicing energy and have no ef-
fect on average response time. However, the improvement
is not significant because the Snake trace is a disk level trace
and its average request size is 8KB, which includes 16 log-
ical blocks. Only the last logical block will exploit the sub-
sector approach. Hence, only 1/32, about 3%, of the data
accessing energy is saved.

Although these results are not exciting, this approach
may also be useful for other types of small 1/0s, such as
metadata requests, and parallel 1/Os. Previous studies have
shown that only 13-41% of 1/O accesses are to user data
while over 50% are to metadata [17, 18]. Metadata requests
are small, and will benefit greatly from subsector accesses
because the device need not read an entire 512 byte logical
sector to retrieve a 128 byte inode. This allows the device
to use fewer tips, saving power. In the Snake trace subset
we used, about 72% of the 1/0 accesses are to metadata,
providing a much opportunity for power savings.

To measure the effect of subsector accesses for metadata
accesses, we ran another set of experiments that reduced the
number of tips used for metadata requests. We assumed a
128 byte inode, similar to that used in the Unix Fast File
System [14]. Reads of such an inode require 128 bytes, and
thus require 16 out of 64 tips to be active. Metadata writes
of a new inode similarly require 16 tips to be active. In-
ode updates, on the other hand, may require significantly
less data to be written; the most common update operation
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in Unix occurs when a file is read, causing the file’s access
time (a 4 byte value) to be modified. In other cases, how-
ever, writes of an existing inode might require all 128 bytes
to be updated. Since we did not know the percentage of
metadata writes corresponding to each type of update, we
considered three mixes of operations: all access time up-
dates at 4 bytes per metadata write, 50% access time up-
dates and 50% full inode writes at (128 + 4)/2 = 66 bytes
per metadata write, and all full inode writes at 128 bytes per
metadata write.

Figure 8 shows that using subsector accesses for meta-
data dramatically reduces servicing energy in all three sce-
narios. For the most realistic 50/50 mix, servicing energy
is reduced by 33-40%; the other scenarios reduce servicing
energy by 29-45%.

Additionally, subsector accesses reduce the number of
active tips required for individual requests, providing more
available tips that may be used to merge requests. Hence,
subsector accesses may enhance the effectiveness of request
merging. In the next section, we explore the overall ef-
fect by applying all three power conservation approaches
together.

6.4 Combining the Three Strategies

To evaluate the overall effect of the three power con-
servation strategies, we used the Snake trace to drive ex-
periments based on the G3 MEMS device model. Fig-
ure 9(a) shows that by applying all three methods the total
energy consumption can be reduced by up to 54%. In this
experiment we assumed the 50/50 scenario with an aver-
age of 66 bytes per metadata writes for subsector accesses.
Since the previous section showed that the change in overall
power consumption between 4 byte and 128 byte metadata
writes is within 1%, the effect of the actual proportion of
old and new metadata writes on overall power consumption
is very small.

As discussed in Section 6.1, aggressive spin-down
causes average response time to increase due to the addi-
tional spin-up overhead. However, request merging reduces
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user delay by servicing sequential requests simultaneously,
largely mitigating this effect. Thus, as shown in Figure 9(b),
when all the three approaches are applied to MEMS-based
storage device together, overall response time is not af-
fected. Thus, these power conservation strategies are par-
ticularly appealing because they provide more than 50% re-
duction in power consumption with no loss in performance.

7 Future Work

Aggressive spin-down can be combined with delayed
spin-up to further reduce energy consumption. Instead of
restarting as soon as a new request arrives, the sled can wait
until several requests queue up or a fixed time has elapsed.
The device will spend more time inactive and 1/O bursti-
ness will increase, reducing overall power consumption.
To some extent, this method avoids unnecessary spin-ups
caused by over-aggressive spin-down. Moreover, this tech-
nique may result in slightly longer queue lengths, giving
request merging more to work with and further improving
both performance and power consumption.

Many improvements can be made to the request merging
scheme. First, more than two small requests in the queue
may be merged. If the MEMS-based device can support
more active tips simultaneously in the future, merging more
requests is a good way to save more energy. Also, logically
sequential requests need not be adjacent in the queue, but

can be made adjacent through request reordering. This is
especially useful for synchronous 1/0 workloads where the
sequential requests of one process interlace with those of
other processes. Using anticipatory scheduling to overcome
deceptive idleness in synchronous 1/0O [11], a larger number
of sequential requests from each process can be reordered
together and merged together, reducing both seek and ac-
cess times and boosting 1/O performance and energy effi-
ciency. In fact, even the logical sequentiality requirement
can be loosened. A very aggressive policy is to merge as
many read requests in the queue as possible without exceed-
ing the maximum number of tips that can be activated at
the same time. Furthermore, requests can be separated and
recombined to achieve a greater degree of parallelism. Our
current work only merges read requests—write requests can
also be merged. Moreover, if MEMS-based device can sup-
port reading and writing at the same time, the merging strat-
egy can consider both read and write requests and still pre-
serve RAW, WAR and WAW data consistency.

Subsectors accesses can also improve power conserva-
tion in the future. The trace files used in our experiments
are extracted from Unix file system and the average request
size is 8 KB, considerably larger than 512 bytes. Applying
subsector accesses to the last logical block of each request
cannot get a big jump in performance. However, other kinds
of file systems such as parallel file systems may produce
different results. In many parallel file system traces, for ex-
ample, the average request size is much smaller (less than
512 bytes) [16], allowing the subsector approach to have
a significant improvement in power conservation. Simi-
larly, personal digital assistants and other handheld devices
might manage smaller chunks of data, also permitting lower
power subblock accesses. An intelligent operating system
might further reduce power consumption by noting the spe-
cific bytes that change in both metadata and data blocks and
only writing back the necessary regions. This approach has
the potential to dramatically reduce power consumption by
keeping most tips turned off on writes.

8 Conclusions

This paper has described three techniques for reducing
overall power consumption by over 50% in a MEMS-based
storage device without reducing performance. We accom-
plished this by reducing the time the device spends idle,
making the most of sled movements by combining adjacent
requests, and by reducing the number of tips used for small
transfers. Our power conservation strategies target the most
power-consumptive factors—idle energy and servicing en-
ergy. Trace-based experiments show that aggressive spin-
down saves 50% of the overall energy, but also increases re-
sponse time. Merging of sequential requests can save up to
18% of the servicing energy and improve 1/0 performance.



Though accessing subsectors only saves 3% of the servic-
ing energy based on the last subsector assumption, if it is
applied to metadata requests as well over 40% of the ser-
vicing energy can be saved. By applying all three power
management strategies on the Snake trace, we show that we
can reduce power consumption in MEMS-based storage de-
vices by about 54% without suffering any degradationin 1/0
performance.
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