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ABSTRACT

Recently, the Network-Attached Secure Disk (NASD) model
has become a more widely used technique for constructing
large-scale storage systems. However, the security system
proposed for NASD assumes that each client will contact the
server to get a capability to access one object on a server.
While this approach works well in smaller-scale systems in
which each file is composed of a few objects, it fails for large-
scale systems in which thousands of clients make accesses to
a single file composed of thousands of objects spread across
thousands of disks. The file system we are building, Ceph,
distributes files across many objects and disks to distribute
load and improve reliability. In such a system, the metadata
server cluster will sometimes see thousands of open requests
for the same file within seconds. To address this bottleneck,
we propose new authentication protocols for object-based
storage systems in which a sequence of fixed-size objects
comprise a file and flash crowds are likely. We qualitatively
evaluated the security and risks of each protocol, and, using
traces of a scientific application, compared the overhead of
each protocol. We found that, surprisingly, a protocol using
public key cryptography incurred little extra cost while pro-
viding greater security than a protocol using only symmetric
key cryptography.

Categories and Subject Descriptors:
D.4.3 [File Systems Management]: Distributed file systems;
D.4.6 [Security and Protection]: Cryptographic controls
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1. INTRODUCTION

Network attached storage offers a way to improve perfor-
mance by separating the metadata path from the file data
path. However, it creates a security problem not present
in centralized file systems: the metadata server must se-
curely communicate authorizations to the storage devices.
NASD [4] proposed the use capabilities for this purpose.
The metadata server could issue unforgeable capabilities to
the client, and the client could then submit them with each
request to the network-attached disk. The disk could then
use the capability to authorize access to file data without
needing to track users, groups, pathnames and file permis-
sions.

Traditional NASD capabilities are specific to a single ob-
ject on one disk. This approach works well for systems in
which files are composed of a small number of objects, and
files are accessed by one client at a time. This type of system
is common, including most workstation environments and
other small-scale computing environments. In such systems,
individual clients send requests to open a file to a metadata
server; in response, they are given capabilities that they can
then present to the disk that stores the object containing
the file data.

Unfortunately, this approach does not work well in an en-
vironment with terabyte-scale files composed of thousands of
objects spread across thousands of network-attached disks.
In order to open a single file, a client would have to request
thousands of capabilities from the metadata server, one for
each object. Worse, systems with terabyte-scale files of-
ten require that the files be accessed simultaneously by tens
of thousands of individual clients cooperating on a scien-
tific computation. If each client needs its own unique set of
capabilities—necessary to ensure that non-authorized clients
can’t access the file—the metadata servers might have to
hand out hundreds of millions of capabilities to access a sin-
gle very large file.

Our research demonstrates an alternative approach, show-
ing how the metadata server can generate a capability of
fixed size, independent of the number of objects, that must
be protected from forgery. Using symmetric encryption re-
quires that all disks know the decryption key, opening vul-
nerabilities should an attacker compromise a storage device.
On the other hand, using signatures and public key encryp-
tion may be computationally expensive. We present several
secure protocols for such an object based file system, and
estimate their overheads based on the file traces of a scien-
tific computation. We found that the public key options do



not add unbearable overhead but do offer greater protection
should an attacker compromise a storage device.

2. BACKGROUND

Traditional distributed file systems such as NFS [19] and
AFS [9] serve all files from a central host which mediates be-
tween clients and the disk. The central server handles small
frequent metadata requests, but it creates a bottleneck for
large bulk transfers of file data. To increase bandwidth for
file data, network attached secure disks (NASD) [4] sepa-
rate the metadata server from the file data server. A small
cluster—generally fewer than ten computers—of metadata
servers (MDS) manages the directory tree, file permissions
and timestamps. The MDS associate a file with an object on
a particular object storage device (OSD). Each OSD man-
ages a flat namespace of objects and services only read and
write requests for the data in those objects; there are po-
tentially thousands of OSDs in a single system. The NASD
design separates small metadata operations from high band-
width data transfers, which can potentially use different net-
work paths to further reduce contention. The design local-
izes management of the directory tree, which requires signifi-
cant coordination to keep consistent, among a small number
of hosts. Finally, the design involves a large number of hosts
only for data requests, which requires little or no consistency
coordination.

2.1 Ceph

We are designing a distributed file system, Ceph, that uses
network attached object storage devices to hold file data for
applications ranging from workstation-style individual file
access to coordinated access for high-performance parallel
applications. Unlike NASD, which places the entire con-
tents of a file in one object on one OSD, Ceph distributes
and replicates a file across a sequence of objects on many
OSD. Traditional NASD techniques would bottleneck at the
OSD if multiple hosts access the same file. Many scientific
computations open, read and write one file from thousands
of nodes in a coordinated way; by distributing a file to mul-
tiple objects on multiple OSDs, Ceph will distribute load
under such conditions. NASD will lose file data if the repli-
cation internal to an OSD or a whole OSD fails, whereas
Ceph can fall back on other OSDs.

In Ceph, metadata servers (MDS) manage the directory
hierarchy, permissions and file to object mapping. To effi-
ciently balance load, the MDS partition the directory tree
across the cluster [21]. A client guesses which metadata
server is responsible for a file, and contacts that server to
open the file. That MDS will forward the request to the cor-
rect MDS if necessary. The responsible MDS will reply with
a file handle, and information about which MDS manages
each component along the full pathname. The client may
use this information to improve future guesses about which
MDS to contact for a particular file.

