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1 Introduction

In a distributed system, data are often replicated for protection against site failures and network

partitions. When data are replicated at several sites, a consistency control policy must be chosen to

ensure a consistent view of the data and maintain the appearance that there is only a single replica

of the data. The view presented to the user must remain consistent even in the presence of site

failures and network partitions. Sites recovering from a failure must present the data stored at that

site in such a way that it is consistent with the global view of the data. Several consistency control

protocols have been proposed, and the most promising are variants of available copy schemes and

schemes based on quorum consensus.

Costs or space limitations may make it impossible to replicate a data object at enough sites to

guarantee an acceptable level of fault tolerance. If new replicas of a data object can be created

faster than a system failure can be repaired, then better reliability can be achieved by creating

new replicas on other sites in response to site failures. This technique, known as regeneration,

approximates the protection provided by additional replicas with only a modest increase in storage

costs.

The degree of fault tolerance achieved depends on both the degree of data redundancy and

on the consistency protocol that is used to manage the object. The most common measures

of fault tolerance include reliability, which is the probability that a replicated data object will

remain continuously available over a given time period, and availability, which is the steady-state
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probability that the data object is available at any given moment. Availability has received much

more attention, in part because its analysis is more tractable than that of reliability.

The requirements of the application that manipulates the data object affects the relative im-

portance of the measures. While reliability is perhaps the best indicator of the dynamic behavior

of the system, if the objective is to simply minimize the inaccessibility of the data being replicated,

then availability is often of primary concern. By contrast, enhanced reliability is usually the main

objective for applications that incur disproportionately large costs for any failure of the data object.

Simulation plays a crucial role in evaluating the performance of these protocols. Consistency

control protocols limit access to the data object to ensure that only current copies of the data can be

accessed. The effect these protocols have on the accessibility of the replicated data is investigated

by simulating the operation of the network and measuring the performance. Several strategies

for replica maintenance are considered, and the benefits of each are analyzed using simulators

which have been validated by numeric solutions derived from Markov models. The details of the

simulations are discussed. Measurements of the reliability and the availability of the replicated data

are compared and contrasted. In particular, the sensitivity of the protocols to common patterns of

site failures and repairs is studied in detail, and the effect the second moments have on the results is

analyzed. The relative performance of competing protocols is shown to be only marginally affected

by non-exponential distributions, validating the robustness of the exponential approximations.

Stochastic process models have been used extensively to evaluate the fault tolerance provided

by replica control protocols. However, there are many issues that cannot be addressed by stochastic

process modeling. The assumption of an exponential distribution for site repair times is unrealis-

tic, but using other distributions result in intractable analytic models. The problem of modeling

partitions of the communication network is intractable for all but the most basic cases [34], since

the number of states that must be considered quickly becomes unmanageable. These are among

the reasons that discrete event simulation has been chosen to evaluate the fault tolerance provided

by replica control protocols.

Discrete event simulation provides the ability to model replicated data objects in a more realistic

manner. It allows for the relaxation of many of the assumptions that are necessary for an analytic
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model of the replicated data object. An added advantage of using simulation is that it can easily

model systems composed of many network segments. The primary disadvantage of discrete event

simulation is that the solutions obtained pertain only to the specific configuration being modeled.

This makes it difficult to predict how the system will behave when some of the parameters are

modified.

In §2, the consistency control protocols evaluated in this study are introduced. The regeneration

enhancements to these protocols are described in §2.3.1. In §3, the problem of evaluating the per-

formance of replica control protocols is considered. The task of accurately determining simulation

parameters poses some interesting problems and is discussed in §3.1. A simulation for measuring

the reliability afforded by the various replica control protocols is presented in §4, and the simulation

model for measuring the availability provided by these is discussed in §5. The results obtained from

the availability study are presented in §5.3, followed by the conclusions in §6.

2 Replica Control Protocols

The field of consistency control protocols for replicated data objects has existed for about ten years.

Its birth coincides with the advent of distributed data bases and the network technology required

to support them. When data objects are replicated around a computer network a protocol must

be chosen to ensure a consistent view to an accessing process. The replicas of the data object are

then said to be mutually consistent. The protocols used to ensure mutual consistency are known

as replica control or consistency control protocols.

A replicated data object has the same semantics as an unreplicated instance of the same data

object. The accessibility of a replicated data object depends on maintaining a viable set of current

replicas. Costs or space limitations may make it impossible to replicate a data object at enough sites

to guarantee an acceptable level of fault tolerance. If new replicas of a data object can be created

faster than a system failure can be repaired, then better fault tolerance can be achieved by creating

new replicas on other sites in response to site failures. This technique, known as regeneration,

approximates the protection provided by additional replicas with only a modest increase in storage

costs. The major replica control protocols are presented next, followed by a discussion of the
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modifications necessary to incorporate regeneration in each scheme.

2.1 Available Copy

The Available Copy protocol, is a descendent of the Write All Available protocol used in the SDD-

1 distributed data base system [4, 5]. It is comprised of a set of policies for providing mutual

consistency and concurrency control in a distributed data base system. The protocol allows reads

and writes of the data object until all sites are simultaneously in a failed state. After such a total

failure, recovering sites must reliably determine whether they hold the most recent version of the

data object. Access to the data object is restored only after the last site to fail has been identified;

when this site recovers, it is used to determine the current state of the data object.

The Available Copy protocol requires that some very strong assumptions be made about the

operating environment. The first assumption is that the communication network must be reliable.

The communication network must not be susceptible to partitions, and reliable message delivery

must be assured. A more controversial assumption is that failures are detectable in a fool-proof

manner. In practice this is often a very difficult task. The method that is used is to send a message

to a site and wait for a response or for it to time-out. This is unreliable in the case of heavily

loaded sites.

Due to the strong assumptions that are made about the communication network, the Available

Copy protocol guarantees that all available replicas of the data object are current. By assuming

that the network will provide reliable delivery of each message mutual consistency can be ensured by

sending each write to every available copy. This also allows reads to be performed at any available

copy, in particular, at the local site if a copy is present.

When a site recovers from a failure it must obtain a current replica of the data object. If there

is another operational site that holds a current replica then the recovering site can request a replica

of the data object from that site. In the event of a total system failure the Available Copy protocol

must determine the last site to fail since that site must hold a current replica of the data object.

The problem of determining the last site to fail has been studied by Skeen [32].

In the original proposal for the Available Copy protocol [2], the goal of detecting the last site to
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fail was achieved by maintaining several sets of failure information, including: all sites participating

in the replication of the data object, those sites that have been specifically included in the set of

replicas, and those sites that have been specifically excluded from the set of replicas. An included

site is one that is known to hold a replica of the current version of the data object, and an excluded

site is one that has failed and the failure has been detected by some other operational site.

2.2 Quorum Consensus

Quorum consensus protocols ensure the consistency of replicated data objects by honoring read and

write requests only when an appropriate quorum of the replicas of the data object can be accessed

[11, 33].

There are several methods for achieving this goal. The simplest is to assign a single vote to each

site participating in the replication of the data object. When an access occurs each operational site

sends its vote to an access coordinator managed by the protocol, which then determines if a quorum

is present. This can be refined by assigning a variable number of votes to each site depending on

its characteristics.

Other alternatives have also been proposed. Different quorums can be assigned for read and

write operations allowing the protocol to be tailored to the most frequent type of access. The

number of votes assigned to each site, or even the required quorum, can be adjusted in response to

changing system conditions [1, 10]. This analysis is confined to an egalitarian model based on one

vote per site.

2.2.1 Static Quorum Consensus

In their simplest form quorum consensus protocols assume that the correct state of a replicated

data object is the state of the majority of its replicas. This simple static case is known as static

Majority Consensus Voting. Ascertaining the state of a replicated data object requires collecting a

quorum of the replicas. Should this be prevented by one or more site failures, the replicated data

object is considered to be unavailable.

Simple quorum consensus protocols can be refined by introducing different quorums for read

and write operations or by allocating different weights, including none, to each replica [11]. Mutual
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consistency among replicas of the data object is guaranteed as long as the write quorum is high

enough to disallow simultaneous writes on two disjoint subsets of the replicas, and the read quorum

is high enough to disallow simultaneous reads and writes on two disjoint subsets of the replicas.

These conditions are simple to verify and account for much of the conceptual simplicity and the

robustness of quorum consensus protocols.

Although static vote assignments are simple to understand and to implement, they do not

provide the highest possible level of fault tolerance. Dynamic quorum adjustment improves the

performance of quorum consensus by responding to changes in the state of the system.

2.2.2 Dynamic Quorum Adjustment

Dynamic quorum adjustment protocols adjust the required quorum of replicas in response to chang-

ing system configurations. Among these are Dynamic Voting [7], Dynamic-linear Voting [12] and

Optimistic Dynamic Voting [20].

A weakness of all static quorum consensus protocols is that the quorum is fixed and does not

change once the system has begun operation. Because of this the loss of one half of the votes

will render the data inaccessible. Davčev and Burkhard [7] proposed a solution to this problem,

known as Dynamic Voting. Their policy adjusts the quorum of replicas required for an access

operation automatically. A group of replicas, comprised of a majority of the current replicas that

can communicate among themselves, is referred to as the majority partition.

