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ABSTRACT 

Voting protocols are widely used to provide mu- 
tual exclusion in distributed systems and to guarantee 
the consistency of replicated data in the presence of 
network partitions. Unfortunately, the most efficient 
voting protocols require fairly complex metadata to 
assert which replicas are up-to-date and to denote the 
replicas that belong to that set. 

We present a much simpler technique that does not 
require version numbers and maintains only n+log(n) 
bits of state per replica. We show, under standard 
Markovian assumptions, that a static voting proto- 
col using our method provides nearly the same data 
availability as a static voting protocol using version 
numbers. We also describe a dynamic voting protocol 
using our method that provides the same data avail- 
ability as a dynamic voting protocol using much more 
complex metadata. 

I. INTRODUCTION 

Voting protocols have been extensively used to pro- 
vide mutual exclusion in distributed systems and to 
guarantee the consistency of replicated data in the 
presence of network partitions. They owe this dis- 
tinction to their simplicity and their robustness. In 
their simplest form, voting protocols assume that the 
correct state of a replicated object is the state of the 
majority of its replicas. Ascertaining the state of a 
replicated object requires collecting a quorum of the 
replicas. Should this be prevented by too many site 
failures, the replicated object is considered to be in- 
accessible. 

Majority Consensus Voting (MCV) and Weighted 
Voting (WV) [5] are both called static protocols be- 
cause the required quorums of replicas and the number 
of votes assigned to each replica are fixed. Dynamic 
protocols that adjusts quorums, such as dynamic vot- 
ing and its variants [4, 8, lo], or modify the number 
of votes assigned to each replica 221, can minimize the 
impact of site failures and increase availability. 
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The Dynamic voting (DV) protocol [4] instantly 
adjusts quorums to reflect changes in the state of the 
network of sites holding the replicas. The DV protocol 
requires each site to maintain in real time a connec- 
tion vector recording the state of the network. Since 
the dynamic voting protocol does not assign weights 
to replicas and does not include a tie-breaking rule, a 
majority block must always contain at least two repli- 
cas. A simple extension, known as Dynamic-linear 
voting (DLV) [8], resolves these ties by applying a to- 
tal ordering to the sites. 

A common feature of all replication control pro- 
tocols is the use of metadata to  record the states of 
the replicas. These metadata nearly always include 
a version number, which is an integer that is incre- 
mented each time the replicated data are modified. 
All dynamic voting protocols also require each replica 
to keep track of the identities of the replicas it believes 
to be operational. This information is kept in a meta- 
data structure, variously called a connection vector, a 
partition vector or a majority block. 

Despite the important role played by these meta- 
data, the problem of finding the most efficient meta- 
data organization for a given replication control policy 
has not received the attention that it deserves. The 
results of this neglect have been replication control 
protocols with bloated metadata and complex proce- 
dures for ascertaining which replicas are up-to-date. 

We present new implementations of the majority 
consensus voting and the dynamic-linear dynamic pro- 
tocols that do not require version numbers. Instead 
our protocols maintain for each replica a cohort set 
that is updated any time a failure is detected or a 
replica residing on a site that failed is repaired. By 
requiring that all changes in the cohort set involve 
all sites in the new cohort set, we guarantee that all 
replicas sharing the same cohort set are identical and 
remove the need for maintaining version numbers. As 
a result, our protocols require only n + log(n) bits of 
metadata per replica, that is n bits for storing the co- 
hort set and log(n) bits for storing the identity of the 
replica. 
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11. THE CASE FOR COHORT SETS 

All extant replication control protocols incorpo- 
rate some form of verszon numbers, that is, integers 
that are incremented every time the replicated data 
are modified. In most cases, these version numbers 
are used to distinguish outdated replicas from repli- 
cas that are up-to-date. Version numbers offer several 
disadvantages. 

First, they take more space than other metadata. 
While metadata do not constitute a significant storage 
cost when the unit of replication is a file system or a 
data base, they pose a significant cost when the unit 
of replication is a single file, a data base table, or a 
group of disk sectors. As a result, it is desirable to 
allocate as few bits as necessary to version numbers. 