The file handle describes which objects on which OSD con-
tain the file data. The RUSH algorithm maps a sequence
index to the OSD holding the object at that position in the
sequence, distributing the objects in a uniform way [8]. Un-
like a simple hash function modulo the number of available
OSD, the RUSH algorithm requires Ceph to redistribute
only a small portion of the file data when adding or re-
moving OSDs from the system. The RUSH algorithm also
allows Ceph to replicate files in different patterns rather

than replicate an entire OSD. Thus, when one OSD fails,
multiple OSDs participate in its restoration. This narrows
Ceph’s window of vulnerability to a second failure that could
cause irrecoverable data loss [22].

Ceph limits objects to a maximum size (e. g., 1 MB), so
files are a sequence of bytes broken into chunks on the max-
imum object size boundary. Since only the MDS hold the
directory tree, OSDs do not have directory information to
suggest layout hints for file data, such as in FFS [13]. In-
stead, the OSDs organize objects into small and large ob-
ject regions, using small block sizes (e. g., 4KB or 8 KB)
for small objects and large block sizes (e. g. 50-100% of
the maximum object size) for large objects [20]. This layout
guarantees that bulk reads and writes for a large object are
likely to be contiguous on disk.

Security is an important issue in this environment, be-
cause with tens of thousands of clients and thousands of
disks, it may take only a single compromised client or OSD
to allow an intruder to read data from any OSD in the
system. However, as described below, a naive implemen-
tation using the basic NASD security approach simply will
not scale to hundreds of millions of (client, OSD) pairs.

2.2 Network Attached Secure Disks

Gobioff, et al. proposed capabilities for Network Attached
Secure Disks, but a capability was good for only one ob-
ject [5], as was the case for SCARED [17]. Both used a
symmetric MAC to sign the capability, requiring the MDS
to share a key with each OSD. SNAD [14] improved upon
this approach, allowing capabilities to apply to multiple files
by using public-key encryption to secure the capabilities,
making it possible for an MDS to generate capabilities that
could be used by multiple OSDs without concern that an
OSD could forge capabilities. Aguilera, et al. [1] further im-
proved on standard NASD capabilities by allowing them to
specify multiple extents of blocks to which the capability
applies, though they used a symmetric MAC rather than a
public key signature to make the capability unforgeable.

None of these approaches, however, will suffice for Ceph,
in which a file may contain thousands of objects spread
across thousands of OSDs. We do not want to require that
the MDS return thousands of capabilities, nor do we want
a subverted OSD to be able to use a capability to issue re-
quests to other OSDs. We will show how a fixed size capa-
bility can describe an indefinite number of objects, and we
will show how to derive session keys specific to each OSD.

2.3 Secure Distributed File Systems

SFS [12] includes a hash of a host’s public key to create
a self-certifying pathname, and provides a consistent direc-
tory namespace to users regardless of which host they use
to access SFS. CapaF'S [18] adds access control to the self-
certifying pathnames of SFS. However, SF'S and CapaF'S do
not address replication of data or distribution of load. SFS-
RO replicates directory trees, such as package distribution
sites, assuring the user of the authenticity of the replicated
data, but SFS-RO is a read-only file system [3].

SiRiUS, SUNDR, and Plutus all provide integrity and
confidentiality for file systems stored in untrusted reposi-
tories [7, 10, 11]. SiRiUS uses a public/private key pair per
client to secure lock boxes for files and directories. SUNDR
clients sign revision histories so that a server cannot eas-
ily substitute old authenticated data for new authenticated



data; at worst, the server may fork histories. Plutus uses
lockbox techniques similar to those in SNAD, adding the
use of Merkle hash trees and the ability to revoke permis-
sions when a file is modified by using public-key encryption
techniques to generate new lockbox keys. However, none of
SiRiUS, SUNDR and Plutus addresses replication or large
scale distribution. Plutus, in particular, has relatively low
performance, and would likely perform poorly in a highly
scalable environment because of bottlenecks in distributing
and managing a large number of keys.

3. THE PROTOCOLS

In this section, we first describe the basic protocol by
which a client accesses an object in Ceph. We then use
this basic protocol as a baseline to describe three secure
protocols for accessing multiple objects on multiple OSDs
from multiple clients. These protocols are specified some-
what formally so that we can analyze their security. The
principals in all of the protocols include a client machine C'
acting on behalf of a user U, a metadata server M, and an
OSD D. If there is more than one of a given principal, the
principal identifier may be subscripted.

We write A — B : M when we intend for the host A to
send the message M to the host B. However an attacker
may intercept, mangle and replay messages. If A sends M,
it may arrive at B, a new message M’ may arrive in its place,
or no message may arrive at all. If B receives a message @,
it cannot automatically conclude that A recently sent Q.

We use K§ and K% to represent the public and private
keys for host A. We use Kap to stand for a symmetric key
known to A and B; a trusted server which generated the
key may also know it, but for any other host to know Kap
constitutes a compromise of the key.

We write { M} KY to denote the encryption of the message
M under the public key KY; assuming that only A holds
the private key K%, M is readable only by A. We write
{M}Kap for the authentication and symmetric encryption
of M. M can be formed or read only by hosts that possess
KAB .