The original Davčev-Burkhard Dynamic Voting protocol is based on the connection vector.

The connection vector instantaneously records the state of the system with respect to all sites.

Each replica of a data object has an associated ensemble of state information consisting of the

version number and the partition vector. The version number of a replica represents the number

of successful write operations to the replica. The partition vector at a site records the version

numbers of all sites with respect to that site. The system state information is assumed to propagate

instantaneously to all sites in the computer network.

In its original form, Dynamic Voting allows accesses to proceed so long as a strict majority of

the current replicas are accessible. In situations where the number of current replicas within a
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group of mutually communicating sites is equal to the number of missing replicas, Dynamic Voting

cannot proceed and declares that the replicated data object to be inaccessible. A simple extension

proposed by Jajodia [12], known as Dynamic-linear, enhances Dynamic Voting by resolving ties

by applying a total ordering to the sites. The sites holding replicas of the data are given a static

linear ordering. When a tie occurs, if the group of communicating sites contains exactly one-half

the current replicas and contains the maximum element among the group of current replicas, that

group is declared to be the majority partition.

A second protocol proposed by Jajodia and Mutchler [13], which they call Dynamic Voting,

operates using only the number of sites that participated in the last write operation. Although

read operations are known to be much more frequent than writes [23], no information about the

system configuration is exchanged when a read operation occurs. As a result, the level of fault

tolerance that the protocol can provide is decreased.

A third protocol proposed by Jajodia and Mutchler [14], combines Jajodia’s total ordering with

his previously proposed Dynamic Voting protocol. This protocol, now known as Dynamic-linear

Voting, uses a designated site when an even number of replicas are present in order to break ties.

All Dynamic Voting protocols require that a quorum be collected for either a read or a write

operation to be performed. The Optimistic Dynamic Voting protocol [20] takes advantage of this

opportunity to adjust its view of the system configuration, thus improving the performance of

the protocol. The view at each site consists of the names of each site to participate in the last

successful operation with that site, and operation number and a version number of the data object.

The operation number is incremented each time a successful operation occurs and represents a

version number of the partition sets containing the names of the sites in the majority partition.

2.3 Regeneration

Pu [28] first proposed the Regeneration Algorithm as a space-efficient technique for increasing the

availability of replicated data objects in the Eden system [29]. His protocol provides mutual and

serial consistency of replicated data objects in a partition-free distributed system. New replicas are

created (regenerated) when the algorithm detects that site failures have rendered one or more of
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the replicas inaccessible. The protocol initiates a regeneration only when a write request occurs,

thereby enhancing its efficiency.

There are several improvements to the Regeneration Algorithm that can be made by adapting

the technique to existing replica control protocols. Noe and Andreassian suggested the adoption of

an approach similar to the Available Copy protocol [2, 3] to alleviate the problem of poor reliability

for writes. This approach allows writes to occur as long as a single replica of the data object remains

available [22]. This suggests that using regeneration to maintain a viable set of current replicas is

a technique that can be adapted to many existing replica control protocols.

The hybrid protocols presented in this section successfully address the limitations of the original

Regeneration Algorithm. When the communications network is not susceptible to partitioning, an

Available Copy protocol [2, 3] provides the best fault-tolerance characteristics. When communica-

tions failures can occur, a consensus-based protocol based on Dynamic Voting [7] provides a high

degree of fault tolerance while protecting against replica divergence. Regeneration can be easily

applied to most Dynamic Voting derivatives, including Dynamic-linear Voting [13] and Optimistic

Dynamic Voting [20]. This technique can also be applied to static Majority Consensus Voting

[8, 11].

Another concern often raised about regeneration is its cost in storage space. While in the worst

case the amount of space required is the number of original replicas plus the number of spares,

preliminary studies have shown that the increase in storage requirements is on the average less

than 10 percent [17] for typical failure and repair rates.

2.3.1 Applying Regeneration

To combine regeneration with an existing replica control protocol, it is necessary for the protocol to

differentiate between sites holding replicas and sites to be used when replicas are regenerated. The

protocol must be able to identify these sites so that it can consider only those replicas that belong

to the correct generation of the replicated data object. This is especially important in the case of

consensus-based protocols, where to avoid possible inconsistencies it is essential to disenfranchise

replicas that belong to previous generations.
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A replica control protocol based on regeneration begins with a set of replicas placed on sites

around the computer network. As these replicas fail, other sites (called spares) are located and

new replicas are created on them by the regeneration protocol. Once a failed system component

has been repaired, the storage used by the extra replicas can be relinquished.

For all of the protocols, it is essential that the regeneration mechanism be atomic to ensure

consistent creation of replicas. For quorum-based protocols, generations with fewer than a quorum

could result if this condition is not met. In this event, the replicated data object would become

permanently inaccessible since no quorum could ever be formed. It is assumed that an appropriate

commit protocol [31] is used to ensure atomicity.

2.3.2 Regenerative Available Copy

An Available Copy protocol increases the reliability of the protocol by continuing to allow writes

to occur as long as one replica of the data object remains available and by allowing reads from any

available copy. Combining the Available Copy protocol with regeneration yields better performance

than the Regeneration Algorithm, which disallows writes when less than a full complement of sites

are available.

The Optimistic Available Copy protocol [6, 19] provides all the necessary facilities to integrate

regeneration into an available copy protocol. In particular, the was-available sets, which are used

by Optimistic Available Copy to speed recovery from total failure by tracking the last site to fail,

provide all the information that is needed to identify the set of replicas comprising the current

generation. The was-available set for an available site contains the names of those sites which have

the most recent version of the replicated data object. This includes the set of all sites that received

the most recent write and all of those sites which have repaired from that site.

For the Optimistic Available Copy protocol to allow a regeneration to occur, at least one replica

must be in an available state and there must be at least one spare. The state of the replicated data

object, including the data and the version number, is first copied to the spare sites, and the names

of those spare sites are then included in the was-available sets of all available sites. The version

number associated with the regenerated replicas is the current version number of the replicated
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data object.

Except for its treatment of spares, the recovery procedure remains the same as in the Optimistic

Available Copy protocol. It operates by using the information contained in the was-available sets

stored at each site to determine the set of sites that failed last. This set of sites can be found by

computing the closure of the was-available set of the recovering site. When a site recovers from

a failure and finds a site in its was-available set that has been transformed into a spare, it treats

that spare as a failed site. The recovering site will then be unable to compute the closure of its

was-available set, ensuring that it must wait for the recovery of the last site to fail.

When a recovering site establishes communication with an available site, it may find that a

full complement of replicas are already available. In this case, one of the extant replicas can be

destroyed and the storage reclaimed, thus reducing the amount of storage consumed. As with all

regeneration-based protocols, the question of which replicas should be retained remains open. It

would seem that the best choice would be to keep replicas on sites with the most favorable reliability

characteristics, but factors such as communication costs may make other choices more appropriate.

2.3.3 Regenerative Majority Consensus

The notion of generations is required to combine regeneration with static Majority Consensus Vot-

ing. A generation is defined as the set of replicas that have participated in a particular regeneration.

Each replica in the set will be tagged with a generation number. By using generations, the current

set of replicas can easily be determined, and only that group is allowed to participate in quorum

collection. The generation numbers used here are similar to those used by Pâris in his article on

voting with tokens [26].

Adding regeneration is a simple extension to static Majority Consensus Voting [8, 11]. A

majority is considered to be a majority of the votes assigned to the original set of replicas. As

spares replace failed sites they can be assigned the votes of the failed sites. In this case, the net

number of votes in any generation is never more than the original number of votes. Of course,

it is possible to reassign votes using an appropriate protocol, but that issue is orthogonal to this

discussion.

10



When the protocol determines that there are fewer than the desired number of replicas of the

data object, a regeneration will be initiated. A regeneration cannot occur unless a quorum of the

replicas can be collected. These replicas must be members of the current generation, as indicated

by the current generation number. If a quorum exists and there are spare sites available, some are

chosen to hold the new replica of the data object. The state of the replicated data object, including

the data and the version and generation numbers, is copied to the spare sites. The spares are

transformed into full replicas and all participating sites will increment their generation numbers

in order to disenfranchise any sites that did not participate. This preserves mutual consistency by

excluding the replicas that did not participate in the regeneration from taking part in any future

quorum.

When a vote is called, excess replicas of the data object will have obsolete generation numbers.

These replicas can be transformed into spares since they are not members of the current generation

and so cannot participate in any quorum.

There is no need for a complex site recovery protocol, since a site that recovers from a failure

can determine if it is a member of an earlier generation by examining its generation number when

the next quorum collection occurs. If it is found to be a member of an earlier generation it can be

transformed into a spare.

2.3.4 Regenerative Dynamic Voting

The Optimistic Dynamic Voting protocol [20] is an implementation of Dynamic Voting [7], similar

to Dynamic-linear Voting [13] but more amenable to regeneration. Due to its use of partition sets,

Optimistic Dynamic Voting accepts regeneration naturally. A partition set represents the set of

sites which participated in the last successful operation that included the site where it is stored.

