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1 Introduction

Many wide-area systems are being, or have recently been,
constructed on the Internet. These services range from
AFS [Howard88], which provides a generic distributed file
service, to highly specific applications such as the Archie
FTP location service [Emtage92] and the Indie distributed
indexing tool [Danzig92]. We have developed the Tattler
reliability monitoring tool [Long92] and the Refdbms bib-
liographic database system [Golding92a]. Other possible
services include distributing public cryptographic keys,
software distribution, and resource location for mobile
hosts.

These applications share several requirements. They all
will be used by millions of users in all parts of the world.
They must provide these users with a highly available and
reliable service, even though the Internet is never without
partitions and the hosts on which the service operate are
unreliable. At the same time, users expect fast response
when using the application – certainly no worse than re-
mote applications on a local-area network provide. Some
applications must be able to provide service to users with
mobile computers that have been disconnected from the
network.

Replication is the only way to meet these requirements.
A replicated service can provide better availability than a
single host, and it spreads the operation load over many
replicas. In a wide-area network, replicas can be placed
near users so communication latency is never too large.
Replicas can also be placed on the local storage of a mo-
bile computer. Unfortunately this approach leads to large
numbers of replicas – we expect hundreds or thousands in
a system that places a replica in most geographic regions,
and potentially millions if users can place replicas on their
disconnectable systems.

Group communication protocols are a convenient way
to implement replicated services. We have found that
weak consistency group protocols, which allow replicas
to diverge temporarily from one another, provide good
performance for wide-area applications.

While all the application we have mentioned require
high degrees of replication, their semantics differ substan-
tially. The Archie service only provides queries, while
the Tattler and Refdbms provide both queries and updates.
The host reliability database that the Tattler collects has
a very different data model than the bibliographic refer-
ences maintained by Refdbms. These differences allowed
us to use different optimizations when implementing the
systems.

We have taken a modular, object-oriented approach
to constructing weak-consistency group communication

mechanisms. This approach uses frameworks (x1.2) to
build a mechanism that can take advantage of application
semantics. In the remainder of this section we define the
kinds of systems we are trying to build, and the assump-
tions we make about processes, hosts, and the network.
We also briefly survey related group communication sys-
tems and systems that use frameworks. In x2 we present
the framework we have developed for wide-area group
communication, and introduce the Refdbms and Tattler
systems. In x3 through x7 we detail each component, how
it was customized for our two applications, and the advan-
tages we derived from the customization. We present our
conclusions in x8.

1.1 Model
The replicas in a replicated service coordinate their activi-
ties using a replication or group communication protocol.
The two kinds of protocols solve the same problem, but
replication protocols are generally written in terms of data
stored at multiple replica processes, while group commu-
nication protocol are usually expressed in terms of mul-
ticast communication between group member processes.
We have adopted the language of group communication in
our work.

Principals are the entities that participate in group op-
erations. Other terms such as site, replica, process, and
server have been used in other systems, but we prefer a
term that has little connotation. Principals are persistent:
once created, they provide correct operation until explic-
itly destroyed. During their existence, however, there may
be periods when the principal appears to stop communi-
cating. Traditional processes, unlike principals, can fail,
perhaps because the host on which they execute fails. A
persistent principal can be closely approximated on a real
host by a combination of stable storage and a mechanism
to restart a process whenever it fails. Many Unix network
services, such as name services or mail routing, behave in
just this way: they are created afresh from data on disk
every time a host recovers. A Refdbms principal, for ex-
ample, consists of a set of programs and data files on disk,
and an entry in the host’s inetd configuration table.

Principals are connected by a network that allows any
pair of principals to communicate as long as there are no
network failures. The network can partition, dividing the
principals into two or more non-communicating subsets.
Gateway failure and disconnected mobile computers are
two common sources of network partitioning. A principal
can also be partitioned from the others when the host on
which it executes has crashed. We assume all partitions are
repaired in a finite but unbounded time, meaning that no
host remains permanently disconnected from the network
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and no network fault lasts forever. The Internet closely
approximates this behavior.

The combination of eventual repair and persistent prin-
cipals implies that any principal can eventually pass a
message to any other principal. In pathological cases, as
when two mobile computers are never connected at the
same time, it may be necessary to communicate through
other principals. These conditions are sufficient to make
distributed consensus possible [Turek92].