We denote the message M together with its public key
signature by (M)KZ%; only A may sign the message, but
any host can verify the signature using K3y .

We timestamp all messages so all encrypted and signed
messages expire, and we assume that the symmetric and
public key cryptography are sufficiently strong to thwart
chosen plaintext attacks until well after legitimate messages
expire.

3.1 Basic Operation

This section describes the exchange of messages in Ceph
without any security to show how a client interacts with
the MDS and OSDs. This protocol describes how a client
opens a file and reads and writes its contents. It forms a
baseline by which we evaluate the overhead of our security
mechanisms.

ProT1oOCOL 1. Accessing a file in a protected environment.

Trust assumptions: The MDS cluster will properly main-
tain the file system metadata, and it will serve correct infor-
mation in response to client requests. The MDS will check
that the user is authorized to access the file in the requested

mode before granting a capability authorizing access to the
file’s objects. Upon a read of an object the OSD will return
the data most recently written to that object.

Message exchanges:

C — M U, open(path, mode) (1.1)
M — M, U, open(path, mode) (1.2)
M2 — C : H (1.3)
C — D(H,i) : read(oid(H,1i),bno) (1.4)
D(H,i) —C : data (1.5)
C — D(H,i) : write(oid(H,1),bno,data) (1.6)
D(H,i)—C : okay (1.7)
Risks: An attacker may impersonate any participant, read
any data, and forge data. O

In message 1, the client C requests to open a file on be-
half of user U. The client makes its best guess of which
metadata server to contact based on path, and sends the re-
quest to that server. The server may determine that it does
not manage the partition containing the path. In message 2,
the server forwards the open request to the correct metadata
server. Hereafter, we elide message 2, with the understand-
ing that, in future protocols, the MDS may forward an open
request some number of times, so message 3 may originate
from a metadata server other than the original recipient of
the open request.

In message 3, the authoritative metadata server sends the
client the file handle H, which lists the (osd, oid) pairs of the
objects that compose the file. The response also indicates
which metadata server handles each name along the path,
and the client will cache this hint to improve its guesses of
which metadata server to contact for future requests [21].

In message 4, the client requests block bno of object ¢
of the file. The function D(H,1) yields the identifier of the
OSD that contains the i*" object; oid(H, 1) is its object iden-
tifier on that device. We intend that H represents seed val-
ues, and the D and oid are generator functions. In Ceph, H
contains initialization data for the RUSH placement func-
tion, and D(H,i) represents using RUSH to find the ™
OSD [8]. In Ceph the oid is simply the 64 bit value ob-
tained by concatenating a 32 bit unique file identifier found
in H with the 32 bit value .

In message 5, the OSD returns the requested block. Mes-
sages 6 and 7 are similar to messages 4 and 5, but show a
write request and its acknowledgment.

3.2 Handling Vulnerable Clients

We now investigate one way to secure the above protocol.
We assume some strong physical and network protections
for the MDS and OSDs. For example, these hosts may be
locked in a room, guards with guns and vicious dogs may pa-
trol the premises, a network firewall may permit only certain
network traffic, and they may run only sanctioned software.
We do not assume the clients have such strong protections.
When a user enters a name and password into a worksta-
tion, he implies that he trusts the machine. When the user
runs software, reads email or surfs the web, he may believe
his actions are safe. However, that machine may have been
compromised, or the user may unintentionally run some mal-
ware. We do not address protecting the user from his own
actions here, but this protocol does protect other users from
the compromise of one user. It does not permit a subverted



machine to obtain access to data which the user of that ma-
chine could not ordinarily obtain. However, a machine that
has been subverted by, for example, a keystroke logger, could
capture a user’s password and access any files to which that
user had access.

The protocol uses symmetric cryptography to ensure pri-
vacy and integrity for all communications, including authen-
tication of capabilities. We require that the client and MDS
arrange a shared key Kcnr a priori, which may come from
Kerberos [15] or some security service that may already be
deployed. Protocol 1 used U in the first message to iden-
tify the user opening the file; hereafter the protocols use C,
which represents the token from such a service. The meta-
data server uses to select the key Kcar, and it associates
that token with the user U. Although an existing security
service authenticates the user to the MDS, the MDS pro-
vides session keys for the client to use with the disks; we do
not burden the administrator with registering thousands of
OSDs with an existing security service.

ProTOCOL 2. Protecting honest clients from malicious
or subverted clients.

Trust assumptions: ~ The MDS will keep the keys Kcum
and Kcp secret. The MDS and OSD will keep Kyp se-
cret. The MDS will generate “good” session keys, which are
sufficiently random so that an attacker cannot guess a key
sequence. The OSD will check that a request is authorized
by the capability. Additionally, the trust assumptions of
Protocol 1 apply.

Assumptions of honest participants:
the keys Kcam and Kcop secret.
Message exchanges:

The client will keep

Cc—-M : C,{open(path, mode)} Kcar (2.1)
M—C {H,Kop,Ts, T} Ko, € (2.2)
C — D(H, 1) C, {read (¢, bno), Th } Kcp (2.3)
D(H,i) = C {T1, data}Kcp (2.4)
C — D(H, 1) C, {write(s, bno, data), T2} Kcp  (2.5)
D(H,i) - C {hash + 1}Kcp (2.6)

where € = {H,perm,Kcp,Ts, Te}Kup

Risks: ~ We examine the abilities an attacker can obtain
by compromising a key, though we do not exhaustively list
all the possibilities. We designed the protocol to protect
honest clients from malicious or subverted clients, so our
risk analysis here focuses on failure to satisfy the honesty
assumptions.