Second. any scheme that increments version num- 
bers monotonically will eventually overflow any fixed 
size integer. We can delay this occurrence by reset- 
ting version numbers to zero every time all the repli- 
cas return to a consistent state but, even so, there is 
a danger of overflow. To see this, consider the clas- 
sical Gambler’s ruin problem [6], which shows that 
any compulsive gambler will eventually have a run 
of bad luck that will ruin him. The same holds for 
version numbers: the replicated data will eventually 
encounter a sequence of failures and repairs that will 
overflow any finite integer. This can be made arbitrar- 
ily unlikely by increasing the number of bits allocated 
to the version numbers but cannot be totally elimi- 
nated. 

Third, version numbers must be incremented ev- 
ery time the replicated data are updated even though 
the states of the replicas have not changed. A better 
solution would only require to update the metadata 
whenever a replica fails or recovers. 

Finally, version numbers do not suffice to imple- 
ment dynamic voting protocols, among which the dy- 
namic voting protocol and its variants (4, 81, which all 
require additional metadata. 

We propose to replace version numbers by cohort 
sets, that is records of all replicas that participated in 
the last write operation. 

A. Static voting with cohort sets 

We will consider replicated data objects consisting 
of n replicas located at different sites of a network and 
managed by a static voting protocol. The protocol 
may, or may not have, different quorums for read and 
write operations as well as different weights, including 
none, for each replica. We will only assume that: 

1. 

2. 

all write quorums Qw are high enough to dis- 
allow simultaneous writes on disjoint subsets of 
replicas, and 

all read quorums are high enough to force each 
read quorum Q R  to have a non-empty intersec- 

tion with any write quorum Qw. 

Mutual consistency among the replicas will be guar- 
anteed through site failures and network partitions as 
long as (a) messages between sites are delivered intact 
in the order they were placed on the network or not at 
all, and (b) sites that fail immediately stop operation. 
Byzantine behaviors are specifically excluded. 

We will first give a formal definition of cohort sets 
then explain the procedure to be used to find the cur- 
rent replica(s) in a read quorum and show when and 
why this procedure fails. 

Definition 1 The cohort set for a replica represents 
the set of replicas that were current afier the last write 
or replica recovery in which the replica particapated. 

Axiom 1 The cohort set C, of a replica r always in- 
cludes that replica. 

This requires cohort sets to be updated (a) when- 
ever the replica participates in a write and (b) when- 
ever a replica that became unavailable recovers. After 
any write operation, the cohort sets of all replicas that 
participated in the write operation must be identical 
and contain exactly these replicas. Similarly, after any 
replica recovery, the cohort sets of all replicas that 
participated in the recovery must be identical. 

By requiring that all changes in the cohort set in- 
volve all sites in the new cohort set, we guarantee that 
all replicas sharing the same cohort set are identical 
and remove the need for maintaining version num- 
bers. If n denotes the number of replicas, our protocol 
will thus require only n + log(n) bits of metadata per 
replica, that is n bits for storing the cohort set and 
log(n) bits for storing the identity of the replica. 

Lemma 1 Consider a replicated data object with n 
replicas, m of which are accessible. If the m replicas 
have identical cohort sets and constitute a read quo- 
rum QR,  they are all up-to-date. 

Proof: 

1. Since the m replicas constitute a read quorum 
QR, each and every write quorum QW must con- 
tain at least one replica of QR. Hence at least 
one of them participated in the last write to the 
object. 

2. Since the m replicas have identical cohort sets, 
they all participated in the same last write. By 
induction on each and every write or replica re- 
covery operation, they are identical. Hence, if 
one of them is up-to-date, they are all. 

The situation is somewhat more complicated if the 
m replicas do not have identical cohort sets and is bet- 
ter explained with an example. Consider, for instance, 
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a replicated data object consisting of three replicas, a,  
b and c and assume that the read and write quorums 
are two replicas. Let Ca, c b  and Cc be the respec- 
tive cohort sets of a,  b and c. If the three replicas are 
up-to-date, their cohort sets will be: 

C, = { a ,  b,c} c b  = {a ,  b,c} 

Assume now that c becomes unavailable because the 
site holding c fails or becomes unreachable as the re- 
sult of a network partition. The cohort sets of a and 
b will not be updated until a write occurs. After that 
write the three cohort sets will be: 

c a  = {a,b)  Cb = {a ,b )  (cc = {a,b,c))  

Assume now that a becomes unavailable. Since b is 
now the only accessible replica, the replicated object 
will remain unavailable until either a or c recovers. I f  
c recovers, then the two operational replicas will have 
different cohort sets: 

Cc = {a ,  b,c} 

The protocol can assert that replica b is up-to-date 
because its cohort set c b  is a subset of the cohort set 
of replica e. 