They are used to determine the required quorum for the next access operation. The partition sets

are maintained when either a read or write operation occurs, and are brought up-to-date when a

site recovers from a system failure.

The partition sets contain all the information that is needed to identify replicas and provide a

mechanism for excluding sites that are members of out-of-date quorums. Accomplishing a regener-
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ation requires a majority of the replicas in the quorum set to be present. The definition of a quorum

remains unchanged. Spare sites are selected and are transformed into replicas and the names of

these sites are entered into the partition sets of sites in the quorum. The operation number of the

replicated object is then incremented. Since a quorum must be present, incrementing the operation

number has the effect of disenfranchising those replicas that did not participate in the regeneration.

There is only a slight change in the site recovery protocol. When a site recovers from a failure

and finds that the original number of replicas are already present, then the storage that it consumes

is superfluous and this site can be transformed into a spare.

3 Modeling Considerations

The performance of many consistency protocols has been extensively evaluated [6, 13, 19, 20, 25, 24],

but most of these studies are predicated on simplified assumptions about the site characteristics.

Analytic solutions to performance measures such as availability and reliability are intractable unless

the system is a homogeneous network of sites conforming to standard Markovian conditions. Such

studies do not apply to distributed systems comprised of heterogeneous sites, and discount many

inescapable events such as periodic down times required for scheduled maintenance.

The behavior of Markov processes is robust, that is, Markov processes are good approximations

to the behavior of more general stochastic processes. It is important to judge the extent to which

the theoretical performance of replicated data on idealized systems agrees with the observed per-

formance of actual systems. The infrequency of site failures in computer systems precludes the

compilation of accurate estimates of the failure and repair distributions, and hence simulation is

an appropriate vehicle for estimating the robustness of various protocols.

The investigation of the effects that non-exponential distributions have on the fault tolerance

characteristics of several consistency protocols is one goal of this study. Toward that end, simulation

models are developed for some common performance measures. These models can also be used to

collect other performance data, such as the mean time to repair and mean time to failure of the

replicated data object. By employing exponential distributions on identical sites, the simulation

models can be validated against the results predicted by closed-form and numerical solutions [6,
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25, 24, 18].

The simulation models are used to investigate the sensitivity of the performance measures to

the higher moments of the failure and repair distributions. Exponential, Erlang, uniform, and

hyperexponential distributions are used, and the effect the second moments have on the results is

considered. The degree to which the relative performance of competing protocols is affected by

non-exponential distributions is presented. Reliability is explored in §4, and §5 includes a similar

analysis of availability. The availability and reliability results are also compared with those from

a simulation based on site failure data collected from functioning networks over a period of eight

months.

In order to perform an analytic study of replica control protocols, a simplified system model

must be developed. The replicas of the data object are assumed to reside on distinct sites of a

computer network. These sites have independent failure modes, but have identical failure, repair,

and regeneration characteristics. The communication network connecting the sites is assumed to be

reliable and does not fail. For this simplified model, the time to notice a site failure and complete

a repair is assumed to be exponentially distributed with mean 1/µ. This includes the time to

ascertain if this site is still intended to hold a replica of the data object and (if necessary) copy

the data. When a site fails, a repair process is immediately initiated at that site. Should several

sites fail, the repair process will be performed in parallel on those sites. Site failures are assumed

to be exponentially distributed with mean rate λ. The ratio of λ to µ is denoted by ρ; smaller

values of ρ yield more reliable systems. Site regeneration is similarly modeled by an exponential

distribution with mean κ, which reflects the time to determine that a site has failed, verify that both

the replicated data object and a suitable spare is available, and install a replica on that spare site.

The resulting system is characterized by a discrete-state Markov process [34]. These assumptions

preclude network partitions, which can cause several sites to become simultaneously inaccessible,

and clearly apply only if the participating sites have independent power sources.

Such stochastic process models have been used extensively to evaluate the fault tolerance pro-

vided by replica control protocols. However, there are many issues that cannot be addressed by

stochastic process modeling. The assumption of an exponential distribution for site repair times
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is unrealistic, but using other distributions results in intractable analytic models. Discrete event

simulation provides the ability to model replicated data objects in a more realistic manner. It

allows for the relaxation of many of the assumptions that are necessary for an analytic model of

the replicated data object.

3.1 Parameter Estimation

Estimating the parameters for the simulation models was found to be a difficult task. The first at-

tempt involved asking system administrators how often their machines failed. From this experience

it was learned that system administrators are hopelessly optimistic, and that their usual response

is “almost never.”

System administrators are more helpful when it comes to determining the service time for a

component failure. The service contract for each machine specifies the period of time during which

the service technician must arrive. By observing service technicians at work, a good estimate of

how long it takes to diagnose the failure can be gained.

Some simplifying assumptions were necessary for the simulation model. The first is that the

service technician will arrive within a known and bounded period of time. This is justified by the

usual service contract clause that requires a service technician to arrive within a specified interval.

The service technician is assumed to require a variable period of time to diagnose the failure. Once

the technician has diagnosed the problem, the failed component must be replaced. In some cases the

component will not be available and will require the technician to retrieve it from the warehouse.

For simplicity, the portion of the service time during which the machine is under repair is assumed

to be exponentially distributed.

The Berkeley Unix system provides a convenient method of collecting these statistics. Each

site periodically sends a broadcast packet that lists the number of users, the load average and the

time that the system has been operational. Since sites tend to be very reliable, it was impossible to

gather enough data points during the lifetime of most machines to accurately determine the failure

and repair distributions. The statistics gathering-processes were placed at several installations,

including the University of California, San Diego and the Naval Ocean Systems Center. The Naval
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Ocean Systems Center results were the most accurate since the system administrator there agreed

to install them into the system restart script.

Several items of interest were encountered during the course of this effort. The first is that

systems fail much more often than system administrators would lead the users to believe. This is

not a conscious deceit on their part; it just seems that they do not regard “a quick reboot” as a

system failure. Another is that significant periods of time can elapse between when a system fails

and when it is restarted. The fluctuations in usage during different periods is a significant factor.

The time to restart the system seems to be dominated more by the use of the machine than by the

machine type. If a machine is in constant use, it is more likely to be rebooted quickly than one

that is seldom used.

4 Reliability Analysis

Reliability is a measure of the probability that a protocol will continuously allow access to the

replicated data object over a given time interval. With sufficient iterations, a reliability simulator

can build a comprehensive picture of the time-dependent characteristics of a protocol.

There are several reasons for favoring reliability as the primary performance measure. For com-

parable numbers of sites, the availabilities afforded by the better protocols are very similar, but

the reliabilities vary greatly. In many applications, the reliability of a system is a more important

measure of its performance than its availability. These applications include process control, data

gathering, and other tasks requiring interaction with real-time processes, where the data will be

lost if not captured when it is available. The computers used for stock trading are a prime example:

If these machines were to fail, the resulting chaos would halt trading. While the availability of a

protocol measures the performance of that protocol over a long period of time, its reliability esti-

mates the probability a replicated data object managed by that protocol will remain continuously

available over a given period of time.

Definition 4.1 The reliability RP (n, t) of an n-site system managed by protocol P is defined as

the probability that the system will operate correctly over a time interval of duration t given that all

n units were operating correctly at time t = 0 [34].
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The differential equations describing the behavior of systems managed by the replica control

protocols can be derived from the state-transition flow rate diagrams. These equations only apply

if all the distributions are exponential, and thus while they do not yield exact solutions for realistic

scenarios, the solutions can validate the simulation model. In a network with a large cluster of

sites, the number of spares is often much greater than the desired number of replicas, and hence

the number of spares can be viewed as being effectively unlimited. The failure of the replicated

data object will rarely be due to the unavailability of a suitable spare, but will usually result from

the inability of an existing spare to successfully replicate the data before the last site fails.

The states in the Markov chain which models such a system are labeled to reflect the number

of sites that can successfully respond to a request for the replicated data object. An n-site system

with an unlimited number of spares is in state 〈0〉 if the replicated data object has been inaccessible

at some point in the past, while for 1 ≤ i ≤ n, the system is in state 〈i〉 if the object has been

continuously accessible and if i replicas of the data object are currently accessible. The inaccessible

replicas are on failed sites or sites still recovering from failure. No transitions are permitted from

state 〈0〉, since only the behavior of the system prior to the first total failure is of interest. Flow

rates to adjacent states are governed by the number of sites operational and the number of sites

under repair. The diagram for an n-site system with an unlimited number of spares employing an

Available Copy protocol is given in Figure 1.

Figure 1: Available Copy with Unlimited Spares

16



A system maintaining n active sites with an additional m spare sites is in state 〈j, k〉 if j replicas

are immediately accessible and k sites are currently available as spares. The state 〈0〉 will again

denote the inaccessible state. For example, the flow rate diagrams for three sites with two spares

managed by Majority Consensus Voting is shown in Figure 2.