1.2 Frameworks

A framework is an object-oriented description of the com-
ponents that make up a system and how they are connected.
It generalizes concepts such as layered design, often used
in specifying network protocols, and structured design.
It is related to the Object-Oriented Design methodology
[Rumbaugh91]. A framework is useful both as a tool to
design components, and as a method for sharing design
and coding effort between applications.

A framework composes a number of component objects
to form a complete subsystem. While it is possible to
represent frameworks as run-time objects, we will only
consider them as design entities in this paper.

An abstract framework defines a set of components, the
interfaces they must provide, and how they will be con-
nected. Each component is an instance of some (possibly
abstract) class. A concrete framework is derived from
an abstract one by specifying a concrete implementation
of each component. When a concrete framework is to
be instantiated, an instance of each class is created and
connected. The framework therefore serves as a way to
organize the classes.

The Choices object-oriented operating system uses
frameworks to structure the implementation of process
management, virtual memory, storage, and other services
[Campbell92]. The x-kernel used a similar idea to com-
bine components form a fast and efficient interprocess
communication subsystem [Peterson90]. This mechanism
has been used to construct a modular system for building
consistent group communication protocols [Mishra92].
The Synthesis operating system uses run-time code synthe-
sis to combine protocol objects at run-time [Massalin89].

1.3 Group communication

A group communication mechanism organizes a set of
principals, acting as group members, into a distributed
group. The mechanism provides a group multicast pro-
tocol, by which each member can send a message to all
group members.

Group communication can be used to implement a
replicated service using the state machine approach
[Schneider90]. Each group member maintains a copy
of the state being replicated. Operations on this state are
multicast to the group members, causing each member to
transform its copy of the state in the same way as other
members.

Several group communication protocols have been de-
veloped. Many of these protocols provide strong consis-
tency guarantees, usually providing one-copy serializabil-
ity (1SR) so that the group members behave as if they were
a single logical principal. Some protocols such as the Isis
ABCAST protocol [Birman87] ensure that every princi-
pal receives every update message, so that there is never
any difference between group members. Others allow
some divergence, as long as it does not violate 1SR: the
Isis CBCAST protocol [Birman90] and the Psync proto-
col [Mishra89] provide causal consistency [Lamport78],
while voting protocols [Gifford79] ensure that a majority
of the members perform the update.

Protocols that provide 1SR cannot scale to the large
numbers of group members that are required for wide-
area systems. When a client sends an operation request
message to the group, the group cannot reply until at least
a large fraction of the group has committed the operation.
These protocols allow some classes of operations to in-
volve fewer members than others, but some operation in
every system must require the synchronous participation
of at least

pn members from a membership of size n.
Synchronous operations are not possible when the net-
work can partition or when systems can be disconnected.
They are infeasible when communication latency is long:
an exchange of messages on the Internet can require as
much as two seconds.

Protocols that relax their serializability guarantees can
scale to large groups. Weak consistency protocols pro-
vide no serializability guarantees [Golding92a]. These
protocols allow members to differ for a while, as long
as every member eventually receives and acts on every
update message. Any client request can be processed
by any single member, and the resulting update message
propagated asynchronously to other group members. This
approach was first formalized in the epidemic replication
protocols used in the Xerox Clearinghouse name service
[Demers88]. The Lazy Replication system [Ladin91] pro-
vided a combination of weak and causal consistency.

We have developed the timestamped anti-entropy
(TSAE) protocol, which provides efficient, reliable propa-
gation of update messages throughout the group. Like the
protocols used in the Clearinghouse, members periodically
contact each other and exchange messages. Unlike other
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FIGURE 1: Constructing group members and clients using
frameworks.

weak consistency protocols, TSAE maintains summaries
of the messages each principal has received and acknowl-
edged, and uses this information to optimize communica-
tion. It ensures that every message is reliably delivered
exactly once to each member, and that every member can
determine when other members have received the message
– allowing message logs to be maintained correctly. Un-
like other group communication systems, the TSAE pro-
tocol only requires weakly-consistent membership views.
We have described the TSAE protocol and its performance
in more detail in other work [Golding92a].

2 Framework

We have used an abstract framework to design and im-
plement weak-consistency group communication mecha-
nisms based on the TSAE protocol. This framework is
only part of a complete application. A complete group
member would also include a framework for communi-
cating with clients. Figure 1 shows how group members
and clients might be structured.