Should the user log into a compromised workstation, or
download malware via email or the web, the attacker may
acquire the rights of the user, but the protocol continues to
protect other users from the breech. The attacker may use
Kceur to impersonate C' to the metadata server and access
any file which C could ordinarily access.

The attacker may use Kcp to impersonate the client to
the OSD and issue any request he chooses, or he may use
Kcp to read requests and responses for that client. If the
OSD properly verifies the capability before servicing a re-
quest, then the attacker may only use Kc¢p in such ways
from time T to time T%. O

Although the attacker could not use the information in
message 1 to access any file data, we encrypt it in case the
pathname leaks any sensitive information. After verifying

that the user is authorized for the requested file and mode,
the MDS generates a capability that states, “any client that
knows K¢cp may access the objects in H according to perm
from time Ts to T..” To prevent forgery of the capability, the
metadata server encrypts it with K/ p, which is a symmetric
encryption key known to the MDS and all OSD. The MDS
also shares the new session key with the client.

The client includes the capability with every request, as
in messages 3 and 5. This way, the OSD does not need
to keep session state for each client. The OSD may use
Knp to decrypt the capability where it will find the session
key Kcp. It can then use Kcop to decrypt the request, but
before expending the processing for that, it first verifies that
the current time is between Ts and T,, and that the request
is compatible with perm.

In the basic protocol, the client asked to read a particular
object. However, in this version the client asks to read the
i*® object. The OSD must verify that it indeed serves the
i*" object; if the client included the oid in the request, the
OSD would need to verify that as well. We do not assume
that the functions D(H, 1) or oid(H,1) are invertible, so the
client requests the i*" object. The OSD computes D(H, 1)
to verify that it is the correct OSD for the request, and then
it computes the appropriate object oid(H,1).

We did not design Protocol 2 to offer reasonable guaran-
tees if the attacker compromises the MDS or OSD, as indi-
cated by our not listing any honesty requirements on them.
Nonetheless, we feel the protocol is weak since it requires all
disks to share the key Knp. If the attacker obtains Kup,
they he may create any capability he chooses and issue any
request he chooses to the OSD. The attacker may also use
the key to decrypt the capability in any request, obtain the
session key, and then decrypt the request and response.

This protocol resembles the capabilities of NASD [5], and
also shares the same weaknesses. Protocol 2 uses encrypted
capabilities to carry the session key, whereas the NASD pro-
tocol derived the session key from the symmetric MAC used
to authenticate a cleartext capability. We describe Proto-
col 2 here so that we may evaluate the cost of the stronger
protocols.

3.3 Handling Vulnerable OSDs

With 103-10* OSDs in a system, it may be infeasible to
provide strong physical and network protections for all of
them. Thus, their exposure to attack may be greater than
the MDS. Should an attacker compromise an OSD, he may
obtain the critical key Kap in the previous protocol and
wreak havoc in the system.

This next protocol does not rely on a broadly shared se-
cret; rather each OSD D shares its own Krp with the MDS.
That is, for any two distinct OSD D; and D2, we probably
have that Kyp, # Kmp,. In the previous protocol, the
MDS could protect a capability from forgery by symmetri-
cally encrypting it with Ka;p. Now that there is no global
symmetric key, the MDS must use a public key signature
to authenticate the capability. Furthermore the MDS must
provide a session key per OSD; otherwise a subverted OSD
could use a global session key to impersonate the client to
another OSD.

ProTOCOL 3. Protecting honest clients and OSD from
malicious or subverted clients and OSD.



Trust assumptions:  The MDS will keep the private key
K}@ and the symmetric key Kcasr secret. The MDS will
keep Kyrp and Kep secret for all OSD D. The MDS will
generate good session keys. Additionally, the trust assump-
tions of the MDS in Protocol 1 apply.

Assumptions of honest participants: The client will keep
the key K¢ secret. For each OSD D, the client and D will
keep the session key Kcp secret. Each OSD D will keep
the key Ky p secret. The OSD will check that a request
is authorized by the capability. Upon a read of an object
the OSD will return the data most recently written to that

object.

Message exchanges:
C—M : C, {open(path, mode)} Kcm (3.1)
M — C {C}Kcem (3:2)
C — Mp,) : C,D(H,i) (3.3)
Mp,y — C + {Kepiy, D(H, i), Te, T} Kom, T (3.4)
C — D(H,i) : T,{C,read(i, bno),T1} K¢ pm,) (3.5)
D(H,i) - C : {Th,data}Kc, pm,q (3.6)

where ¢ = (P/H, perm,TS,Te>Kﬁ

T = {CG,Kcpw,i Te, T3 K, p(m.)
Risks: As before, we examine only the risks presented by
dishonest participants. For a client to leak Kca or any
Kcop carries similar risks to those for Protocol 2. If the
attacker acquires the key Ky p for some OSD D, then he
may read traffic between any client and that OSD, however
he may not read traffic between clients and other OSDs.
With Kp the attacker may also impersonate that OSD to
any client, but he may not impersonate any other OSD. If an
attacker acquires the session key Kcp for some OSD D,then
he gains similar abilities as when acquiring Ky p, however
those abilities are restricted to the particular client and only
last for as long as the client uses K¢ p, which should only
be from the time T to T%. O