Figure 2: Majority Consensus with 3 Copies and 2 Spares

For small numbers of sites, closed-form solutions for the reliability of some of the protocols

can be obtained from the differential-difference equations derived from the flow rate diagrams.

Less tractable systems can be both simulated and solved numerically. Simulation is crucial to

characterizing site regeneration as a Poisson process: a site failure is generally discovered only after

a non-trivial period of time. Since κ reflects the time necessary to both detect a site failure and

restore the data base, exponential distributions are at best an approximation. The comparison of

the exponential and nonexponential models requires simulation, since the analytic analysis of the

nonexponential systems is intractable.
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4.1 Reliability Model

The availability simulation model and the reliability simulation model conform to the same basic

guidelines. However, reliability can be measured by simulating the system just to the point of

the first access failure. Since the availability simulator must also model the recovery mechanisms,

the reliability simulator is comparatively simple. A complete listing of the latter is given in the

appendix.

This simulation is programmed in Simscript II.5 and executed on an Elxsi 6400 computer.

Each site is modeled as a Simscript process which is initially designated as being in an operational

state. As time progresses, these processes alternate between operational and failed states according

to the failure and repair distributions attributed to the corresponding site. When a site fails, its

process is responsible for consulting the requirements of the protocols to determine whether the

replicated data object can still be accessed from other sites; the first access denial of each protocol

is recorded. In this fashion, the behavior of several competing protocols for given failure and

repair distributions can be analyzed in a single simulation. This is not only efficient, but leads to

more accurate comparisons since each protocol will be subject to an identical sequence of machine

disruptions. An iteration terminates after all the protocols would deny access to the data object,

that is, when all sites are simultaneously in a failed state.

The reliability graphs are the result of simulating the repairs and failures of a system of n

sites until all sites failed, and noting the time at which each protocol would first deny access to a

replicated data object. The process is repeated 1,000 times, and the results sorted to obtain an

approximation of the reliability function.

4.2 Results of the Study

The degree to which analytic models predict the behavior of actual systems is of great practical

concern. As discussed in §3.1, determining the site characteristics proved to be a difficult task.

To investigate this relationship, nine sites were chosen from the data collected at the Naval Ocean

Systems Center over a period of eight months [16]. The simulation uses these data to estimate the

reliability of the sites. As shown in Figure 3, the behavior of the system based on this observed

18



data is satisfactorily approximated by the exponential models.
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Figure 3: Reliabilities with three copies, Exponential versus Realistic Distributions

Figure 3 also illustrates the performance differences of the major consistency control protocols.

Available Copy (AC) clearly has vastly superior reliability in comparison to the other protocols.

Indeed, it has been shown to have the highest reliability that can be achieved for a given number of

sites [21]. Among the protocols that can ensure consistency in the presence of network partitions,

Dynamic-linear Voting (DLV) outperforms the other voting protocols.

Figure 3 reflects the relative performance for n = 3 sites, but the conclusions presented here

also hold for larger networks of sites. For three copies, the superiority of Dynamic Voting (DV) over

Majority Consensus Voting (MCV) is lost. The horizontal time axis is measured in units which

correspond to the average time to perform a single site repair. In each of the following reliability

graphs, ρ is fixed at 0.1, a typical value for modern systems. The following exposition focuses
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Figure 4: Reliability of three sites managed by Available Copy

on Available Copy and Dynamic-linear Voting, the protocols of choice in non-partitionable and

partitionable networks, respectively.

Four representative distributions are investigated here and in §5 to determine the robustness

of the theoretical solutions corresponding to exponential distributions. The performance resulting

from exponential distributions is contrasted with that of Erlang-4, uniform, and hyperexponential

distributions. The shape of each repair distribution is similar to the shape of the corresponding

failure distribution; mixing the types of distributions within a single simulation did not enhance the

analysis. For similar reasons, only homogeneous networks are considered for validation purposes:

all sites are assigned identical characteristics.

In exponential distributions, the mean and standard deviation are equal, yielding a “moment

ratio” of 1. The standard deviation of an Erlang-4 distribution is just half the mean: 0.5 is the
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Figure 5: Reliability of three sites managed by Dynamic-linear Voting

smallest moment ratio considered in this study. The uniform distribution extends from 0 to twice

the mean, and has a moment ratio of about 0.58. The ratio of the first and second moments in the

hyperexponential distribution is approximately 1.5, the largest in this study. This is achieved by

blending two exponentials, one with a mean nine times larger than the other.

Figures 4 and 5 illustrate the simulated reliability of the Available Copy and Dynamic-linear

protocols, respectively. The four sample distributions have identical first moments but disparate

higher moments. The differing times scales in the two figures reflect the much higher reliability of

Available Copy.

The graphs show that the reliability of these systems is relatively insensitive to the shape

of the distributions. As a rule, the uniform distribution has the poorest reliability, while the

hyperexponential distribution has the highest reliability. These are the distributions with the

21



smallest and largest second moments, respectively.

For large networks, a larger moment ratio seems to ensures higher reliability, as illustrated in

Figure 4. The correlation between the moment ratio and the reliability is somewhat weaker in the

Dynamic-linear simulation, since it is possible to fail if only two of the three sites are down. In

particular, the construction of the hyperexponential from two disparate exponentials implies that

there will be both a larger number of simulation runs that experience quick failures, and a few

instances in which the data object remains accessible for an unusually long period. The crossing

of the hyperexponential curve in Figure 5 reflects this behavior. These effects are mitigated when

a large number of sites are required for failure.

Each of the above experiments reflect a failure-to-repair ratio ρ of 0.1. It can be shown that

a small increase in the reliability of the individual sites leads to an impressive increase in the

reliability of the replicated object. However, the relative performance of the various protocols are

unchanged, even when heterogeneous sites with varied distributions and mean failure and repair

rates are simulated.

4.2.1 Regeneration Results

To determine the relative reliability afforded by the protocols, the same three site, two spare system

is analyzed for each protocol. Both numerical solutions and simulation results were obtained for

each of the protocols under identical conditions: λ = 0.1, µ = 1.0, and κ = 100. In Figures 6

and 7, the discrete points reflect the deciles found by simulation, while the curves represent the

Padé approximation of the numerical solutions to the differential-difference equations derived from

the flow rate diagrams. These figures illustrate that when the simulation employs exponential

distributions, the two methods yield strikingly similar results, effectively validating the models

[18].

Figure 6 illustrates the marked advantage of Available Copy over both quorum-based protocols,

thus making it the protocol of choice in an environment in which network partitions are impossible.

When partial communication failures can occur, Dynamic-linear Voting clearly surpasses Majority

Consensus Voting. The relative ordering of the protocols agrees with the non-regenerative case

22



0.0

0.2

0.4

0.6

0.8

1.0
R

el
ia

b
ili

ty

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Relative Time

Available Copy
Dynamic-linear Voting
Majority Consensus Voting

Figure 6: Compared Reliability of AC, DLV and MCV: κ = 100.0, λ = 0.1, µ = 1.0

[21], and further analysis shows that these relative advantages are independent of the number of

sites and spares [18]. These conclusions are also independent of the rate of regeneration κ [18].

With five or more participating sites and a high rate of regeneration, replacing a single replica

with a spare has been shown to have only a slight detrimental effect on the reliability of the data

object. Figure 7 shows that replacing a single replica with a spare has only a slight detrimental

effect on the reliability of the data object. Further decreasing the number of replicas markedly

degrades the reliability. Thresholds at which similar degradation occurs can also be observed for

the other protocols considered.

5 Availability Analysis

While reliability gauges the transitory dynamics of a system, availability measures its steady-state

behavior. The analysis is complicated by the necessity of modeling the recovery mechanism of the
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protocols, which adds more states to the analytic model. However, steady-state analysis has the

advantage that the equations describing the relationships between the states of the replicated data

object are not time dependent, resulting in a relatively simple set of linear equations.

Definition 5.1 The availability of a replicated data object consisting of n replicas and managed

by a replica control protocol P , denoted AP (n), is the stationary probability of the system being in

a state where the replica control protocol will grant access to the data object.

The state transition diagram for a replicated data object with copies on n identical sites managed

by the Available Copy protocol has 2n states. As in the reliability model, the n states labeled from

S1 to Sn represent the states of the data object when 1 to n copies are available. The availability

model also has n states labeled from S ′

0 to S′

n−1 representing the states of the data object when

all copies of the data object have failed and 0 to n − 1 copies (not including the copy that failed)

last have recovered but must remain inaccessible. As seen in Figure 8, transitions originating from
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non-primed states are similar to those observed for reliability. The situation becomes different once

all copies of the data object have failed. The data object is then in state S ′

0 and will return to state

S1 if and only if the last available copy recovers. If any of the n−1 other copies recovers, that copy

will remain comatose and the data object will be in state S ′

1. As a result, state S ′

0 has one outward

transition with rate µ leading to state S1 and another one with rate (n − 1)µ leading to state S ′

1.