The group communication framework provides two in-
terfaces. The first uses a lower-level network protocol
to exchange messages with other principals. The other
accepts new messages from the application and delivers
messages to it. The application applies the operations in
delivered messages to update the local copy of group state.

The application maintains the principal’s copy of group
state. The semantics of the group state determine the
guarantees that the group communication mechanism must
provide, and hence the implementations that can be used
for each component in the mechanism.

The group communication framework has five compo-
nents, as shown in Figure 2: a message log; message
delivery; message ordering; and group membership and
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FIGURE 2: A framework for constructing a group
communication system. Each principal in the group includes an
instance of this framework, in the form of objects instantiated
from concrete implementation classes.

associated membership view components. An instantiated
framework includes one instance of each component.

The message delivery component implements a multi-
cast communication service that exchanges messages with
other principals. It decodes incoming messages and writes
them to the message log, from which they will be deliv-
ered to the application or group membership component.
We assume that this component uses the TSAE weak-
consistency protocol.

The group membership component maintains the local
view of the set of the principals that are in the group.
When the set changes, perhaps because some principal
has joined the group, this component communicates with
the group components at other principals by sending group
update messages through the message log and the message
delivery component.

The network and the message delivery component can
reorder messages arbitrarily. The message ordering com-
ponent processes the stream of incoming messages written
to the log to ensure they are presented to the application
in a sensible order. This step may require delaying some
messages until the ordering component can correctly es-
tablish the order. To ensure this is possible, the ordering
component also processes outgoing messages so that the
ordering components at other principals will have enough
information to properly order messages, usually by adding
a header to each message. Several orderings are possible,
depending on the component implementation selected.

A typical communication might proceed as follows: a
group member receives an update request from a client,
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and translates the request into a group message. The mes-
sage is given to the message ordering component, which
adds a header containing ordering information and stores
the message in the log. Some time later the message de-
livery component sends the message to other principals.

At another principal, the message is received by that
principal’s message delivery component and is written to
the message log. Eventually, the message ordering com-
ponent can determine from the log and group state that the
message can be delivered to the application. The applica-
tion component then updates its copy of the state according
to the contents of the message.

3 The application
The application maintains the principal’s copy of group
state. The state has a logical data model, whether or not
the principals actually store the data. The data model
defines the data to be shared, the operations to be per-
formed on that data, and correctness constraints that must
be maintained. The model determines what guarantees
must be provided by the group communication frame-
work and therefore what implementations can be used for
its components.

Some operations can tolerate inconsistent or out-of-date
information. For example, updating a host address in a
distributed name service does not require knowing the
previous address, and it is not necessary for every replica
in the service to observe the change immediately as long
the change is propagated without too much delay. If every
operation on the group state can tolerate inconsistency,
then the message delivery component can be implemented
with a protocol that provides weak consistency.

The operations allowed on the data can dictate a partic-
ular message ordering. If all operations are commutative,
that is, if they can be applied in any order with the same
net result, the message ordering component need not im-
pose an order on the messages specifying the operations.
It is more likely that operations will be order-dependent,
in which case a total message order will ensure that every
principal computes the same result for each operation.

If operations are order-dependent and messages are de-
livered eventually, the application will need to provide
mechanisms for detecting and resolving conflicting mes-
sages. For example, one principal could send a message
changing the state to one value, and another could con-
currently send a message changing it to a different value.
Local-area distributed systems can use locking mecha-
nisms to avoid conflicts, but many wide-area applications
cannot wait for a global locking operation before perform-
ing an update. Instead, principals make optimistic updates

that must be checked before they are applied to the data-
base. A message ordering implementation that delivers
messages in a total order can provide a basis for consistent
conflict detection.

Some applications require that the data contain unique
identifiers. Unique identifiers are a common source of
update collisions in weakly consistent systems, because
different principals can use the same identifier in different
ways. In some cases identifiers can be generated inter-
nally, but in other cases they must be provided by the user.
Their presence can also determine whether two groups can
merge their state.

The shared data may include explicit version or time-
stamp information. If they do, it may be possible to resolve
update conflicts without requiring strict message order-
ings, and the ordering component may not need to append
timestamp information to messages.