In message 2, the MDS provides a signed capability stat-
ing, “any client that satisfies P may access the objects in H
according to perm from time Ts to Tc.” P is a principal de-
scriptor that states in conjunctive normal form all users and
groups who may access the file. In general, the principal de-
scriptor could be as long as the directory tree is deep, but in
practice 99% of files need two or fewer conjuncts [16]. P is a
short statement of all users authorized to access the file, so if
many different users open the file within a few minutes, the
MDS may return the same capability to all of them. This
way the MDS needs to expend processing time for signing
the capability only once. Furthermore the OSD may cache
the results of verifying the signature, which also benefits all
clients that opened the file within minutes of each other.

Unlike our previous protocols, the MDS does not return a
session key in the second message. In message 3, the client
must contact the MDS to obtain a session key. The MDS
returns a ticket stating, “any client that knows K¢ p(m )
is the user C' and a member of the groups G from time 77
to time T..” The MDS prevents forgery of the ticket by
encrypting it with a symmetric key known only to the MDS
and the particular OSD. The user and group membership
items link the ticket to all capabilities the user may carry,
which makes the ticket valid for any file’s object stored on
that OSD.

The client provides both the ticket and the capability in
each request, so the OSD does not need to store any per
client state. However the disk may cache the result of ver-
ifying a capability’s signature for performance reasons. It
can at anytime evict a cached verification without affecting
proper operation of the security mechanism. The OSD may
use K s, p(m,q) to decrypt the ticket. If the ticket is still valid
according to its timestamps then the OSD can use the ses-
sion key inside to decrypt the request. If the capability is
still valid according to its timestamps then the disk may ver-
ify the signature, and it may check that the user and group
membership from the ticket satisfy the principal descriptor.

3.4 Handling Vulnerable OSDs Scalably

The previous protocol needed two messages in addition
to those of the basic protocol, which introduces additional
latency. A flash crowd may flood the few MDS servers with
such requests, which presents a scalability concern. In the
next protocol we eliminate the extra messages by computing
OSD-specific keys on the client and verifying them on each
OSD. This computation is distributed across thousands of
clients and OSDs, and will better scale to large numbers of
participants.

ProTOCOL 4. Protecting honest clients and OSD from
malicious or subverted clients and OSD, without additional
messages.

Trust assumptions: The MDS will keep the private key K
and the symmetric key K¢ secret. The MDS will generate
good session keys. Additionally, the trust assumptions of the
MDS in Protocol 1 apply.

Assumptions of honest participants:  The client will keep
the private key K& and the symmetric key Kcn secret.
The client will all keep {Ko} K& secret. Each OSD D will
keep its private key KL secret, and the client and OSD will
keep the session key K¢ p(m,q) secret. The OSD will check
that a request is authorized by the capability. Upon a read
of an object the OSD will return the data most recently
written to that object.

Message exchanges:

C—-M . C,request ticket 4.1
M —C : {‘T}KCM 4.2
Cc—M : C,{open(path, mode)} Ko 4.3
M—C : {C}Kem 44

-
o

o AKcow YK D
¢ — D(H,1) : {7, C,read(i, bno), T1 } K¢, p(a,4)

l)(}”]7 Z) — O : {Tl, data}KQD(Hyi)
where ¢ = (PH, perm,TS,Te>Kﬁ
T = (UG K Ko, T, TO)Kxy
H{K}K Do K
Risks: For a client to leak K¢ or any K¢ p carries similar
risks as in Protocol 2. For the attacker to acquire the key

KE for some OSD D carries the same risk as if the attacker
acquired Kp/p in Protocol 2. O

/_\A /_\/_\A,.\
= NN NN

=~
=
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In this protocol, the client asks once for a ticket to speak
with all OSDs. The ticket certifies the client’s identity, group
membership and public key. It also carries a key initializer
used to derive OSD specific session keys without further in-
volvement from the MDS. We encrypt the capability and



ticket throughout the protocol in case the file handle, user
identity or group membership carry sensitive information.
However, should the client submit a request to a subverted
OSD, that OSD may reveal the information anyway. En-
crypting these items at least protects the system from traffic
analysis by a attacker that has not subverted an OSD.

To secure traffic with a given OSD D, the client uses his
private key K& and the OSD’s public key K3 to derive
Kcp from the key initializer Ko. Before sending this key
with the request, the client encrypts it a second time with
K'Y so an eavesdropper may not learn the session key. Upon
receiving a request, the OSD uses the client’s public key then
its private key to decrypt the alleged Kcp. The OSD checks
that the result matches Ko to verify that the creator of this
session is indeed C'.

4. TRACE-BASED EVALUATION

The three protocols for securing communications in a scal-
able object-based storage system all have different perfor-
mance characteristics. Our next goal was to compare proto-
col performance using real storage system traces gathered
from a workload traced at Lawrence Livermore National
Lab. By applying measured operation overheads for dif-
ferent cryptographic and network operations, we were able
to simulate the performance of each protocol on the traced
workload.