Figure 8: State-Transition-Rate Diagram for Available Copy

All states S ′

j with j = 1, . . . , n − 2 have three outward transitions: one leading to state S ′

j−1

corresponding to the failure j of one of the comatose copies, another one with rate µ leading to state

Sj+1 corresponding to the recovery of the last available copy, and a third one with rate (n− j−1)µ

leading to state S ′

j+1 corresponding to the recovery of one of the other n− j−1 failed copies. State

S′

n−1 has no third outward transition since the only failed copy is necessarily the last available copy.

The resulting systems of equations for Available Copy and other protocols can be solved for

small values of n, but the solutions only apply to homogeneous networks of sites characterized by

exponential distributions. Simulation must be used to obtain results for situations where analytic

models cannot be applied, including the investigation of how a replicated data object will behave

in a real system composed of several network segments, as opposed to the simplified model used
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for the Markov analysis.

5.1 Availability Model

A replicated data object is modeled as a set of replicas residing on sites distributed around the

computer network. All messages are assumed to be delivered to their destinations without alter-

ations in the order they were sent, and sites not operating correctly are assumed to immediately

stop operations. Malicious failures are expressly excluded [30].

Larger local-area networks often consist of several carrier-sense networks or token rings linked

by selective repeaters or gateway hosts. Since repeaters and gateways can fail without causing a

total network failure, such communication networks can be partitioned. The key difference with

conventional point-to-point networks is that sites that are on the same carrier-sense network or

token ring will never be separated by a partition.

As discussed in §3.1, accurately determining site characteristics is a difficult task. The data

used in this section was gathered at the University of California, San Diego and at the Naval Ocean

Systems Center. Due to the excellent reliability of sites, it was impossible to gather enough data

points to accurately determine a failure distribution, but first moments could be estimated. An

exponential distribution with the experimentally determined mean is used as it accurately models

the pattern of failure of most computer systems. The repair distribution of the sites is modeled as

the sum of a uniformly distributed term and an exponential term.

A site is subject to several types of failure, the most common types being the failure of a system

component or the failure of the operating system. A component failure will require a service call

to be made and a service technician to be dispatched. Once the service technician has arrived, the

problem must be diagnosed and the defective component replaced.

Sites are also subject to operating system failure. When a site suffers from such a failure, the

only action required is to restart the site. Many software failures will allow the system to restart

automatically in a short period of time. For the less common but more serious software failures,

the dominant factor in the down-time is the amount of time it takes the system operator to notice

and restart the site. This combination of many short failures and occasional longer failures is
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appropriately modeled with an exponential distribution.

The sites studied are labeled A through I. The individual site characteristics are summarized

in Table 1. Based on the experience of system administrators, the fraction of failures attributed

to hardware is fixed at 10 percent. Sites A,E and G are VAX-11/750s, site B is a VAX 8600,

sites C and D are SUN-3s, site F is a Micro-VAX, site H is a Convex and site I is a VAX-11/780.

The mean-time-to-failure (MTTF) and the system restart time are based on statistics gathered

at the Naval Ocean Systems Center. The percentage of failures that are attributed to defective

components and the mean-time-to-repair (MTTR) required for these component failures are based

on discussions with system administrators.

Table 1: Site Characteristics

Site MTTF MTTR Restart

(hours) U E (minutes)

A 80.47 24.0 4.0 330.0

B 149.50 24.0 4.0 255.0

C 90.11 44.0 4.0 570.0

D 92.50 44.0 4.0 90.0

E 610.10 24.0 4.0 366.0

F 210.07 24.0 4.0 323.4

G 260.39 24.0 4.0 510.6

H 209.56 44.0 4.0 354.0

I 252.60 24.0 4.0 990.6

The communication network can be subject to different types of failure depending on the tech-

nology used. In the case of simple point-to-point networks, the links can fail. For carrier-sense

segments and token rings, the only possible communication failure mode is a complete failure of

the network segment. Pairs of unidirectional links connecting the various sites were chosen to model

the communication network since they provide the most generality. When a site fails, all of the

out-going links also fail. Although the links were not allowed to fail independently, this could also

be easily modeled.

The system configuration is shown in Figure 9. Sites A,B,C,D and E are all connected to

the main network segment. Site D acts as a gateway to the segment containing sites F and G.

Similarly, site E acts as a gateway to the segment containing sites H and I. The result is that sites
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D and E represent partition points in the system. If either of these sites fail, then the secondary

segment that it serves will be isolated from the rest of the system.

Figure 9: System Configuration

The links are modeled as a binary connection matrix. An entry si,j = 1 appears in the connection

matrix if site i can reach site j in one step. The transitive closure of this matrix represents the set

of sites that can be reached in any number of steps. A can-talk-to relation is used to determine

which sites can communicate and is implemented as

i can − talk − to j ⇔ s∗i,j = 1 ∧ alive(j),

where s∗ denotes the transitive closure of the connection matrix. It is necessary to ascertain if the

destination site is alive since the corresponding row in the connection matrix is set to ~0 when a site

fails. This has the effect of breaking all out-going links from that site, but does not affect in-coming

links. The obvious solution of setting the corresponding column in the connection matrix to ~0 is
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inappropriate since it depends on the status of all other sites. This would make the matrix very

difficult to restore once a site recovers from a failure.

The simulation model is programmed in Simscript II.5 and executed on SUN-3/60 computers.

The process interaction approach [9] is used, since sites and users are easily described as independent

processes.

Access to the replicated data object is modeled as a single user that can access any of the

nine sites. The access requests are granted or refused based solely on the current state of the sites

containing replicas of the data object and the capability of the replica control protocol to guarantee

mutual consistency. Batch-means analysis [15] allows 90% confidence intervals to be computed for

all performance indices. The simulations were executed for 50,000 simulated days. All sites were

operating at the start of the simulation, but performance measurements only commenced after

1,000 days of operation to help ensure that only steady-state behavior is monitored.

5.2 Structure of the Availability Simulator

The availability simulation is significantly more complex than the reliability model. The reason

for this is that instead of simply waiting for a site to fail, the entire life-cycle of the site must be

modeled, in particular the recovery. The simulator is structured as a set of cooperating processes.

A set of site processes models the behavior of the sites. The access protocols are incorporated into

the single client process which models the pattern of user accesses.

5.2.1 Site Process

As in the reliability simulator, the availability simulator maintains one site process per site to

model the behavior of each physical site. The site process enters a failed state after an exponen-

tially distributed period of time. When it fails, the corresponding row of the connection matrix

is set to ~0. The transitive closure of this matrix is then computed, resulting in the removal of

communication paths through the failed site. Consistency protocols with perfect (instantaneous)

system configuration information are implemented by adjusting that information when a site fails.

When a failure occurs, the site process then determines the type of failure depending on a per

site ratio. Failures fall into two classes: component failures, and failures of the operating system.
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In the case of an operating system failure, restart times are assumed to be constant. If a service

call would be required, then the process will wait a uniformly distributed period of time plus an

exponentially distributed period. This is done in an effort to model the response of a service

technician.

Once the site has been repaired, the corresponding row in the connection matrix is restored

from the initial configuration and the transitive closure recomputed. This has the effect of restoring

all paths through this site. An access check is then made to determine if the repair of this site

has made the replicated data object available again. This is done for statistical purposes in order

to determine the global availability of the data object. Similar requests are generated when a site

fails.

5.2.2 Client Process

The client process serves several purposes. Though its primary function is to act as an accessing

agent, it is also responsible for maintaining the system configuration information required by the

replica control protocols. This also allows it to monitor per-site availability. Maintenance of

global system availability information is distributed throughout the simulator since there are many

routines in which the state of the replicated data object may change.

The time between accesses is assumed to be exponentially distributed, although any other

distribution could be used if more specific distribution information is available. The client process

waits for a random period of time and then chooses whether to do a read or write commensurate

with the read to write ratio. The difference between read and write can be important for some

protocols. A read-to-write ratio was conservatively estimated to be 4 to 1 [23]. Accesses are

assumed to occur at a mean rate of once per day. In the case of Optimistic Available Copy, system

configuration information is only broadcast when a write occurs. This is done to allow inexpensive

read operations. In the case of Optimistic Dynamic Voting, system configuration information is

maintained when any access occurs since quorum collection is always required. In keeping with the

philosophy of Optimistic Available Copy and Optimistic Dynamic Voting, regenerations will occur

only when a write request is made. In real systems, write requests should occur frequently enough
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for regeneration to perform well.

The client process calls an access routine appropriate to the replica control protocol being

modeled to determine if an access is possible from each site. One of the sites is chosen to actually

perform the access operation. This also serves to maintain the system configuration information.

If any of the sites can access the replicated data object, then the system is considered to be in an

available state. For each of the sites that attempted an access, the per-site availability is tallied.

5.2.3 Access Routines

The access routines are implementations of the protocols as described in §2. Both the client

processes and the site processes cooperate in the implementation of various parts the replica control

protocols. The access procedures for each of the replica control protocols are considered next.

The access routine for Optimistic Dynamic Voting first determines the set of sites that can

communicate with the site that is requesting the access. This is accomplished by consulting the

can-talk-to relation for sites that hold a replica of the data object. The maximum version number

and operation number are also determined at this time.