Theorem 1 Consider a replicated data object with n, 
m of which are operational. If the m replicas consti- 
tute a read quorum QR, then all replicas r E QR such 
that C, C C, for all s E QR are up-to-date. 

Proof: 

1. 

2. 

3. 

4. 

Since the m replicas constitute a read quorum 
QR, each and every write quorum QW must con- 
tain at least one replica of QR. Hence QR con- 
tains at least one replica that participated in the 
last write. 

If two replicas r and s have the same cohort sets 
C, and C,, they are in the same state because 
otherwise the cohort set of one of them, say s, 
would contain a replica that was not current af- 
ter the last write or replica recovery in which s 
participated. 

Consider now a replica r E QR such that C, c 
C, for all s E QR. Should r not be current, there 
should be in Q R  at least one current replica z 
such that C, c C,. But then C, would contain 
r even though r was supposed not to be current. 

Hence all replicas T E QR such that C,. C C, for 
all s E QR are up-to-date. 

After replica c is brought up-to-date, the new co- 
hort sets are: 

There are a few cases where the protocol fails to 
find the current replica(s) in QR because Q R  does not 
contain any replica s such that its cohort set C, is a 
subset of all the cohort sets of the other replicas of 
QR. Consider the following scenario: 

1. 

2. 

This 

After replica c is brought up-to-date, replicas b 
and c receive a new update and the cohort sets 
become: 

Replica b becomes unavailable and replica c re- 
covers; the cohort sets of a and c are such that 
C a  Cc and Cc Ca: 

Therefore, the protocol will fail to recognize that 
c is the current replica. As a result the repli- 
cated data object will remain unavailable al- 
though two out of three replicas can be accessed. 

is clearly a failure of our protocol: any proto- 
col using version numbers would have compared the 
version numbers of replicas a and c and found that 
replica c had the higher version number. 

To recover, our protocol will need instead to wait 
for the recovery of replica b. We will then have two 
replicas, namely b and c with identical cohort sets. 
Since these two replicas form a valid quorum, the pro- 
tocol can use Lemma 1 to assert that the two replicas 
are both current and use them to bring replica a up- 
to-date. 

The result is a slightly lower available availability 
when using cohort sets to implement majority consen- 
sus voting. But, as we will see, this is easily remedied 
by using dynamic voting. 

B. Dynamic-linear voting with cohort sets 

As we said before, dynamic voting protocols im- 
prove upon static voting protocols by either modify- 
ing the weights allocated to the surviving replicas [2] 
or temporarily excluding from quorum computations 
replicas that are unaccessible [4, 81. These latter pro- 
tocols, among which dynamic voting [4] and dynamic- 
linear voting [8],  are particularly suited to implemen- 
tations using cohort sets because we can use these co- 
hort sets to store the set of replicas currently included 
in quorum computations. We will say that these repli- 
cas are part of the current majority block. To do that, 
we will have to modify very slightly the definition of 
cohort sets to exclude from the cohort sets replicas 
that are not in the current majority block. 

Definition 2 The dynamic cohort set for a replica 
represents the set of replicas that (a) were current 
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after the last write or replica recovery zn whzch the 
replica participated and (b)  are in the current major- 
ity block. 

Axiom 1 and Lemma 1, as well as Theorem 1, still 
apply although the read quorum mentioned in Lemma 
1 and in Theorem 1 must now be replaced by a major- 
ity of the replicas belonging to the current majority 
block. 

The simplicity of having to maintain only one co- 
hort set can be contrasted with the complexity of the 
optimistic dynamic voting protocol [lo] where each 
replica must maintain: 

1. a partition set Pi representing the set of sites 
which participated in the last successful opera- 
tion on the replicated data, 

2. an operation number, oi that is incremented at 
every access, and 

3. a version number, ut that is incremented at ev- 
ery write. 