We identified five contributors to total cost in our pro-
tocols: the number of files opened, the number of opens,
the number of requests, the number of disk-node pairs and
the number of disk-file pairs. There may be more open re-
quests than unique files opened, if some file is opened mul-
tiple times. The first open of a file costs one amount, but
the cost of subsequent opens may be different. For example,
the MDS in Protocol 3 needs time on the first open to sign
the capability, but it can cache the signed capability and
quickly provide it on subsequent opens. Each disk request
and matching response needs time for encryption, decryp-
tion, network transfer, and disk transfer. In Protocol 3 the
client must obtain an OSD-specific ticket for each new OSD
it contacts; the number of disk-node pairs counts how many
times this occurs. In Protocol 3 the OSD must verify the
capability once for each file it sees; the number of disk-file
pairs counts how many times this occurs. Protocol 4 also
incurs per disk-node and per disk-file costs.

To estimate and compare the overheads of the different
protocols, we used traces of a scientific application running
on 256 processors. We counted open, read and write re-
quests performed by each of 256 processes. We also counted
how many distinct OSDs each node interacted with, and
how many distinct files each node opened. To estimate the
processing time of cryptographic operations, we timed the
libgcrypt implementation running on a 3.2 GHz Pentium 4.
We used AES for symmetric encryption, DSA for signing and
RSA for public key encryption. As a best guess for MDS re-
sponse time, we used the throughput numbers reported by
Weil, et al. [21]. To estimate OSD response time, we used
the throughput reported by Wang, et al. [20] for a random
read/write workload. Table 1 reports the timings we used
as a basis for our calculations. Note that symmetrically en-
crypting 1 MB of data requires nearly as much time as the
disk transfer. This cost, which appears in all our secure
protocols, drowns any difference one might detect from the
public key operations. If performance is critical, however, it

| Operation | Time |
Symmetrically Encrypt 1KB (Capability & 43us
Request)
Symmetrically Encrypt 1IMB (Object Data) 44 ms

Sign 1KB (Capability) 3.3 ms
Verify Signature on 1KB 4.0 ms
Generate a 128 bit key 120 ps
MDS authorize access and lookup handle 330 ps
OSD Read/Write 1IMB 50 ms

Table 1: Timings of basic operations used in esti-
mating the overhead of the security protocols. For
cryptographic operations, we timed libgcrypt on a
3.2 GHz Pentium 4. We obtained other timings
from [20] and [21].

Number of Count of
P Disks | Opens Regs Files DN DF
1 10 | 1,538 | 540,081 4| 2,549 27
16 100 | 1,538 | 537,386 34 | 11,945 314
256 | 10,000 | 1,538 | 536,634 | 514 | 17,891 | 3,265

Table 2: Sample counts from traces. P is the number
of partitions. DN (disk-node pairs) counts the total
number of distinct disks accessed by each node. DF
(disk-file pairs) counts the total number of distinct
disks on which each file stores some objects.

might be possible to use an optimized cryptographic library
or hardware-accelerated encryption.

The scientific application ran on 256 processors, but di-
vided the nodes into N partitions accessing N files. The
nodes of a partition access different regions of one file; this
behavior motivated the design of Ceph, which treats files
as sequences of objects to distribute such workloads across
OSDs. This is in contrast to the basic NASD design, which
can only distribute accesses to different files across OSDs.
We have traces for the application with all 256 nodes ac-
cessing 1 file, 2 partitions of 128 nodes accessing 2 files,
4 partitions of 64 nodes accessing 4 files, and so on up to
256 partitions of each node accessing its own file. We per-
formed our analysis using OSD pools of sizes 10, 102, 102,
and 10%. Table 2 reports the counts we obtained from the
traces for three different partition sizes and OSD pool sizes,
showing that, even if there are only 256 clients in a 10,000
disk system, there are a total of nearly 18,000 disk/node
pairs. In a larger system with larger data sets and files, the
number of pairs could be 3—4 orders of magnitude larger.

We computed the total time the application would spend
on file operations by totaling each item times the quantity
of that time:

#files X cost/file
+  #opens X cost/open
+  #requests X cost/request
+  #disk-node pairs x cost/disk-node pair

+  #disk-file pairs x  cost/disk-file pair
Our plots are based on the total cost. We define the overhead
of a secure protocol as its total cost minus the total cost of
the baseline given by Protocol 1.
Regardless of the number of partitions, the application
performed 1,538 opens in total. The number of read and
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Figure 1: Disk-node pairs exhibited in analysis of
the traces. Protocol 3 requires extra messages for
each OSD-node pair, and Protocol 4 requires the
client to perform additional public-key operations
for each OSD-node pair. This graph shows that the
total time spent on such operations across all nodes
will grow sub-linearly with the number of OSDs.

write requests decreased slightly as the number of partitions
increased. The number of files grew linearly with the num-
ber of partitions. Naturally, the number of disk-node pair-
ings grew with the number of disks, since there were more
disks for a node to pair with. However Figure 1 shows that
this curve flattens quickly, perhaps because the application
was only running on 256 processes, limiting its parallelism.
Protocol 3 needs extra messages for each pairing of disk
and node, and Protocol 4 requires public-key operations for
each pairing. We can see that these costs grow sub-linearly
with the number of OSDs. The number of disk-file pairs
also grows with the number of disks and files, but Figure 2
shows this curve flattens as well, again perhaps due to the
limited parallelism available in the small-scale trace we used.
The OSD-side caches of verifications grow with the number
of disk-file pairings; if we assume that each new OSD has
the same amount of cache, then our cache space will grow
linearly and outpace our requirement for cache which grows
sub-linearly.