3.1 The Refdbms application
The Refdbms 3.0 system implements a distributed bibli-
ographic database. A Refdbms database consists of a set
of references, each with an internal unique identifier and
a tag like Smith91 that humans can use to name a ref-
erence. At all times the internal identifier is guaranteed
to be unique. The tag should be unique, but this is not
guaranteed for newly-added references until all principals
holding a replica of the database can observe and resolve
conflicting updates. The references are indexed by the tag
and by an inverted index of content keywords.

Three operations can update the database: adding,
changing, and deleting references. The update operations
are neither commutative nor idempotent, meaning that ev-
ery update operation must be performed exactly once, and
in exactly the same order by every principal, if the data-
bases are to reach agreement. This suggests that a message
delivery component should deliver update messages in a
total order, and that messages should be delivered reliably.

Users can also search for references. Searches need
not return completely current information, as long as a
search will eventually reflect any update. This implies that
eventual message delivery is acceptable in the message
delivery component.

Refdbms is implemented as a set of programs that com-
municate over the Internet using TCP (see Figure 3). Users
can submit operations, which are written as messages to
a log. From time to time the message delivery program
propagates these messages to another replica by connect-
ing to a daemon there, which in turn writes the update
message to its log. Group membership changes are ex-
changed at the same time. The message delivery program
and daemon together form the message delivery and group
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FIGURE 3: Structure of a Refdbms principal. The system uses
reliable eventual delivery, implemented in the message delivery
program and daemon, and total message ordering, implemented
in the posting program.

membership components. The message ordering compo-
nent is contained in a posting program that periodically
determines what updates can be delivered to the database.

Users at different sites can submit conflicting updates.
There are three sources of conflict: adding two different
references with the same tag; changing one reference in
two different ways; or deleting a reference then submitting
another operation on it to a different principal. Different
techniques are used to detect, resolve, and avoid each kind
of conflict. All of the techniques make use of messages
being delivered in the same order at every principal and
reliable, exactly-once message delivery.

3.2 The Tattler system
The Tattler system is a distributed availability monitor for
the Internet [Long92]. It monitors a set of Internet hosts,
measuring how often they are rebooted and what fraction
of the time they are available. The measurements are taken
from several different network sites to minimize the effect
of network failure on the results, and to make the sampling
mechanism very reliable.

Each measurement site runs a tattler, which samples
host uptimes and shares these measurements with other
tattlers. Collectively the tattlers maintain a list of hosts to
monitor and collect statistics on them. The client interface
allows hosts to be added or deleted from this list. The
recorded statistics consist of a sequence of tuples of the
form hhost address, boot time, sample timei for each host
being monitored. Each tuple represents one interval the
host was known to be available.

Only one operation updates a Tattler database: merging
a set of samples. A sample that is being merged into a

Client
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daemon

Data base
daemon

Tattler
daemon

Other
tattler

daemons

FIGURE 4: Structure of a Tattler.

database will either be disjoint from every other sample
recorded for the same host, or it will overlap with another
sample. If it overlaps, the two samples are combined.
Otherwise, the host has been rebooted and a new interval
has begun.

Each time a tattler obtains a new sample, it logically
multicasts the sample to other tattlers. Sample merging
is commutative and idempotent, so different operations
cannot conflict and message ordering is unimportant as
long as messages are delivered reliably. However, unlike
Refdbms, the Tattler does not explicitly implement a mes-
sage log. The database contains all the information that
would be maintained in the message log, so the implemen-
tations of the message ordering and delivery components
can work directly from the database.

Each tattler is composed of four parts: a client inter-
face, a polling daemon, a data base daemon, and a tattler
daemon. Figure 4 shows this structure. The polling dae-
mon produces sample observations. It takes samples at a
specified rate, and can be requested to start or stop sam-
pling using the client interface. The data base daemon
provides stable storage for sample observations (from the
polling daemon), and meta-data from the client interface
and the tattler daemon. All of the group communication
components are implemented in the tattler daemon, which
exchanges samples, host lists, and membership informa-
tion between tattler sites using a reliable, eventual delivery
protocol.

4 Message delivery

The message delivery component fills a function similar
to the transport layer in the ISO layered network model, in
that it exchanges messages with other principals without
interpreting message contents. In our group communica-
tion framework, it retrieves messages entered into a mes-
sage log by other components and transmits them to other
principals.

The delivery component provides guarantees on mes-
sage reliability and latency. The reliability guarantee de-
termines which principals must receive a copy of the mes-
sage, and latency determines how long delivery will take.
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TABLE 1: Possible message delivery reliability guarantees, from
strongest to weakest.