The price to pay for this simplification is minimal. 
First, we cannot reintegrate outdated replicas into the 
current majority block without bringing them first up- 
to-date. Second, excluding a replica from the majority 
block has now the side effect of marking the replica 
as being outdated even when the excluded replica is 
identical to the replicas in the majority block. 

Majority blocks present the interesting property 
that any new majority block must contain a majority 
of the replicas in the current majority block. Because 
of this property, we will not encounter with dynamic 
voting protocols situations similar to that described 
in the previous subsection where a quorum of replicas 
was present but the protocol could not assert which 
replica(s) should be considered current. To under- 
stand this, let us return to the replicated data ob- 
ject of our previous example and assume now it is 
managed by a dynamic-linear voting protocol updat- 
ing the cohort sets every time a write operation or a 
replica recovery occurs. Let us further assume that 
the dynamic-linear protocol ranks the three sites in 
the order a > b > c. 

If the three replicas are up-to-date, their cohort 
sets will be equal to: 

c, = {a ,  b, C} c b  = { U ,  b, C} 

If a write occurs after c has become unavailable, the 
cohort sets of a and b will become equal to {a ,  b} and 
c will be excluded from the majority block: 

c, = { U ,  b, C} 

c, = { a ,  b }  c b  = { a ,  b} (cc = {a,  b,c}) 

Should a now become unavailable, replica b will re- 
main the only accessible replica and the replicated 
object will remain unavailable until a recovers. Unlike 

what happened before, the recovery of c will not make 
the replicated object available again because replica c 
cannot participate in quorum computations before be- 
ing formally reintegrated to the majority block. Hence 
the cohort sets of a, b and c will remain unchanged: 

( C a  {a ,  b } )  cb = {a ,  b )  Cc = {a,  C) 

Thus, we have the following theorem: 

Theorem 2 An implementation of the dynamic-linear 
voting using cohort sets and no version numbers will 
never fail t o  detect a valid quorum of replicas within 
the cuwent majority block. 

Proof: 

1. 

2. 

m 

At any given time, all replicas in the current 
majority block will always have the same cohort 
sets and these cohort sets will reflect the mem- 
bership of the current cohort set. Since every 
new majority block must contain a majority of 
the replicas in the previous majority block, any 
subset of replicas having identical cohort sets 
and constituting a majority of the replicas in 
the majority block represented by these cohort 
sets will constitute a valid quorum of replicas 
within the current majority block. 

Conversely, any set of replicas that does not in- 
clude such a subset will not be a valid quorum 
within the current majority block because it will 
not contain a majority of the replicas in the cur- 
rent majority block. 

In other words, an implementation of the dynamic- 
linear voting using cohort sets and no version numbers 
will always provide the same data availability as any 
other implementation of the dynamic-linear protocol 
that updates its metadata at the same frequency. 

111. AVAILABILITY ANALYSIS 

Availability is the most common measure of fault 
tolerance for repairable systems that are expected to 
remain operational over a long period of time. It is 
traditionally defined as the fraction of time a system 
is operational. In the case of replicated data objects, 
the availability of a replicated object represents the 
fraction of time that the consistency control protocol 
will allow access to the object. 

Our system model consists of a set of sites with 
independent failure modes connected via a network 
which does not fail. When a site fails, a repair pro- 
cess is immediately initiated at that site. Should sev- 
eral sites fail, the repair process will be performed 
in parallel on those sites. Site failures are assumed 
to be exponentially distributed with mean A, and re- 
pairs are assumed to be exponentially distributed with 
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two of the three replicas are operational. It corre- 
sponds to the case where the two operational replicas 
have intersecting cohort sets and the protocol cannot 
recognize which one of them is current. 

The availability of the replicated data object is 
then given by: 

AMCV-CS(3)p333 + P223' f m22' = 
- 4p5 + 31 p4 + 83p3 + 91 p2 + 3 9 p  + 6 - 

( ~ + l ) ~  ( 4 p 2 + 9 p + 6 )  

where pijk denotes the probability that the system is 
in state ( i j k )  and p = 2. 