The access request will be granted if the set of sites with current operation numbers constitutes

a majority of the sites in the partition set of a current replica, or represents exactly one half and

have the maximal element in the total ordering on sites present in the quorum set. This is a direct

implementation of the Optimistic Dynamic Voting access protocol.

Since majority consensus is a degenerate form of Optimistic Dynamic Voting that never adjusts

the partition sets, this same routine is also used to determine whether accesses will be granted for

that protocol. Majority consensus differs from Optimistic Dynamic Voting in that a quorum of the

original number of replicas must be present in order for an access request to be granted.

The access routine for Optimistic Available Copy is simpler than the one for Optimistic Dynamic

Voting. Since partitions of the communications network are impossible, it is sufficient to find any

replica in an available state. In order to maintain the was-available sets required by the protocol,

the access routine returns the set of available sites when a write request is granted.

Available Copy and Dynamic-linear Voting are versions of Optimistic Available Copy and Op-
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timistic Dynamic Voting with perfect system configuration information. Instantaneously detecting

a site failure makes the Optimistic Dynamic Voting and Available Copy protocols equivalent to

the corresponding instantaneous version. An advantage of simulation is that when a site fails, the

simulator can instantly react to it. Thus, a site failure will cause the partition sets, or in the case of

Available Copy, the was-available sets to be adjusted accordingly. While instantaneous protocols

are not implementable, they provide a good metric by which to judge the more realistic protocols.

The recovery protocols are the most complex part of the simulation. In the case of Optimistic

Available Copy, the recovering site must be able to find the closure of the was-available sets, or

find a replica in an available state to be able to recover. Once a site recovers to an available state,

all other sites that are comatose can also be made available. The name of the new available site is

then added to the was-available set of each available site in the system.

In the case of Optimistic Dynamic Voting, the recovering site must be able to communicate

with the majority partition. If this is possible, then it can be made available. The name of the

recovering site is added to the partition set of each site in the majority partition. The operation

number is then incremented to disenfranchise sites that did not participate in the recovery.

To include regeneration in the simulation, spare sites must also be modeled. These spare sites

are candidates for replicas when sites holding replicas fail. When an access occurs, it is determined

whether there is a full complement of replicas available. If there is not, then a regeneration will be

attempted. Replicas are placed on as many spare sites as possible, up to the original complement

of replicas. The simulation could be enhanced by providing an algorithm for determining the best

spare sites for regeneration.

When a site recovers from a failure, it may be that there is already a full complement of

replicas. To simplify the simulation, the site is allowed to recover fully. When it is determined that

there are too many replicas, some of them are returned to the pool of spares. An enhancement

to the simulation would be an algorithm for determining the set of excess replicas that should

be transformed into spares. As the simulator is implemented, replicas are transformed into spares

according to their ordinal number. By choosing the ordering of the sites appropriately, some control

over which sites will tend to remain spares can be obtained.
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5.3 Results of the Study

The values obtained using various failure and repair distributions compare favorably with the results

obtained using the most realistic data available. The results, even when mixing sites with disparate

characteristics, closely match those obtained using an exponential distribution with a composite

mean.
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Figure 10: Availability of three sites managed by Dynamic-linear Voting

As in the reliability simulation, four representative distributions are investigated. Exponen-

tial distributions are compared with Erlang-4, uniform, and hyperexponential distributions. The

“moment ratio” is again varied between 0.5 and 1.5.

Figures 10 and 11 display the availability provided by Dynamic-linear Voting and the Available

Copy protocols, respectively. For both protocols, three replicas of the data object are assumed.

The results are similar for larger numbers of replicas. In the case of both protocols, the effect of

varying the higher moments of the failure and repair distributions is small.
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Figure 11: Availability of three sites managed by Available Copy

As the failure to repair ratio increases, the differences become more pronounced. Although

not apparent in the graphs, the differences for smaller values of the failure to repair ratio are

distinguishable although, as is obvious from the scale, all the availabilities are extremely high. As

with reliability, an increase in the second moment leads to a slight increase in availability.

The results of the availability simulations are summarized in Tables 2 through 11. The columns

of the tables indicate the configuration, the availability, denoted A, that was observed for that con-

figuration, the unavailability, denoted U , which should be close to 1−A. The observed mean-time-

to-failure (MTTF) of the replicated data object and the observed mean-time-to-repair (MTTR)

are also measured. The unavailability is displayed since it allows the differences in the availability

provided by the various protocols to be seen more clearly.

The results confirm the predictions made by other studies using Markov analysis [18], and

there are consequently few surprises. The Available Copy protocol provides the highest availability
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of any of the replica control protocols. As expected, the Optimistic Available Copy protocol

provides availability just below that of Available Copy protocol. A similar relationship holds among

instantaneous Dynamic-linear Voting, Optimistic Dynamic Voting and static Majority Consensus

Voting. Dynamic-linear Voting is found to be superior, followed closely by Optimistic Dynamic

Voting, while static Majority Consensus Voting trailed a distant third.

The mean-time-to-failure is highest for the Available Copy protocol, followed closely by the

Optimistic Available Copy protocol. This result is not unexpected considering the reliability results

obtained in §4. What is surprising is that all of the consensus protocols have very poor mean-times-

to-failure. Although the reliability results indicate that they should be worse than the Available

Copy protocols, the degree of difference is impressive. This can be partially explained by the way

that consensus protocols recover from a total system failure. While Available Copy protocols must

wait for the last copy to fail to recover, consensus protocols instead need only wait for a quorum

to be present. The result is that while the consensus protocols recover more quickly, they also fail

more often.

For a homogeneous network with an odd number of sites, theoretical analysis shows that adding

one more site does nothing to enhance the ability to form a quorum, and hence the availability of

a four-site system is identical to that of a three-site system. However, disparate site characteristics

have a great deal of influence on the availability afforded by the various protocols. This can be

observed clearly in the case of Majority Consensus Voting where AMCV (ABC) < AMCV (ABCD),

which would seem to contradict predictions made by Markov analysis. But, if the site characteristics

are considered, it can be seen that site D is more accessible than site C. This illustrates the effect

of different site characteristics on the performance of the replica control protocol, since site D

overshadows the poor behavior of site C.

The regeneration results are also of interest. As defined in the protocols, regenerations occur

only when a write request is made. Since accesses occurred at the conservative rate of once per

day, and with the read to write ration of 4 to 1, regeneration is found to have only a small effect on

the performance of the protocols. A useful extension to this work would be to determine a more

accurate estimates for the access frequency and study how this affects the regeneration process.
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In some cases, regeneration can have a negative influence on the performance of the protocols.

This is most easily seen in the case of Optimistic Available Copy. Tables 4 and 5 show that

the availability of two sites AOAC(AB) is greater than AOAC(AB,C), which also employs C as a

spare. The explanation for this again involves the characteristics of site C and the way in which

replicas are transformed into spares. The simulator transforms replicas into spares according to

their lexicographic order, so site A will be transformed into a spare and the resulting configuration

performs much like BC. In general, regeneration does have a positive effect on the performance

of the replica control protocols, and considering its low cost due to the efficient implementations

of Optimistic Available Copy and Optimistic Dynamic Voting, it should be considered as a viable

alternative to keeping extra replicas of a data object.

Although only applicable to the consensus protocols, partitions of the communication network

are found to have a significant effect on those replica control protocols. Consider, for example, the

Dynamic-linear Voting protocol. ADLV (ABCD) > ADLV (ABCDFG) since sites F and G are on

the other side of site D with respect to sites A,B and C. When site D fails, sites F and G are

excluded from most quorums by the network partition. The exception to this is when sites F and

G could form a majority partition, but this is a rare event.

There are some limitations of the simulation model. It was not feasible to execute the simulations

long enough to get accurate measures for some statistics. In particular, Available Copy with five

replicas did not fail in over 100,000 simulated days. Similarly, it was not possible to model the

regeneration protocols for a wide range of access rates due to the excessive computation required.