Kind Guarantee

Atomic Message is either delivered to every
group member, or to none. Message is
aborted if any group member fails.

Reliable Delivered to every functioning group
member or to none, but failed members
need not receive the message. If the
sender fails, delivery is not guaranteed
but may occur.

Quorum Delivered to at least some fraction of
the membership. If the sender fails,
delivery is not guaranteed.

Best effort Delivery attempted to every member,
but none are guaranteed to receive the
message.

There are several possible message reliability levels,
ranging from atomic to best effort, as listed in Table 1.
Reliable mechanisms generally require extra state at each
principal and induce more message traffic than unreliable
ones. They require the sender to retain a copy of the mes-
sage in its message log so the message can be retransmitted
if necessary, and they require receivers to acknowledge in-
coming messages. Best effort mechanisms need not keep
a copy of the message.

Reliable delivery was used for both Refdbms and the
Tattler. Reliable delivery is essential for Refdbms, because
even a single lost message can cause some principal to
miss an update and permanently diverge from the proper
value. Reliability is less essential for the Tattler, because
that system can recover from a lost message the next time
two databases are merged.

Message latency complements reliability: it determines
how long principals may have to wait to receive a message
if it is delivered to them. There are two aspects to latency:
when the delivery process begins, and when it ends. The
process can either begin immediately, or messages can
be queued for later delivery. Once started, delivery can
complete in either a bounded time, or eventually. The four
combinations are listed in Table 2. Other guarantees can
be used that fall between the ones listed.

Eventual delivery was used in both systems because
synchronous or interactive delivery can severely limit fault
tolerance. In particular it makes the system less tolerant
of network partitions and site failures. If messages can be

TABLE 2: Possible message delivery latency guarantees.

Kind Guarantee

Synchronous Delivery begins immediately, and
completes within a bounded time.

Interactive Delivery begins immediately, but may
require a finite but unbounded time.

Bounded Messages may be queued or delayed,
but delivery will complete within a
bounded time.

Eventual Messages may be queued or delayed,
and may require a finite but unbounded
time to deliver.

delayed, they can be delivered after the network or system
failure has been repaired. The Internet is essentially never
without partitions, and mobile computers may spend a
substantial fraction of the time disconnected.

Eventual delivery also allows the system to delay mes-
sages until inexpensive communication is available. This
might mean waiting to transmit messages until evening
when the network is less loaded. Some mobile sys-
tems spend long periods “semi-connected” through a low-
bandwidth wireless link, and it may be more effective to
wait to transmit messages until the system is reconnected
to a higher-speed link.

While both Refdbms and the Tattler only provide even-
tual delivery, both systems are most convenient when up-
dates propagate quickly. The Tattler takes steps to in-
crease the propagation rate on observing changes to group
membership or the list of monitored hosts. This propa-
gates important changes quickly, while ordinary updates
are propagated normally.

Reliable eventual delivery provides weak consistency.
Every update to group state is encoded in a message, which
is delivered to every principal. While the message is being
sent, some principals will have received the message while
others will not. This inconsistency between principals is
removed when delivery completes.

We have developed the timestamped anti-entropy proto-
col as one implementation of the message delivery compo-
nent. It provides reliable, eventual, exactly-once message
delivery in wide-area distributed systems. We have dis-
cussed this protocol in detail in other works [Golding92a].
It maintains a summary of the messages and acknowledg-
ments it has received, and periodically exchanges batches
of messages between pairs of principals. The summaries
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make the exchange efficient by allowing each principal to
send only the messages the other has not yet received. It
masks transient failures by periodically retrying message
exchanges, which makes it ideal for the Internet and for
mobile computing.

5 Message log
There are two different models for storing and transmitting
messages. In the first model, each message is entered into
a message log, sent to other principals, and later applied
to the group state by each principal. Alternately, it can be
immediately applied to the group state and its effects can
be logged and transmitted to other principals. Refdbms
uses a component that implements a message log, while
in the Tattler this component is replaced by an interface
directly to the sample database.

Message logs are simple. Every update operation pro-
duces one update message, which is then sent to every
group member. After the message arrives at other princi-
pals, its operation can be applied to the group state. The
messages can be tagged with timestamp information so
that any ordering is possible. The group state need not
include any extra information to ensure that the message
ordering component can establish the right order.