This availability is slightly lower than if version 
numbers had been used to manage the replicas. In 
that case, the replicated object would have remained 
available whenever at least two of the three replicas 
were available and the overall data availability would 
have been: 

3 p + 1  
(P + AMCV-VN(~) = AMCV-CS(~) + "22 = - Figure 1: State transition diagram of MCV with CO- 

hort sets for three replicas 

mean p. The system is assumed to exist in statistical 
equilibrium. Although the assumption of an indepen- 
dent failure rate X is reasonable if the sites have inde- 
pendent power sources, the assumption of exponential 
repair times is harder to defend on general grounds. 
However, both hypotheses are necessary to represent 
each system by a Markov process with a finite number 
of states [6]. 

A. Availability of static voting with cohort  sets 

Figure 1 has the state transition diagram for three 
replicas managed by a majority consensus voting pro- 
tocol using cohort sets assuming that the data are 
continuously accessed. Each state is identified by a 
triple ( z y z )  where z, y and z represent the sizes of the 
cohort sets of the three replicas. The cohort sets of 
failed replicas are identified by a prime mark. States 
that have identical numbers of replicas in each cohort 
sets but differ in these cohort sets are identified by 
different orderings of the three digits. 

State (333) represents the initial state of the three 
replicas when they are all operational and have identi- 
cal cohort sets. The only two other available states are 
state (223') and state (222'). State (223') represents 
the state of the system after one of the three replicas 
has failed and the cohort sets of the two remaining 
replicas have been updated. To reach state (222'), 
the system should experience first a failure of one of 
its three replicas and move to state )223'(. Then a 
second replica should fail bringing the system to state 
(22'3'). If the replica that failed first recovers first, its 
cohort set will be updated and the system will be in 
state (222'). 

Note also that state (2'22) is not available although 

mo 

Figure 2: Compared availabilities of MCV for three 
replicas with version numbers (top), MCV for three 
replicas with cohort sets (middle) and a single replica 
(bottom). 

Figure 2 displays the compared availabilities of 
MCV for three replicas with version numbers ( top  
graph) and MCV for three replicas with cohort sets 
(midd le  graph). The bottom graph represents the 
availability of a single unreplicated data object and 
was included to provide a baseline. 

We selected a range of values for p between 0 and 
0.25 because a recent study [ll] has shown that the 
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mean time to failure (MTTF) for modern systems is 
approximately 16 days plus or minus one. The mean 
time to repair (MTTR) is approximately 29 hours plus 
or minus two. 

As one can see, the difference of data availabil- 
ity between the two implementations of MCV never 
exceeds 0.014 over the range of values of p being con- 
sidered. This might be considered a small price to pay 
for not having to update the version numbers at every 
write access. 

B. Availability of Dynamic-Linear Voting with 
Cohort Sets 

The availability analysis of our new implementa- 
tion of dynamic-linear voting is essentially similar to 
that of the optimistic dynamic voting protocol, as it 
was presented [lo]. The only difference between the 
two implementations is that optimistic dynamic vot- 
ing updates the metadata at every access while dy- 
namic-linear voting with cohort sets will update the 
cohort sets when write operation discovers a failure. 

The critical issue is not so much the data availabil- 
ity afforded by dynamic-linear voting with cohort sets 
as the minimum write access rate required to guax- 
antee a timely detection of site failures and network 
partitions. Should write operations be not frequent 
enough to provide sufficiently fine grained detection 
of site failures and network partitions, then cohort 
sets can be modified when read operations occur. The 
penalty to pay then will be the possibility of unnec- 
essary copy repairs. These costs can however be kept 
to a minimum if the repair process uses a smart algo- 
rithm to detect which pages of the replica need to  be 
updated [I]. 

The availability of three replicas managed by the 
optimistic dynamic voting protocol was found to be 
equal to: 

2p4 + 4p3 + 6p3 + 34p2 + l l p 2  + 44p + 6p + 4 + 1 

where p = A ,  q5 = 14 and K is the rate at which 
the replicated object is accessed [lo]. This expression 
can also be used to represent the availability of three 
replicas managed by our new implementation of the 
dynamic-linear algorithm if we redefine K to  represent 
now the rate at which the data are updated. 