Table 2: Available Copy

Configuration A U MTTF MTTR

Replicas (Days) (Days)

AB 0.994200 0.005781 45.21003 0.26394

ABC 0.999097 0.000907 314.24409 0.28374

ABCD 0.999937 0.000063 4397.56470 0.28486

CD 0.990716 0.009300 26.39872 0.24778

CDE 0.999756 0.000245 1369.40235 0.33168

FG 0.997800 0.002204 146.38771 0.32152
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Table 3: Available Copy with Regeneration

Configuration A U MTTF MTTR

Replicas Spares (Days) (Days)

AB C 0.99220 0.00776 40.55821 0.31830

AB CD 0.99124 0.00877 27.75885 0.24520

AB CDE 0.99600 0.00401 61.33133 0.24668

ABC D 0.99967 0.00033 552.60274 0.18353

ABC DE 0.99976 0.00024 1521.23026 0.35932

CD A 0.99120 0.00880 27.71331 0.24588

CD AB 0.99124 0.00877 27.75885 0.24520

CDE A 0.99976 0.00024 1521.23026 0.35932

CDE AB 0.99976 0.00024 1521.23026 0.35932

Table 4: Optimistic Available Copy

Configuration A U MTTF MTTR

Replicas (Days) (Days)

AB 0.992539 0.007450 46.18184 0.34749

ABC 0.998442 0.001564 318.10792 0.49561

ABCD 0.999844 0.000157 4397.10728 0.60998

CD 0.982757 0.017276 27.77548 0.48783

CDE 0.999578 0.000424 1369.16256 0.57522

FG 0.997475 0.002531 146.57526 0.37065

6 Conclusions

Two simulation models aimed at comparing the performance of several consistency control proto-

cols for replicated data objects in real-life situations have been presented. By using discrete event

simulation, the results obtained using Markov models can be validated and the robustness of the

exponential approximations judged. The distributions investigated here cover a wide range of sec-

ond moments, and clearly support the contention that the actual system distributions will produce

results that are consistent with the behavior predicted by exponential distributions. This enhances

the importance and applicability of the results obtained by theoretical analysis, which depend on

Markovian assumptions.

Since no replicated object can ever be accessed without having at least one current replica,

Available Copy protocols are known to provide the highest possible reliability figures of all consis-

tency protocols that do not incorporate new sites to replace the ones that have failed [27]. Available
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Table 5: Optimistic Available Copy with Regeneration

Configuration A U MTTF MTTR

Replicas Spares (Days) (Days)

AB C 0.98952 0.01045 41.36196 0.43969

AB CD 0.98327 0.01675 29.26129 0.49798

AB CDE 0.99243 0.00757 64.36243 0.49114

ABC D 0.99899 0.00100 567.66332 0.58346

ABC DE 0.99959 0.00040 1520.97802 0.61577

CD A 0.98323 0.01679 29.13638 0.49729

CD AB 0.98327 0.01675 29.26129 0.49798

CDE A 0.99959 0.00040 1520.97802 0.61577

CDE AB 0.99959 0.00040 1520.97802 0.61577

Table 6: Majority Consensus

Configuration A U MTTF MTTR

Replicas (Days) (Days)

ABC 0.984890 0.015109 10.661674 0.16361

ABCD 0.990676 0.009311 12.396540 0.11668

ABCDE 0.998766 0.001238 74.102941 0.09166

ABCFG 0.989508 0.010492 10.983852 0.11668

Copy also has the highest availability of any of these protocols. While the availabilities of the vari-

ous schemes are somewhat similar, the reliabilities differ by orders of magnitude. Where reliability

is important, the Available Copy protocols are clearly superior [21]. It is clear from Figures 3, 4

and 5 that the shapes of the failure and repair distributions in no way affect the relative merits of

the protocols.

However, it must be noted that the Available Copy protocol cannot guarantee consistency in

the presence of network partitions, and is therefore inappropriate in environments in which partial

communication failures are possible, such as when sites are separated by gateways. The Available

Copy protocol is guaranteed to function correctly if all replicas of the data object are stored on

the same carrier sense segment or token ring, and hence it is both appropriate and desirable in

many applications. Voting protocols guard against the partitioning problem at the expense of

performance.

In the absence of contrived circumstances, the first moments of the failure and repair distri-

butions are the overwhelmingly predominant factors. With equal first moments, larger second
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Table 7: Majority Consensus with Regeneration

Configuration A U MTTF MTTR

Replicas Spares (Days) (Days)

ABC D 0.989190 0.010785 13.595055 0.14860

ABC DE 0.993083 0.006938 21.542634 0.15029

ABC F 0.978791 0.021194 9.064501 0.19637

ABC FH 0.973494 0.026467 8.239005 0.22462

ABCD E 0.997603 0.002406 68.810735 0.165538

ABCD F 0.954368 0.045641 3.528837 0.168738

ABCD FG 0.991841 0.008182 22.171667 0.182710

ABCD FH 0.983256 0.016719 10.811329 0.184184

ABCDE F 0.992561 0.007448 17.675419 0.13255

ABCDE FG 0.958569 0.041435 3.859547 0.16682

ABCDE FH 0.989841 0.010163 15.067668 0.15350

ABCDE H 0.997035 0.002978 52.378700 0.15609

Table 8: Dynamic-linear Voting

Configuration A U MTTF MTTR

Replicas (Days) (Days)

ABC 0.983699 0.016284 23.33426 0.38660

ABCD 0.998548 0.001459 168.50073 0.24714

ABCDE 0.999950 0.000051 9958.99994 0.51857

ABCFG 0.998496 0.001498 251.46865 0.37801

moments slightly increase performance, and third and higher moments seem to have no measurable

effect.

It is possible to postulate very unrealistic distributions that yield results at variance with the

exponential predictions. Sites with identical constant failure and repair distributions in which the

failures were synchronized could result in accessibility that was no better than that provided with

a single site. On the other hand, constant distributions in which the failures were staggered could

instead ensure perfect reliability and availability. In a similar fashion, using distributions with very

small variances can result in reliability that is either insignificantly better than a single site or

almost perfectly reliable, depending on the initial staggering of the distributions.

Discrete event simulation also provided the ability to study more realistic scenarios using data

obtained from real systems. While each of a wide range of distributions behaved similarly to

the exponential distributions, the realistic data yielded results that were gratifyingly close to the
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Table 9: Dynamic-linear Voting with Regeneration

Configuration A U MTTF MTTR

Replicas Spares (Days) (Days)

ABC D 0.989702 0.010312 22.83561 0.23761

ABC DE 0.997950 0.002057 127.64961 0.26223

ABC F 0.974753 0.025315 16.35642 0.42401

ABC FH 0.987619 0.012289 25.91903 0.32456

ABCD E 0.999701 0.000301 1014.09271 0.30029

ABCD F 0.959734 0.040268 3.99966 0.16781

ABCD FG 0.996391 0.003619 55.69994 0.20191

ABCD FH 0.991328 0.008684 21.14195 0.18590

ABCDE F 0.993604 0.006394 28.48776 0.18326

ABCDE FG 0.963879 0.036127 4.46090 0.16717

ABCDE FH 0.994053 0.005963 37.46007 0.22449

ABCDE H 0.997939 0.002070 146.55367 0.30345

Table 10: Optimistic Dynamic Voting

Configuration A U MTTF MTTR

Replicas (Days) (Days)

ABC 0.985639 0.014356 12.478452 0.18180

ABCD 0.994026 0.005982 17.300709 0.10397

ABCDE 0.999246 0.000755 117.288427 0.08840

ABCFG 0.992892 0.007110 15.486834 0.11073

exponential approximations.

The analysis of the trade-off between storage space and reliability showed that replacing a

single replica managed by Available Copy in a five-machine system with a spare has only a slight

detrimental effect on the accessibility of the data object, but further decreasing the number of

replicas markedly degrades the reliability. Similar limits are reached for the other protocols as well.

The simulation results, backed by numerical solutions of the Markov models, establish a hierar-

chy of systems ordered by increasing reliability. They clearly indicate that the Available Copy pro-

tocol provides much higher reliabilities than the quorum-based protocols, and establish Dynamic-

linear Voting as the protocol of choice for a communications network susceptible to partitioning.

With estimates of the mean times to site failure and repair, the numerical techniques presented here

can be applied to predict the reliability afforded by differing apportionments of sites and spares.

Designers may in this way determine the fewest number of replicas that can provide the desired
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Table 11: Optimistic Dynamic Voting with Regeneration

Configuration A U MTTF MTTR

Replicas Spares (Days) (Days)

ABC D 0.990861 0.009144 14.961130 0.137975

ABC DE 0.995107 0.004906 26.259576 0.129345

ABC F 0.98295 0.017116 10.925013 0.190318

ABC FH 0.98558 0.014384 11.666053 0.170915

ABCD E 0.99823 0.001774 81.958399 0.145592

ABCD F 0.95599 0.044024 3.617164 0.166539

ABCD FG 0.99364 0.006384 25.149958 0.161096

ABCD FH 0.98881 0.011198 12.998360 0.147150

ABCDE F 0.99453 0.005468 20.584974 0.113211

ABCDE FG 0.95981 0.040191 3.973005 0.166390

ABCDE FH 0.99259 0.007415 18.485102 0.138063

ABCDE H 0.99761 0.002391 63.271525 0.151308

level of reliability.

Regeneration was found to improve the performance of all replica control protocols for most

configurations. Due to computational constraints, insufficient simulation data was available to

adequately determine the effect of the access rate on the regeneration process. This should provide

an interesting area for future research.
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Appendix

’’

’’ Reliability tests: with regeneration, finite spares. Uses all exponential

’’ distributions for validation against numeric solutions. Other distributions

’’ have also been used.

’’

’’ Detection of down site and replacement of the dead site averages 1/kappa

’’ time units. 1/mu is the average total time to both repair and regenerate.

’’ Independent random number streams are used for each type of state change.

’’

’’ The program records length of time until each protocol would declare files

’’ to be unavailable due to site failures. Partitions are not modelled.

’’

’’ Output consists of failure times which are then sorted to obtain deciles.