Propagating effects rather than updates is more com-
plex, but it can be a more efficient solution when eventual
delivery is allowable. If a part of the group state is up-
dated very often, the results of several operations can be
collapsed into a single result. That result can be sent to
other principals, rather than one message for each opera-
tion.

Since there are no messages, the group state must in-
clude ordering or timestamp information. In the Tattler
each sample contains a timestamp. When updates are
propagated from one principal to another, samples are
exchanged and merged into the other database. In the
Tattler, the sample timestamp is used just as a message
timestamp would be. A sample in the database may re-
flect the merging of several measurements, so there can be
fewer samples sent between principals than if each mea-
surement were logged individually. Some systems that use
state exchange can also tolerate some lost “messages” be-
cause the value can be obtained from a different principal
in a later update exchange.

Unfortunately, many applications cannot use state ex-
change. It is impossible to construct global orderings on
updates before they are applied to the database because
updates are always applied immediately. In the Tattler,
neither the message log nor the message ordering compo-
nent exist. In some distributed systems, such as Refdbms,

update conflicts cannot be resolved without global mes-
sage orderings. Other applications simply cannot maintain
the necessary information in their group state.

Deleting items from the group state requires special
consideration when message logs are not used. Deletion
should be a stable property: once an item has been deleted,
it should remain so forever. The item should not sponta-
neously reappear, though of course a new item with the
same value could be added by an application. A record
of the deletion must be maintained until the deletion has
been observed by all principals, so that no principal can
miss the operation and re-introduce the item to other prin-
cipals. In the Clearinghouse these records were called
death certificates [Demers88], while the Bloch-Daniels-
Spector distributed dictionary algorithm [Bloch87] places
timestamps on the gaps between items as well as on the
items themselves. The Tattler uses the death certificate
approach to track hosts that should no longer be polled.

6 Message ordering
The message ordering component is responsible for en-
suring that messages are delivered to the application in a
well-defined order. This order may be different from the
order in which messages are received. For example, an
application should receive updates to a database record af-
ter the message creating the record. Even if the messages
were sent in the right order, they may be rearranged in
transit and arrive at their destination in a different order.

Table 3 lists the four most common message orderings.
Some of these ensure that messages are delivered to every
principal in the same order. Other orderings respect poten-
tial causality: if there is any possibility that the contents
of one message depend on the effects of another message,
the ordering component guarantees that the other message
will be delivered first.

The Tattler does not require a message order because
the operation of merging a sample into the database is not
order-dependent. A sample represents a range of times
that a host was known to be continuously available. When
a new sample is to be processed, it will either overlap an
existing sample, in which case the two will be combined,
or it represents a new range.

The operations on a Refdbms database, on the other
hand, are order-dependent. The value of a reference is the
value of the last update applied to it. For two principals to
record the same value for a reference, they must apply the
same updates in the same order. In Refdbms, the ordering
component tags each update message with a timestamp
from its originator’s clock. Messages are then applied to
the database in timestamp order. This technique correctly
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TABLE 3: Four popular message ordering guarantees.

Kind Guarantee

Total, causal The strongest ordering. Messages
are delivered in the same order at
every principal, and that order re-
spects potential causal relations be-
tween messages.

Total, noncausal Messages are delivered in the same
order at every principal, but that or-
der may not always respect potential
causal relations.

Causal Messages are delivered in an order that
respects potential causal relations. If
two messages could be causally related
they are delivered in the same order at
every principal. If they are not, they
may be delivered in different orders.

Unordered Messages are delivered without regard
for order.

produces a total (but not causal) message order as long as
every principal has access to a local clock that is loosely
synchronized with other clocks. This scheme is biased
so that messages from principals whose clocks lag behind
others will always be applied before those with faster-
running clocks. Clocks on Internet hosts are generally
synchronized to within a few minutes. The mean interval
between concurrent updates is generally much larger, so
this bias has little effect.

A message ordering mechanism can be evaluated by
the amount of extra information that must be appended
to messages, by the amount of state each principal must
maintain, and by the delay it imposes between receipt and
delivery. Some causally-consistent mechanisms, such as
Psync [Mishra89], require that messages be tagged with a
number of timestamps or message identifiers. Total order-
ings can be accomplished with a per-principal counter or
timestamp, though the resulting order will not be causal
unless the counter or timestamp respects causality.