If the storage systems uses a network fabric such as the one
used in the IBM BlueGene, which has a latency of 5 us and
a bandwidth of 350 Mb/s, latency will be very low, though
bandwidth may not be as high as that available from other
networks. For a system using such a network, Protocol 2
incurs almost as much overhead as Protocols 3 and 4, as
Figure 3 shows. Using public key cryptography in this par-
ticular application would add less than 0.2% compared to
using symmetric cryptography alone. Surprisingly, the more
CPU-intensive cryptography and extra messages incur neg-
ligible additional cost while providing considerably greater
security.

Protocol 4 trades additional public-key operations for ad-
ditional messages. As Figure 4 shows, this tradeoff results in
Protocol 3 gaining a slight advantage in a low latency net-
work where the two additional messages are cheap; however,
it quickly loses that advantage in higher latency networks.

Although the different protocols show nearly the same
cost in this analysis, we found that even the symmetric key
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Figure 2: Disk-file pairs exhibited in analysis of the
traces. For efficiency, the OSD may cache file capa-
bilities they have already seen, and this graph shows
the demand for cache will grow sub-linearly in the
number of OSDs. Each new OSD will have its own
cache, so cache space will grow linearly with the
OSDs and outpace the need for cache.
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Figure 3: The overhead of Protocol 3 (top) and
Protocol 4 (bottom), which use public-key cryp-
tography, compared to the overhead of Protocol 2,
which uses only symmetric key cryptography. To
compute the overhead, we subtracted the time for
Protocol 1; for example, the top graph shows 100 x

P3-P1
P2—P1

of public key cryptography without incurring sig-
nificant additional costs, since the public key opera-
tions are a small part of the overall time. This is in a
network with 350 Mb/s bandwidth and 5 us latency.

— 1). We can have the additional security
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Figure 4: The overhead of Protocol 3 and Proto-
col 4 for varying network latencies (top), and the
overhead of Protocol 3 compared to Protocol 2 in
a high latency network (bottom). Protocol 3 has
a slight advantage over Protocol 4 in low latency
networks, but the client’s second interaction with
the MDS quickly overwhelms that advantage in a
high latency network. In a 1 Gb/s Ethernet with a
0.2 s latency, the overhead of Protocol 3 compared
to Protocol 2 rises sharply as more nodes enter the
scientific computation.

protocol, Protocol 2, added 120% overhead compared to no
security alone. This cost comes from the symmetric encryp-
tion of data, and can be reduced by only signing data and
sending the data in the clear, or by using faster encryption
or encryption hardware.

5. ANALYTICAL EVALUATION

Above we showed that the symmetric key protocol cost
nearly as much as the public key protocols in a particular
scientific application. However, we see from Table 2 that
the application performs thousands of requests and only a
few opens. Since Protocol 3 and Protocol 4 use public-key
operations for each file, we must question how they compare
to the symmetric protocol when used for different ratios of
requests to opens. To answer this question, we turned to
analytic evaluation of the protocols. While this evaluation
approach uses a synthetic workload rather than a real work-
load, we believe that it is useful because it shows how our
protocols perform on workloads with differing file request
profiles.

We can easily vary the number of files, opens and requests
in the cost computation given above. More effort is required
to compute the number of disk-node and disk-file pairs. Sup-
pose one node interacts with K objects that may or may not
be on different OSDs from a pool of N OSD. How many dis-

tinct OSDs does the node interact with? To answer this, we
define

T(m,k) = 0,ifm=00rk=0

N(l-&-T(m—Lk—l))

+ (1 - %) T(m,k — 1)

T(m, k) computes the number of distinct disks chosen,
by making k independent and equally likely choices from
a pool of N disks where m of them have not been picked
in a previous choice. There are no distinct disks left to
choose if m = 0. There is an m/N chance of choosing a
new distinct disk, and an 1 — m/N chance of choosing a
disk chosen previously. T'(N, K) will tell us the expected
number of disk-node pairs if one client contacts disks for K
different objects in a pool of N disks. T'(N, L) will tell us
the expected number of disk-file pairs if a file has L objects
stored on disks in a pool of size .

Figure 5 shows the performance of one client opening one
file and making varying numbers of requests to one object
(which is on one disk). This figure compares the overhead
of the public key protocols to the overhead of the symmetric
protocol. The more secure protocols cost up to 14% more
than the symmetric key protocol when we have only a few re-
quests per file, but this high cost drops quickly. Figure 5 also
shows one client opening one file and making one request to
varying numbers of objects. Again, the more secure proto-
cols cost up to 14% more than the symmetric key protocol,
though the cost does not drop as sharply. The absolute
times for a small number of requests will be imperceptible
for interactive use. However, the costs may noticeably im-
pact scripts or applications which frequently make only a
few requests for each file open.