Figure 3 represents the availability of three replicas 
managed by our implementation for values of p vary- 
ing between 0 and 0.25 and 4 varying between 0 and 
20. As one can see, the impact of the update rate to 
repair rate ratio q5 on the availability becomes insignif- 
icant as soon as q5 > 4 or, in other words, K > 4p. It 
appears that there is no point in updating the cohort 
sets during read operations as long as the frequency 
of the write operations exceeds four times the failure 
rate. Assuming a mean time to fail of 16 days, this 
would mean two write access every week. 

(P + 1)4(2P + 4 + 1 )  

P P 

Figure 3: Availability of dynamic-linear voting with 
cohort sets as a function of p and 4. 

Thus, two write accesses per week axe enough to 
guarantee that dynamic-linear voting with cohort sets 
will never be outperformed by any other implementa- 
tion of the dynamic-hear voting protocol despite the 
fact that all of these implementations use more com- 
plex metadata and update these metadata much more 
frequently. 

IV. POSSIBLE EXTENSIONS 

One of the most vexing limitations of voting proto- 
col is the fact these protocols require at least three vot- 
ing entities to  improve upon the availability afforded 
by unreplicated data. Fortunately, one of these three 
entities can be a witness, that is an entity containing 
the same metadata as a regular replica but no data 
[12]. Cohort sets make witnesses especially attractive 
because they reduce to an absolute minimum the stor- 
age costs and the access costs. 

To evaluate the storage cost of a witness we need 
to  distinguish between static voting protocols where 
witnesses do not need to be included in cohort sets 
and dynamic protocols where unaccessible witnesses 
can be excluded from quorum computations and the 
status of each witness recorded in the cohort set of 
each voting entity. In the first case, adding one wit- 
ness to a replicated object consisting of n voting enti- 
ties requires n+Q(log(n)) additional bits. In the case 
of dynamic voting protocols, we must add to these 
n + Q(log(n)) bits the extra bit required at each of 
the n + 1 voting entities to store the status of the 
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witness for a total cost of 2n + O(log(n)). 
The update costs of witnesses are also extremely 

low because cohort sets, unlike version numbers are 
only updated when a replica becomes unaccessible and 
when it can be reached again. Hence, total cost of 
updating a witness over its lifetime will depend only 
on the frequency of site failures and network partitions 
and not on the frequency of read and write accesses. 

Because of these very low costs, it becomes fea- 
sible to multiply the number of witnesses to a point 
where the replicated data object would include more 
witnesses than replicas. We can view these witnesses 
as the distributed equivalent of a single very reliable 
witness that would know at any time which replicas 
are current and would enforce mutual exclusion. We 
would thereby achieve a very close approximation of 
the optimistic available copy protocol [3], which does 
not guarantee the consistency of the replicated data in 
the presence of network partitions but provides much 
higher data availabilities than voting protocols. 

V. CONCLUSIONS 

Voting protocols have been extremely popular dur- 
ing the last ten years due to their robustness and their 
conceptual simplicity. Unfortunately, voting protocols 
also suffer from some major drawbacks. First, they re- 
quire at least three voting entities to improve upon the 
availability afforded by a single replica. Second, static 
voting protocols provide poor data availabilities com- 
pared to other replication control protocols. Finally, 
dynamic voting protocols were thought to be compli- 
cated to implement and require complex metadata. 

We have presented a novel implementation of static 
and dynamic voting protocols using cohort sets and 
requiring only n + log(n) bits of state per voting en- 
tity. Unlike version numbers that need to be incre- 
mented every time the replicated data are updated, 
cohort sets are only updated whenever a change in 
the availability of the replicas is detected. We have 
shown under standard Markovian hypothesis that a 
static voting protocol using cohort sets provides al- 
most the same availability as a static voting protocol 
using version numbers. We have described a dynamic 
voting protocol using cohort sets that provides the 
same data availability as a dynamic voting protocol 
using much more complex metadata. We have also 
found that cohort sets dramatically reduce the update 
costs of witnesses since witnesses would only need to 
be updated whenever a change in the accessibility of 
a replica is detected. 

More work still needs to be done to investigate al- 
ternative implementations of the cohort set update 
process. One promising avenue would be to allow 
the cohort sets of some replicas to  continue to in- 
clude some replicas that failed before the last write 
but after the penultimate operation that recomputed 

the cohort set. 
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