Message ordering can require delaying updates for ex-
tended periods. Users, on the other hand, may need to
use the results of an update immediately. Refdbms re-
solves this by making recent database changes available
in a pending image of a reference. If there are conflicting
updates, the contents of the pending image are only an
approximation of the final reference. The pending image
is removed when there are no update operations pending

for the reference. The pending image can be retrieved by
providing a tag of the form Smith92.pending. This al-
lows citations of pending references to be embedded in a
LATEX document or sent to another user by electronic mail.

Our performance evaluations [Golding93] have shown
that the simple total ordering used in Refdbms does not
substantially delay message delivery on average. Mes-
sages are delayed at most by the maximum difference
between clocks, plus the delay between receiving a mes-
sage and receiving a greater or equal timestamp from every
other group member.

7 Group membership
This component is responsible for maintaining the local
view of the principals that make up the group. As with
updates to application state, changes to membership views
are propagated eventually from one group member to an-
other, which allows the operations of adding and remov-
ing group members to scale to very large groups. This
approach can be contrasted to other group membership
systems such as Isis or Psync, which maintain consis-
tent group views and require synchronous operations to
change the group membership. Persistent group mem-
bers further simplify group management because failure
of group members need not be considered.

There are two fundamentally different models for group
membership, depending on whether group membership is
based on a join/leave protocol or whether it is a process
of discovering group members. The first mechanism is
used in many existing systems, including Isis, Arjuna,
most replication protocols, and our systems. The second
mechanism has been proposed by Cristian [Cristian91],
and works by discovering what principals believe they are
members. It generally requires global broadcast, which
is infeasible in networks the size of the Internet. This
mechanism is not considered further.

Principals join and leave the group by executing join
and leave protocols. To join the group, the principal con-
tacts an existing member, which acts as the new member’s
sponsor. The sponsor first adds the new member to its
local group view, sends an update message to the group,
then sends a copy of its application state, message log, and
group view to the new member. A principal is considered
to be a member when it and its sponsor commit their their
changed group views. To leave a group, a member sends
an update message to the group indicating its intent to
leave. When at least one other member has acknowledged
the message, the member can destroy its state. Between
sending the message and receiving the acknowledgment
the member enters a special state where it cannot orig-
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inate messages, but does exchange messages with other
members. We have proven that this approach is correct
when composed with the TSAE message delivery proto-
col [Golding92b, Golding92a]. We have also developed a
variant on these protocols that allow two groups to merge.

Our experience with this group membership mechanism
in Refdbms is generally positive. It uses the join-leave
implementation because there is no sensible way to merge
two databases. The Tattler uses the implementation that
allows group merges because its sampling operation is
based on merging sample results.

In some systems these group view update messages
are processed by the message ordering component so that
group changes are ordered with respect to application mes-
sages. For example, every member can observe a princi-
pal joining the group at the same point in the message
sequence. In the Refdbms and Tattler systems, however,
this sort of consistency is not important because none of
the operations on group state depend on the membership.
Therefore group messages are delivered independent of
application update messages.

8 Conclusions

The Refdbms and Tattler applications have been built and
are running on the Internet. They represent two of the
many kinds of wide-area applications that are likely to be-
come available in the next several years. Both applications
were constructed as a collection of principals organized
into a weak-consistency principal group.

We have developed a framework for constructing group
communication mechanisms. The framework consists of
an application, which defines the semantics of the state
shared among the group; a message delivery component,
which communicates messages from one member to an-
other; a message log, which stores the messages until they
have been delivered to the group; a message ordering com-
ponent, which assembles the incoming stream of messages
into a coherent order and delivers them to the application;
and a group membership component, which maintains a
view of the membership.

We constructed custom group communication for both
applications using our framework. This allowed us to
match the group semantics to the application, enabling us
to identify which components required strong guarantees,
and which could be implemented using relaxed guarantees
for better performance. In Refdbms, for example, the
message ordering component must delay messages so they
can be totally ordered, while the ordering component in
the Tattler delivers messages as soon as they are received.

Eventually we expect this work to lead to a general-
purpose toolkit, but even now it provides a structure for
reasoning about and designing applications, and it is a
valuable alternative to ad hoc application construction.
Some modular architecture of this sort is necessary if
wide-area distributed applications are to become common,
efficient, and easy to construct.
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