We designed the protocols with scalability in mind; in
particular we expect all of them to handle large numbers
of clients. Unfortunately, we have traces of the scientific
application for only up to 256 nodes. Adding more clients
adds more resources for client side operations, and we can
add more OSD to handle load there, but the MDS require
a high degree of coordination to maintain a consistent di-
rectory tree, so we cannot easily add MDS. Thus we believe
the metadata servers will be the limiting factor in Ceph’s
ability to scale to tens of thousands of clients. To investi-
gate scalability, we compute the time the MDS will spend
on symmetric and public key operations to generate capa-
bilities and tickets. Protocol 2 needs the MDS to create one
symmetric ticket for each client-file pair; Protocol 3 needs
one symmetric ticket for each client-disk pair, and one ca-
pability signed with a public key for each file (when we have
a flash crowd). Protocol 4 needs one signed ticket for each
client and one signed capability for each file.

Figure 6 shows the time the MDS spends generating tick-
ets and capabilities when all clients open one common 1 GB
file and each client opens one private 1 GB file; the files are
spread across 1,000 OSD. For comparison, we include the
“naive” protocol which requires a symmetrically encrypted
ticket for each client-object pair. We see that Protocol 2
requires the least effort from the MDS, however one must
balance that consideration with it being the most risky of
our secure protocols. Protocol 3 creates the most MDS load
among our protocols, needing about 471 times more effort
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Figure 5: The overhead of Protocol 3 and Proto-
col 4 versus Protocol 2 for varying numbers of re-
quests made to a single object (top), and for vary-
ing numbers of objects spread across multiple disks
(bottom). Users which make a single request of a
single object of one file will notice a 14% degra-
dation over the more vulnerable protocol, but this
penalty drops quickly as the user reads and writes
more objects more often. Users which frequently
access large parts of files can amortize the cost of
obtaining the file capability over more requests.

than Protocol 2, though it’s still not as demanding as the
naive protocol which needs about 1,000 times as much ef-
fort. Finally, the most secure option we have presented,
Protocol 4 requires about 78 times as much work from the
MDS.

6. FUTURE WORK

We have explored the trade-offs between different security
protocols in this paper, but there are still several design op-
tions and issues that must be investigated to make Ceph and
other petabyte-scale object-based storage systems secure.

In Protocol 4, the disk must encrypt the data for a read
response using a different key for each client. Protocol 4 uses
a key specific to the disk and client to authenticate both the
sender and receiver of the request. However, in the reply it
may be possible to use the key K¢ (g i) = {{KO}KS(H,z‘)}v
which is specific to only the disk. Since the MDS hands
each client in a flash crowd the same Ky, the disk could
cache the encrypted block so that it would be ready for
subsequent read requests. We must investigate the security
implications and performance effects of this optimization,
which was inspired by similar work for NASD [6].

We expect that hardware support for IPSec will become
common. Azagury, et al. proposed two-layer encryption us-
ing IPSec for NASD; however they assumed IPSec would
provide keys and did not describe how their protocol in-
tegrates with ISAKMP [2]. We need to map our protocol
to ISAKMP and experimentally measure the overhead with
hardware support.
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Figure 6: The time the MDS spends encrypting or
signing tickets and capabilities. All clients open and
access each object of one common 1 GB file, and each
client opens and accesses each object of a private
1 GB file. The files are distributed throughout a
pool of 1,000 OSDs. Protocol 4 requires 78 times
more computation from the MDS than Protocol 2,
though one should weigh that against its lower risk
to subverted OSDs. Protocol 3 requires 471 times
more work, and the naive protocol requires 1,000
times more work.

In the event that an attacker does steal a disk, our pro-
tocols still leak the data on that disk since the data on the
disk is stored in the clear. We are investigating encrypting
data at the client and storing it encrypted on disk. This will
provide confidentiality even for the data on a subverted disk,
and it reduces the amount of encryption and decryption the
disk must perform. However, end-to-end encryption of the
data requires long-term keys that have the potential to cre-
ate endless hassle for end users. We may use the user’s pub-
lic/private key pair to secure lock boxes as in SNAD [14] or
techniques similar to those in Plutus [10], although in our
system the MDS rather than the OSDs will maintain the
lock boxes.

We are currently working on a formal statement of the
security properties and a proof for the protocols. Also, we
are working on a software implementation for experimental
analysis.

7. CONCLUSIONS

We have described three protocols for securing the net-
work traffic of a petabyte-scale object based distributed file
system consisting of thousands of disks accessed by thou-
sands of clients. This environment differs dramatically from
conventional NASD and object-based environments in its
scale: thousands of clients may access a single file simul-
taneously, and files may consist of 10°-107 objects spread
across thousands of object-based storage devices. In such
an environment, our protocols perform much better than
traditional NASD secure protocols.

Although the three protocols that we developed all out-
perform traditional NASD authentication protocols, we had
thought that the use of public key cryptography would exact
a high toll in performance, causing public-key based proto-
cols to be significantly slower than protocols that used only
symmetric key cryptography. However, by examining traces
of a scientific application and analyzing performance on syn-
thetic workloads, we found that protocols using public key



cryptography did not significantly increase the overhead of
using a secure protocol as compared to symmetric-key based
protocols. Since public-key protocols offer better protection
against attacks on the OSDs, we concluded that they were
better suited for use in a petabyte-scale object-based stor-
age system. We are continuing this work by investigating
optimizations, using [PSec for secure channels, encrypting
data on disk, and performing experimental analysis.
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