’’

’’ Protocols investigated:

’’

’’ Available Copy

’’ Dynamic Voting

’’ Dynamic-linear Voting

’’ Majority Consensus Voting

’’

’’ (c) JLC & DDEL, 1988.

’’

preamble

normally, mode is undefined

events include NEW

every REGENERATION has a CANDIDATE

’’

’’ Sites and spares exist in one of two states: up or down.

’’

processes include SITE

every SITE may belong to the UP.SITES

every SITE may belong to the UP.SPARES

every SITE may belong to the DOWN.SITES

every SITE may belong to the DOWN.SPARES

the system owns the UP.SITES

the system owns the UP.SPARES

the system owns the DOWN.SITES

the system owns the DOWN.SPARES

define I, ’’ A trivial loop counter.
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N, ’’ The number of sites.

S, ’’ The number of spares.

Nd2, ’’ div.f(N,2) done once to save time.

DONE, ’’ The number of iterations of simulation completed thus far.

ITER, ’’ The number of iterations requested.

CANDIDATE ’’ A dummy variable for event regeneration.

as integer variables

define MTTF, ’’ The mean time to failure (1/lambda).

MTTR, ’’ The mean time to repair (1/mu).

MTTR.REG, ’’ The mean time to regenerate (1/kappa).

LAST.FAIL ’’ The time the last iteration failed.

as real variables

define UP as a 1-dim integer array ’’ Is a protocol still functional?

define UP.TIME as a 1-dim real array ’’ For how long?

define SITES.LEFT to mean N.UP.SITES

define FALSE to mean 0

define TRUE to mean 1

’’

’’ Protocol numbers.

’’

define AC to mean 1 ’’ Available Copy

define DV to mean 2 ’’ Dynamic Voting

define DLV to mean 3 ’’ Dynamic-linear Voting

define MCV to mean 4 ’’ Majority Consensus Voting

’’

’’ Files.

’’

define UNIT.IN to mean 09

define GEN.OUT to mean 10

define STAND.OUT to mean 06

end ’’ PREAMBLE

main

’’

’’ There are 4 protocols to consider.

’’

reserve UP as 4

reserve UP.TIME as 4
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’’

’’ How many sites, excluding spares?

’’

print 1 line thus

Enter the number of sites:

read N

’’

’’ To simulate without regeneration, specify zero spares.

’’

print 1 line thus

Enter the number of spares:

read S

Nd2 = div.f(N,2) ’’ Integer divide, done once to save time.

print 1 line thus

Enter the number of iterations:

read ITER

’’

’’ Read in the system parameters.

’’

use UNIT.IN for input

read MTTF, MTTR, MTTR.REG

print 5 lines with N, S, Nd2, MTTF, 1/MTTF,

MTTR, 1/MTTR, MTTR.REG, 1/MTTR.REG, MTTR/MTTF thus

There are ** sites, ** spares; majority consensus fails when ** sites are up.

the mean time to fail is **.*** => lambda = *.***

the mean time to repair is **.*** => mu = *.***

the mean time to regenerate is **.*** => kappa = *.***

the ratio lambda/mu = MTTR/MTTF => rho = *.***

use GEN.OUT for output

print 5 lines with N, S, Nd2, MTTF, 1/MTTF,

MTTR, 1/MTTR, MTTR.REG, 1/MTTR.REG, MTTR/MTTF thus

There are ** sites, ** spares; majority consensus fails when ** sites are up.

the mean time to fail is **.*** => lambda = *.***

the mean time to repair is **.*** => mu = *.***

the mean time to regenerate is **.*** => kappa = *.***

the ratio lambda/mu = MTTR/MTTF => rho = *.***

use STAND.OUT for output

schedule a NEW now

start simulation
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end ’’ MAIN

’’

’’ NEW -- Collect statistics and restore the system to its initial state.

’’

event NEW

’’

’’ Reset the state of each protocol.

’’

for I = 1 to 4 do

UP(I) = TRUE

UP.TIME(I) = 0.0

loop

’’

’’ Are we finished yet?

’’

if ITER > DONE

LAST.FAIL = time.v

’’

’’ New sites.

’’

for I = 1 to N do

activate a SITE now

file this SITE in UP.SITES

loop

’’

’’ New spares.

’’

for I = 1 to S do

activate a SITE now

file this SITE in UP.SPARES

loop

DONE = DONE + 1

always

end ’’ NEW

’’

’’ REGENERATION -- Transform a spare into a full site.

’’
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event REGENERATION given THIS.SITE

define THIS.SITE,

ALT.SITE ’’ The next candidate for regeneration.

as integer variables

’’

’’ When a total failure has occured, regeneration is impossible.

’’

if UP(AC) = FALSE

return

always

’’

’’ If the candidate is still alive, make it a site.

’’

if THIS.SITE is in UP.SPARES

remove THIS.SITE from UP.SPARES

file THIS.SITE in UP.SITES

else

’’

’’ Attempt to regenerate on another site.

’’

for each ALT.SITE of UP.SPARES

find the first case

’’

’’ Note: this skews regeneration towards the lower numbered sites.

’’

if found,

schedule a REGENERATION giving ALT.SITE in

exponential.f(MTTR.REG, 4) units

always

always

end ’’ REGENERATION

’’

’’ SITE -- each time a site (or spare) fails, it is switched to DOWN.SITES

’’ (DOWN.SPARES); checks are made to see if each protocol has failed, and the

’’ total length of the uptime is then recorded.

’’

’’ Each site process exits the loop as soon as all protocols have died; the last

’’ remaining process starts a new iteration.

’’

process SITE

define DLV.DEAD, ’’ For Dynamic-linear Voting.

ALT.SITE ’’ Candidate for regeneration.
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as integer variables

’’

’’ When Available Copy dies, there is a total failure.

’’

until UP(AC) = FALSE do

wait exponential.f(MTTF,1) units ’’ Work a while then die.

’’

’’ If it was just a spare, don’t check.

’’

if SITE in UP.SPARES

remove this SITE from UP.SPARES

file this SITE in DOWN.SPARES

else

remove this SITE from UP.SITES

file this SITE in DOWN.SITES

’’

’’ Has Dynamic Voting failed?

’’

if UP(DV) = TRUE

’’

’’ We need at least 2 sites to continue.

’’

if SITES.LEFT < 2

UP.TIME(DV) = time.v - LAST.FAIL

UP(DV) = FALSE

always

always

’’

’’ Has majority consensus failed?

’’

if UP(MCV) = TRUE

’’

’’ More than half have died.

’’

if SITES.LEFT <= Nd2

UP.TIME(MCV) = time.v - LAST.FAIL

UP(MCV) = FALSE

always

always

’’

’’ Has Dynamic-linear Voting failed?

’’
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if UP(DLV) = TRUE

’’

’’ Dynamic-linear Voting will survive 50% of the time when one

’’ of two remaining sites fail, due to lexicographic ordering.

’’

if SITES.LEFT = 1

DLV.DEAD = randi.f(1,2,3)

if DLV.DEAD = TRUE

UP.TIME(DLV) = time.v - LAST.FAIL

UP(DLV) = FALSE

always

’’

’’ The last site has died.

’’

else if SITES.LEFT = 0

UP.TIME(DLV) = time.v - LAST.FAIL

UP(DLV) = FALSE

always

always

always

’’

’’ If all active sites are down, then Available Copy fails, and we

’’ are done with this iteration.

’’

if SITES.LEFT = 0

UP.TIME(AC) = time.v - LAST.FAIL

UP(AC) = FALSE

else

’’

’’ Attempt to regenerate on another site.

’’

for each ALT.SITE of UP.SPARES

find the first case

’’

’’ Note: this skews regeneration towards the lower numbered

’’ sites.

’’

if found,

schedule a REGENERATION giving ALT.SITE in

exponential.f(MTTR.REG,4) units

always

always

always

’’

’’ Repair the site after an appropriate down time.
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’’

wait exponential.f(MTTR,2) units

if SITE is in DOWN.SITES

remove this SITE from DOWN.SITES

else

remove this SITE from DOWN.SPARES

always

if N.UP.SITES < N

file this SITE in UP.SITES

else

file this SITE in UP.SPARES

always

loop

if SITE is in UP.SITES

remove this SITE from UP.SITES

else if SITE is in UP.SPARES

remove this SITE from UP.SPARES

always

always

’’

’’ Is this the last site to notice that there has been a total failure?

’’

if N.DOWN.SITES + N.DOWN.SPARES + N.UP.SITES + N.UP.SPARES = 0

’’

’’ The last remaining site process is responsible for printing the results of

’’ this iteration.

’’

’’ Write the results to files:

’’ 1 = AC: Available Copy

’’ 2 = DV: Dynamic Voting

’’ 3 = DLV: Dynamic-linear Voting

’’ 4 = MCV: Majority Consensus Voting

’’

for I = 1 to 4 do

use I for output

print 1 line with UP.TIME(I) thus

**********.****

loop

use STAND.OUT for output

schedule a NEW now
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always

end ’’ SITE
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